On September 8th. 2016, NASA’s Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) launched from Earth to rendezvous with the asteroid 101955 Bennu. This mission will be the first American robotic spacecraft to rendezvous with an asteroid, which it will reach by December of 2018, and return samples to Earth for analysis (by September 24th, 2023).
Since that time, NASA has been keeping the public apprised of the mission’s progress, mainly by sending back images taken by the spacecraft. The latest image was one of the Earth and Moon, which the spacecraft took using its NavCam 1 imager on January 17th, 2018. As part of an engineering test, this image shows just how far the probe has ventured from Earth.
The image was taken when the spacecraft was at a distance of 63.6 million km (39.5 million mi) from the Earth and Moon. When the camera acquired the image, the spacecraft was moving at a speed of 8.5 km per second (19,000 mph) away from Earth. Earth can be seen in the center of the image as the brightest of the two spots while the smaller, dimmer Moon appears to the right.
Several constellations are also visible in the surrounding space, including the Pleiades cluster in the upper left corner. Hamal, the brightest star in Aries, is also visible in the upper right corner of the image. Meanwhile, the Earth-Moon system is nestled between the five stars that make up the head of Cetus the Whale.
This is merely the latest in a string of photographs that show how far OSIRIS-REx has ventured from Earth. On October 2nd, 2017, the probe’s MapCam instrument took a series of images of the Earth and Moon while the probe was at a distance of 5 million km (3 million mi) – about 13 times the distance between the Earth and the Moon. NASA then created a composite image to create a lovely view of the Earth-Moon system (see below).
On September 22nd, 2017, the probe also snapped a “Blue Marble” image of Earth (seen below) while it was at a distance of just 170,000 km (106,000 mi). The image was captured just a few hours after OSIRIS-REx had completed its critical Earth Gravity Assist (EGA) maneuver, which slung it around the Earth and on its way towards the asteroid Bennu for its scheduled rendezvous in December of 2018.
On both of these occasions, the images were taken by the probe’s MapCam instrument, a medium-range camera designed to capture images of outgassing around Bennu and help map its surface in color. The NavCam 1 instrument, by contrast, is a grayscale imager that is part of Touch-And-Go Camera System (TAGCAMS) navigation camera suite.
The design, construction and testing of this instrument was carried out by Malin Space Science Systems, and Lockheed Martin is responsible for its operation. By the time OSIRIS-REx begins to approach asteroid Bennu in December of 2018, we can expect that the probes cameras will once again be busy.
However, by this time, they will be turned towards its destination. As it nears Bennu, its cameras will need to be calibrated yet again by snapping images of the asteroid on approach. And we, the public, can expect that more beautiful composite images will be shared as a result.
On September 8th, 2016, NASA’s Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission was launched into space. In the coming months, this space probe will approach and then rendezvous with the asteroid 101955 Bennu – a Near-Earth Object (NEO) – for the sake of studying it. The mission will also acquire samples of the asteroid, which will be returned to Earth by 2023.
The OSIRIS-REx mission is an historic one, since it will be the first US spacecraft to conduct a sample-return mission with an asteroid. In the meantime, as the probe has makes its way further into space, it has been providing some truly breathtaking images of the journey. Consider the recently-released composite image of the Earth-Moon system, which NASA created using images that were taken by the probe on October 2nd, 2017.
The images were all taken by the probe’s MapCam instrument, a medium-range camera designed to capture images of outgassing around Bennu and help map its surface in color. On this occasion, it snapped three beautiful pictures of Earth and the Moon. These images were all taken when the spacecraft was at a distance of approximately 5 million km (3 million mi) from Earth – about 13 times the distance between the Earth and the Moon.
As part of the OSIRIS-REx Camera Suite (OCAMS), which is operated by researchers at the University of Arizona, the CapCam has four color filters. To produce the image, three of them (b, v and w) were used as a blue, green and red filters and then stacked on top of each other. The Earth and Moon were each color-corrected, and the Moon was brightened to make it more easily visible.
A second image of planet Earth (shown above), was taken on September 22nd, 2017, by one of the probe’s navigational cameras (NavCam 1). As the name suggests, this instrument is intended to help OSIRIS-REx orient itself while making its journey to Bennu and while it studies the asteroid. This is done by tracking starfields in space (while in transit) and landmarks on Bennu’s surface once it has arrived.
