While the OSIRIS-REx spacecraft was orbiting asteroid Bennu,
one of the instruments on board happened to catch a glimpse of a black hole ‘out
of the corner of its eye,’ so to speak.
While intently focusing on the asteroid, the Regolith X-Ray Imaging Spectrometer (REXIS) happened to catch the X-rays from a newly flaring stellar mass black hole. While the flare occurred 30 thousand light years away, the flash in distant space was visible just off the limb of asteroid Bennu, in the edge of the instrument’s field of view.
NASA’s OSIRIS-REx spacecraft reached its target, asteroid Bennu (101955 Bennu), on December 3rd, 2018. Since then, the spacecraft has been examining the asteroid’s surface, looking for a suitable landing spot to collect a sample. The problem is, Bennu has a much rockier and challenging surface than initially thought.
The year two thousand and twenty is almost upon us. And as always, space agencies and aerospace companies all around the world are preparing to spend the coming year accomplishing a long list of missions and developments. Between NASA, the ESA, China, SpaceX, and others, there are enough plans to impress even the most curmudgeonly of space enthusiasts.
NASA has chosen the sampling site for its OSIRIS-REx spacecraft. After narrowing it down to four potential sites and examining them in detail, they’ve settled on one location. Their choice? Nightingale.
NASA’s OSIRIS-REx spacecraft arrived at asteroid Bennu in December 2018, and just one week later, it discovered something unusual about Bennu: the asteroid was ejecting particles into space.
The spacecraft’s navigation camera first spotted the particles, but scientists initially thought they were just stars in the background. After closer scrutiny, the OSIRIS-REx team realized they were particles of rock, and were concerned that they might pose a hazard.
NASA’s OSIRIS-REx arrived at asteroid Bennu in December 2018. During the past year, it’s been imaging the surface of the asteroid extensively, looking for a spot to take a sample from. Though the spacecraft has multiple science objectives, and a suite of instruments to meet them, the sample return is the key objective.
Now, NASA has narrowed the choice down to four potential sampling locations on the surface of the asteroid.
NASA’s OSIRIS-REx spacecraft has been at asteroid Bennu since Dec. 3rd, 2018. On that day, it went from travelling to the asteroid to travelling around it. Since then it’s been surveying and mapping Bennu.
On Dec. 31st, NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) rendezvoused with the asteroid 101955 Bennu. As part of an asteroid sample-return mission, NASA hopes that material from this near-Earth Asteroid (NEA) will reveal things about the history of the Solar System, the formation of its planets, and the origins of life on Earth.
Since the spacecraft established orbit around the asteroid, it has witnessed some interesting phenomena. This includes the first-ever close-up observations of particle plumes erupting from an asteroid’s surface. Since that time, the mission team has kept an eye out for these eruptions, which has allowed them to witness a total of 11 “ejection events” since the spacecraft first arrived.
If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!
If you’d like to join Dr. Paul Sutter and Dr. Pamela Gay on their Cosmic Stories in the SouthWest Tour in August 2019, you can find the information at astrotours.co/southwest.
We record the Weekly Space Hangout every Wednesday at 5:00 pm Pacific / 8:00 pm Eastern. You can watch us live on Universe Today, or the Weekly Space Hangout YouTube page – Please subscribe!
The Weekly Space Hangout is a production of CosmoQuest.
NASA’s OSIRIS-REx spacecraft has reached its destination and is now in orbit around asteroid Bennu. The spacecraft travelled for over two years and covered more than 2 billion kms. It will spend a year in orbit, surveying the surface of the Potentially Hazardous Object (PHO) before settling on a location for the key phase of its mission: a sample return to Earth.