Universe Today has recently had the privilege of investigating a myriad of scientific disciplines, including impact craters, planetary surfaces, exoplanets, astrobiology, solar physics, comets, planetary atmospheres, planetary geophysics, cosmochemistry, meteorites, radio astronomy, and extremophiles, and how these multidisciplinary fields can help both scientists and space fans better understand how they relate to potentially finding life beyond Earth, along with other exciting facets. Here, we will examine the incredible field of organic chemistry with Dr. Andro Rios, who is an Assistant Professor in Organic Chemistry at San José State University, regarding why scientists study organic chemistry, the benefits and challenges, finding life beyond Earth, and potential paths for upcoming students. So, why is it so important to study organic chemistry?
Continue reading “Organic Chemistry: Why study it? What can it teach us about finding life beyond Earth?”A Single Grain of Ice Could Hold Evidence of Life on Europa and Enceladus
The Solar System’s icy ocean moons are primary targets in our search for life. Missions to Europa and Enceladus will explore these moons from orbit, improving our understanding of them and their potential to support life. Both worlds emit plumes of water from their internal oceans, and the spacecraft sent to both worlds will examine those plumes and even sample them.
New research suggests that evidence of life in the moons’ oceans could be present in just a single grain of ice, and our spacecraft can detect it.
Continue reading “A Single Grain of Ice Could Hold Evidence of Life on Europa and Enceladus”Europe Has Big Plans for Saturn’s Moon Enceladus
Saturn’s moon, Enceladus, is a gleaming beacon that captivates our intellectual curiosity. Its clean, icy surface makes it one of the most reflective objects in the entire Solar System. But it’s what’s below that ice that really gets scientists excited.
Under its icy shell is an ocean of warm, salty water, and the ESA says investigating the moon should be a top priority.
Continue reading “Europe Has Big Plans for Saturn’s Moon Enceladus”How Did Life Get Started on Earth? Atmospheric Haze Might Have Been the Key
A recent study accepted to The Planetary Science Journal investigates how the organic hazes that existed on Earth between the planet’s initial formation and 500 million years afterwards, also known as Hadean geologic eon, could have contained the necessary building blocks for life, including nucleobases and amino acids. This study holds the potential to not only help scientists better understand the conditions on an early Earth, but also if these same conditions on Saturn’s largest moon, Titan, could produce the building blocks of life, as well.
Continue reading “How Did Life Get Started on Earth? Atmospheric Haze Might Have Been the Key”A Hypervelocity Experiment Mimics the Surface Conditions of Ceres
It might be oxymoronic to say that the more we find out about something, the more mysterious it becomes. But if that’s true of anything in our Solar System, it might be true about Ceres, the largest body in the main asteroid belt.
Continue reading “A Hypervelocity Experiment Mimics the Surface Conditions of Ceres”Perseverance Finds a Wealth of Organic Materials on Mars
The search for life on Mars has been a long a confusing one. Inconclusive experiments abound, but one thing is certain – there is definitely organic material on the Red Planet. Now, a new study in Nature has confirmed that finding and showed just how complex that organic material actually is.
Continue reading “Perseverance Finds a Wealth of Organic Materials on Mars”Venus has Clouds of Concentrated Sulfuric Acid, but Life Could Still Survive
The surface of Venus is like a scene from Dante’s Inferno – “Abandon all hope, ye who enter here!” and so forth. The temperature is hot enough to melt lead, the air pressure is almost one hundred times that of Earth’s at sea level, and there are clouds of sulfuric acid rain to boot! But roughly 48 to 60 km (30 to 37.3 mi) above the surface, the temperatures are much cooler, and the air pressure is roughly equal to Earth’s at sea level. As such, scientists have speculated that life could exist above the cloud deck (possibly in the form of microbes) as it does on Earth.
Unfortunately, these clouds are not composed of water but of concentrated sulfuric acid, making the likelihood that life could survive among them doubtful. However, a new study led by scientists from the Massachusetts Institute of Technology (MIT) reveals that the basic building blocks of life (nucleic acid bases) are stable in concentrated sulfuric acid. These findings indicate that Venus’ atmosphere could support the complex chemistry needed for life to survive, which could have profound implications in the search for habitable planets and extraterrestrial life.
Continue reading “Venus has Clouds of Concentrated Sulfuric Acid, but Life Could Still Survive”JWST Sees Organic Molecules Ludicrously Far Away
When astronomers used the JWST to look at a galaxy more than 12 billion light years away, they were also looking back in time. And when they found organic molecules in that distant galaxy, they found them in the early Universe.
The organic molecules are usually found where stars are forming, but in this case, they’re not.
Continue reading “JWST Sees Organic Molecules Ludicrously Far Away”Asteroid Ryugu Contains Niacin (aka Vitamin B3)
In December 2020, JAXA’s Hayabusa2 spacecraft delivered a pristine sample of otherworldly dust and rock from asteroid Ryugu to Earth. Scientists have since had the opportunity to study the sample, and announced last week that the asteroid contains organic molecules important for life. In particular, they discovered Niacin, otherwise known as vitamin B3, and Uracil, one of the four core components of ribonucleic acid (RNA).
Continue reading “Asteroid Ryugu Contains Niacin (aka Vitamin B3)”The Raw Materials for Life Form Early on in Stellar Nurseries
Life doesn’t appear from nothing. Its origins are wrapped up in the same long, arduous process that creates the elements, then stars, then planets. Then, if everything lines up just right, after billions of years, a simple, single-celled organism can appear, maybe in a puddle of water on a hospitable planet somewhere.
It takes time for the building blocks of stars and planets to assemble in space, and the building blocks of life are along for the ride. But there are significant gaps in our understanding of how all that works. A new study is filling in one of those gaps.
Continue reading “The Raw Materials for Life Form Early on in Stellar Nurseries”