The image was taken when OSIRIS-REx was at a distance of 110,000 km (69,000 mi) from Earth. This was just after the probe had completed an Earth gravity-assist maneuver, where it used Earth’s gravitational force to slingshot around its equator and pick up more speed. The original image (shown below) was rotated so that the North Pole would be pointed up and the entire image was enlarged to provide more detail.
As you can see in the altered image, North America is visible on the upper right portion, while Hurricane Maria and the remnants of Hurricane Jose are visible in the far upper-right. The acquisition of these images was the result of painstaking calculations and planning, which were performed in advance by engineers and navigation specialists on the mission team using software called Systems Tool Kit (STK).
These plans were developed to ensure that the probe would be able to snap pictures with precise timing, which were then uploaded to the spacecraft’s computer weeks ahead of time. Within hours of the probe executing its gravity-assist maneuver, crews on the ground were treated to the first images from the spacecraft’s navigational cameras, which confirmed that the probe was following the right path.
The probe is scheduled to reach Bennu in December of 2018, with approach operations commencing this coming August. Bennu is also expected to make a close pass with Earth several centuries from now, and could even collide with us by then. But for the time being, it represents a major opportunity to study the history and evolution of the Solar System, since it is essentially a remnant left over from its formation.
By studying this asteroid up close, and bringing samples back to Earth for further study, the OSRIS-REx mission could help us understand how life began on Earth and where the Solar System as a whole is headed. But in the meantime, the probe has been able to provide us with some beautiful snapshots of Earth, which serve to remind us all of certain things.
Much like Voyager 1‘s “Pale Blue Dot” photo, seeing Earth from space helps to drive home the fact that life is rare and precious. It also reminds us that we, as a species, are all in this together and completely and utterly dependent on our planet and its ecosystems. Once in awhile, we need to be reminded of these things. Otherwise, we might do some stupid – like ruin it!
KENNEDY SPACE CENTER, FL – NASA’s OSIRIS-REx asteroid mission captured a lovely ‘Blue Marble’ image of our Home Planet during last Fridays (Sept. 22) successful gravity assist swing-by sending the probe hurtling towards asteroid Bennu for a rendezvous next August on a round trip journey to snatch pristine soil samples.
The newly released color composite image of Earth was taken on Sept. 22 by the spacecrafts MapCam camera.
It was taken at a range of approximately 106,000 miles (170,000 kilometers), just a few hours after OSIRIS-REx completed its critical Earth Gravity Assist (EGA) maneuver.
“NASA’s asteroid sample return spacecraft successfully used Earth’s gravity on Friday, Sept. 22 to slingshot itself on a path toward the asteroid Bennu, for a rendezvous next August,” the agency confirmed after receiving the eagerly awaited telemetry.
OSIRIS-Rex, which stands for Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer, is NASA’s first ever asteroid sample return mission.
As it swung by Earth at 12:52 p.m. EDT on Sept. 22, OSIRIS-REx passed only 10,711 miles (17,237 km) above Antarctica, just south of Cape Horn, Chile.
The probe departed Earth by following a flight path that continued north over the Pacific Ocean and has already travelled 600 million miles (1 billion kilometers) since launching on Sept. 8, 2016.
The preplanned EGA maneuver provided the absolutely essential gravity assisted speed boost required for OSIRIS-Rex to gain enough velocity to complete its journey to the carbon rich asteroid Bennu and back.
The mission was only made possible by the slingshot which provided a velocity change to the spacecraft of 8,451 miles per hour (3.778 kilometers per second).
“The encounter with Earth is fundamental to our rendezvous with Bennu,” said Rich Burns, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in a statement.
“The total velocity change from Earth’s gravity far exceeds the total fuel load of the OSIRIS-REx propulsion system, so we are really leveraging our Earth flyby to make a massive change to the OSIRIS-REx trajectory, specifically changing the tilt of the orbit to match Bennu.”
The spacecraft conducted a post flyby science campaign by collecting images and science observations of Earth and the Moon that began four hours after closest approach in order to test and calibrate its onboard suite of five science instruments and help prepare them for OSIRIS-REx’s arrival at Bennu in late 2018.
The MapCam camera Blue Marble image is the first one to be released by NASA and the science team.
The image is centered on the Pacific Ocean and shows several familiar landmasses, including Australia in the lower left, and Baja California and the southwestern United States in the upper right.
“The dark vertical streaks at the top of the image are caused by short exposure times (less than three milliseconds),” said the team.
“Short exposure times are required for imaging an object as bright as Earth, but are not anticipated for an object as dark as the asteroid Bennu, which the camera was designed to image.”
The instrument will gather additional data and measurements scanning the Earth and the Moon for three more days over the next two weeks.
“The opportunity to collect science data over the next two weeks provides the OSIRIS-REx mission team with an excellent opportunity to practice for operations at Bennu,” said Dante Lauretta, OSIRIS-REx principal investigator at the University of Arizona, Tucson.
“During the Earth flyby, the science and operations teams are co-located, performing daily activities together as they will during the asteroid encounter.”
The OSIRIS-Rex spacecraft originally departed Earth atop a United Launch Alliance Atlas V rocket under crystal clear skies on September 8, 2016 at 7:05 p.m. EDT from Space Launch Complex 41 at Cape Canaveral Air Force Station, Florida.
Everything with the launch and flyby went exactly according to plan for the daring mission boldly seeking to gather rocks and soil from carbon rich Bennu.
OSIRIS-Rex is equipped with an ingenious robotic arm named TAGSAM designed to collect at least a 60-gram (2.1-ounce) sample and bring it back to Earth in 2023 for study by scientists using the world’s most advanced research instruments.
Watch for Ken’s continuing onsite NASA mission and launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news. Ken Kremer
As it swings by Earth NASA’s first ever asteroid sample return mission, OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer), will pass only 11,000 miles (17,000 kilometers) above Earth just before 12:52 p.m. EDT on Friday.
And NASA is asking the public to try and ‘Catch It If You Can’ – by waving hello and/or taking snapshots during and after the probes high speed flyby.
OSIRIS-REx will be approaching Earth at a velocity of about 19,000 mph on Friday as it begins flying over Australia during the Earth Gravity Assist (EGA) maneuver.
Since blastoff from the Florida Space Coast on Sept. 8, 2016 the probe has already racked up almost 600 million miles on its round trip journey from Earth and back to set up Friday’s critical gravity assist maneuver to Bennu and back.
As OSIRIS-REx continues along its flight path the spacecraft will reach its closest point to Earth over Antarctica, just south of Cape Horn, Chile. It will gain a velocity boost of about 8400 mph.
The spacecraft will also conduct a post flyby science campaign by collecting images and science observations of Earth and the Moon four hours after closest approach to calibrate its five science instruments.
The allure of Bennu is that it is a carbon rich asteroid – thus OSIRIS-REx could potentially bring back samples infused with the organic chemicals like amino acids that are the building blocks of life as we know it.
“We are interested in that material because it is a time capsule from the earliest stages of solar system formation,” OSIRIS-Rex Principal Investigator Dante Lauretta told Universe Today in a prelaunch interview with the spacecraft in the cleanroom at NASA’s Kennedy Space Center.
The do or die gravity assist plunge is absolutely essential to set OSIRIS-REx on course to match the asteroid’s path and speed when it reaches the vicinity of asteroid Bennu a year from now in October 2018.
“The Earth Gravity Assist is a clever way to move the spacecraft onto Bennu’s orbital plane using Earth’s own gravity instead of expending fuel,” says Lauretta, of the University of Arizona, Tucson.
Bennu’s orbit around the Sun is tilted at a six-degree inclination with respect to Earth’s orbital plane.
The asteroid is 1,614-foot (500 m) in diameter and crosses Earth’s orbit around the sun every six years.
Numerous NASA spacecraft – including NASA’s just completed Cassini mission to Saturn – utilize gravity assists around a variety of celestial bodies to gain speed and change course to save vast amounts of propellant and time in order to accomplish science missions and visit additional target objects that would otherwise be impossible.
The flyby will be a nail-biting time for NASA and the science team because right afterwards the refrigerator sized probe will be out of contact with engineers – unable to receive telemetry for about an hour.
“For about an hour, NASA will be out of contact with the spacecraft as it passes over Antarctica,” said Mike Moreau, the flight dynamics system lead at Goddard, in a statement.
“OSIRIS-REx uses the Deep Space Network to communicate with Earth, and the spacecraft will be too low relative to the southern horizon to be in view with either the Deep Space tracking station at Canberra, Australia, or Goldstone, California.”
NASA says the team will regain communication with OSIRIS-REx roughly 50 minutes after closest approach over Antarctica at about 1:40 p.m. EDT.
The post flyby science campaign is set to begin at 4:52 p.m. EDT, Friday, Sept. 22.
The OSIRIS-Rex spacecraft originally departed Earth atop a United Launch Alliance Atlas V rocket under crystal clear skies on September 8, 2016 at 7:05 p.m. EDT from Space Launch Complex 41 at Cape Canaveral Air Force Station, Florida.
Everything with the launch went exactly according to plan for the daring mission boldly seeking to gather rocks and soil from carbon rich Bennu.
OSIRIS-Rex is equipped with an ingenious robotic arm named TAGSAM designed to collect at least a 60-gram (2.1-ounce) sample and bring it back to Earth in 2023 for study by scientists using the world’s most advanced research instruments.
“The primary objective of the OSIRIS-Rex mission is to bring back pristine material from the surface of the carbonaceous asteroid Bennu,” OSIRIS-Rex Principal Investigator Dante Lauretta told me in the prelaunch interview in the KSC cleanroom with the spacecraft as the probe was undergoing final launch preparations.
“We are interested in that material because it is a time capsule from the earliest stages of solar system formation.”
“It records the very first material that formed from the earliest stages of solar system formation. And we are really interested in the evolution of carbon during that phase. Particularly the key prebiotic molecules like amino acids, nucleic acids, phosphates and sugars that build up. These are basically the biomolecules for all of life.”
NASA and the mission team is also inviting the public to get engaged by participating in the Wave to OSIRIS-REx social media campaign.
“Individuals and groups from anywhere in the world are encouraged to take photos of themselves waving to OSIRIS-REx, share them using the hashtag #HelloOSIRISREx and tag the mission account in their posts on Twitter (@OSIRISREx) or Instagram (@OSIRIS_REx).
Participants may begin taking and sharing photos at any time—or wait until the OSIRIS-REx spacecraft makes its closest approach to Earth at 12:52p.m. EDT on Friday, Sept. 22.”
The probe’s flight path during the flyby will pass through the ring of numerous satellites orbiting in geosynchronous orbit, but none are expected to be within close range.
Watch for Ken’s continuing onsite NASA mission and launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
10 years of Astronomy Cast… wow. It’s been a long, fun journey. What are some of our favorite episodes and adventures over the decade we’ve been doing this show.
We usually record Astronomy Cast as a live Google+ Hangout on Air every Friday at 1:30 pm Pacific / 4:30 pm Eastern. You can watch here on Universe Today or from the Astronomy Cast Google+ page.
Every year, NASA showcases how the technology it develops for exploring space and studying other worlds has applications here on planet Earth. It’s what known as Spinoff, an annual publication that NASA’s Technology Transfer Program has been putting out since 1976. Since that time, they have showcased over 2000 examples where NASA technology was used for the sake of creating products that had wide-ranging benefits.
For Spinoff 2017, NASA selected 50 different companies that are using NASA technology – which included innovations developed by NASA, those made with the help of NASA funding, or those produced under contract with the agency. With examples ranging from GPS and satellite imaging, to light detection and ranging (Lidar) and biomedical devices, the list of commercial applications for this year is quite impressive!
For over 50 years, the NASA Technology Transfer Program has share NASA resources with private industries, a process which is colloquially referred to as “spin-offs”. In finding the widest possible applications for NASA technology and leveraging partnerships and licensing agreements with industry, they ensure that the large investments made in space exploration find additional uses that benefit humanity here on Earth.
In the past, spin-offs have included memory foam, freeze-dried food, emergency thermal blankets, Dustbusters, cochlear implants, and numerous other application that have benefited the computer, medical, transportation, manufacturing and safety industries – thought not Velcro or Tang (contrary to popular conception). As Dan Lockney, the executive of NASA’s Technology Transfer program, told Universe Today via email:
“Spinoff is NASA’s annual publication featuring technologies that have left NASA’s launchpads and laboratories and moved into the public sector. We’ve published Spinoff each year since 1976, featuring about 50 of the best examples of commercialized NASA technologies each year. These range from consumer goods to public safety and medical equipment to advances in round and aire transportation.
“These commercialized technologies are often a direct outcome of the work that NASA’s Technology Transfer Program conducts. Our Tech Transfer Program works to get the technolgoes developed for NASA missions out to industry so that they can have second lives as new products and services.”
This year’s spinoffs were certainly numerous, but some are particularly worthy of mention. For instance, there is the metal oxide semiconductor (CMOS) image sensor that was developed by NASA’s Jet Propulsion Laboratory. Since its creation, it has become one of NASA’s most ubiquitous technologies, leading to the development of DSLR cameras, camera phones, and digital cameras that are available on every handheld device on the market.
And then there’s the GPS technology NASA began developing back in the 1990s, which included software capable of correcting for GPS signal errors and enabling incredible accuracy. John Deere recently acquired this technology and used it to develop a popular class of self-driving farm tractors. Today, as much as 70% of North American farmland is cultivated by self-driving tractors that rely on this technology.
And then there is the spinoff involving NASA-developed laser imaging and ranging technology (Lidar). This technology allowed the Pheonix Lander to detect snow falling from the skies of Mars, and will be used to OSIRIS-REx mission to land on an asteroid in the coming decade. And recently, this same technology was used by a team of archaeologists to map prehistoric sites in North America where hunter-gatherers hunted bison en masse.
In addition, “Robotics Spinoffs” get a special mention in this year’s report, with homage being paid to missions like Curiosity and Juno (which have explored the surfaces and atmospheres of other planets) and space-based observatories like Spitzer, Chandra and Hubble – which have looked deep into the cosmic field. The technologies used by these missions has also had an impact in virtually every sector of the world’s economy.
The publication also includes a section called “Spinoffs of Tomorrow“, which highlights 20 technologies that are especially well-suited for commercial adaptation. These include thin-film piezoelectric and composite materials that could be used in wind turbines to generate more electricity and improve electrode durability, as well as in personal devices to generate power from mere movement.
There’s also the new Armstrong wing design that lower drags, which could make airplanes and wind turbines more efficient. The Glenn Research Center is also cited for their development of a suite of materials and methods that optimize the performance of nanomaterials by making them tougher, more resistant, and easier to process. This could be used to build super-resilient fabrics and consumer products.
Then there’s an underwater vehicle developed by JPL that uses thermally-generated changes in buoyancy to generate electricity and recharge its batteries. This technology, which enables submarines to remain underwater for years at a time, could lead to the creation of nearly self-sufficient undersea drones – something that has applications in everything from sea exploration to pipeline monitoring.
The section also makes mention of an easy-to-use device that separates DNA, RNA, and proteins outside a traditional lab environment. Originally intended for use aboard the ISS, this device could be a boon for developing nations where medical infrastructure may be limited. And there’s also a system that autonomously detects faulty wiring and reroutes around it.
As always, the development of cutting-edge technologies can have applications that go far beyond the purpose for which they were originally intended. Whether it is robotic landers or probes, miniaturized cameras, improved electronics, or advanced materials, commercial industries here on Earth have always benefited from the research, development and exploration efforts of the space industry.
And as our efforts to send astronauts to Mars, return to the Moon, and explore the outer Solar System andbeyond continue, who knows what commercial applications will emerge as a result? And in the meantime, be sure to enjoy this video which explains how NASA technology is licensed through the TTP:
Oklahoma’s Beaver River is an incredibly historic place. Anthropologists estimate that as early as 10,500 years ago, human beings hunted bison in the region. Being without horses, the hunter-gatherers would funnel herds into narrow, dead-end gullies cut into the hillside by the river. Once there, they would kill them en masse, taking the meat and organs and leaving the skeletons behind.
Sadly, no visible trace of this history remains in the region today, thanks to weathering and erosion. But according to a recent story released by NASA, the same technology that powers the Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) mission has made the ancient history of this region visible for all to see.
Having launched back in September of 2016, the robotic spacecraft OSIRIS-REx is scheduled to rendezvous with the Near-Earth Asteroid Bennu in 2023. The purpose of the mission is to obtain samples of the carbonaceous object and return them to Earth, thus helping scientists to get a better understanding of the formation and evolution of the Solar System, as well as the source of organic compounds that led to the formation of life on Earth.
Once it reaches Bennu, it will rely on light-detection and ranging (aka. lidar) to map the asteroid and help the mission team select a landing site. This technology uses one or more lasers to send out short pulses that bounce off of nearby objects. The instrument then measures how long it takes for the signal to return to get an accurate assessment of distance and generate topographical information.
The OSIRIS-REx Laser Altimeter (OLA) instrument was designed by Teledyne Optech, a company that has worked with NASA many times in the past. Their work includes the laser instrument that was used by the Phoenix Lander to detect snow in the Martian atmosphere back in 2008. And more recently, it was used by an archeological research team in the Beaver River area to create a detailed picture of its past.
Using an airborne version of the Teledyne Optech lidar device, the team was able to create a 3-D model of the surface. They were also able to generate as a ‘bare-earth” version of the area that showed what the land looked like without all of the concealing features – i.e. rocks, trees and grass – that hide its past.
In so doing, they were able to figure out where they should dig to find evidence that the region was once a major hunting ground. As Paul LaRoque, vice president of special projects at Teledyne Optech, explained, this process allowed the archaeologists to “see structures or features that were so overgrown that they wouldn’t be obvious at all to someone on the ground.”
This sort of process has also been used by other archaeological teams to make major finds, like uncovering the lost “Ciudad Blanca” (aka. the “City of the Monkey God”) of Honduras. This ancient Mesoamerican settlement, which is believed to have been built between the 1st and 2nd millennium CE, had remained the stuff of legend for centuries. Despite multiple claims by explorers, no confirmed discovery was ever made.
But thanks to a joint effort by archaeologists from the University of Florida and the Houston-based National Center for Airborne Laser Mapping, an archaeological team was able to create images that stripped away the lush rainforest to revealed multiple structures – including pyramids, a plaza, a possible ball court, and many houses.
Lidar was also used by a research team from the University of Connecticut for the sake of studying the dynamics between human settlement and the historic landscape of New England. Using publicly available data, they were able to peer beneath all the current vegetation to detect the remnants of stone walls, building foundations, abandoned roads and what was once cleared farm land.
The revealing look at Beaver River is one of 50 stories that will be released on Dec. 5th, as part of a NASA Spinoff publication. Each year, Spinoff profiles about 50 NASA technologies that have transformed into commercial products and services, demonstrating the wider benefits of America’s investment in its space program. Spinoff is a publication of the Technology Transfer Program in NASA’s Space Technology Mission Directorate.
“The spacecraft has passed its initial instrument check with flying colors as it speeds toward a 2018 rendezvous with the asteroid Bennu,” NASA officials reported in a mission update.
All five of the Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) spacecraft science instruments and one of its navigational instruments were powered on, starting last week on September 19.
NASA says they are all fully healthy for the groundbreaking mission whose purpose is to visit the carbon rich asteroid Bennu, snatch samples from the black as coal surface and return them to Earth in 2023 inside a Sample Return Capsule that will soft land by parachute in the Utah desert.
The seven year roundtrip mission to Bennu and back could potentially bring back samples infused with the organic chemicals like amino acids that are the building blocks of life as we know it.
“The data received from the checkout indicate that the spacecraft and its instruments are all healthy.”
The ‘First-Light’ image shown above was taken on Sept. 19, 2016 by the probes OCAMS MapCam camera and recorded a star field in Taurus, north of the constellation Orion along with Orion’s bright red star Betelgeuse.
“MapCam’s first color image is a composite of three of its four color filters, roughly corresponding to blue, green, and red wavelengths. The three images are processed to remove noise, co-registered, and enhanced to emphasize dimmer stars,” researchers said.
The OSIRIS-REx Camera Suite (OCAMS) was the first of the five science instrument to be tested and checlked out perfectly with “no issues.” It was provided by the University of Arizona and is comprised of three cameras which will image and map Bennu in high resolution.
All the other instruments were also powered on and checked out flawlessly – including the OSIRIS-REx Laser Altimeter (OLA) which fired its laser, the OSIRIS-REx Visible and Infrared Spectrometer (OVIRS), the OSIRIS-REx Thermal Emissions Spectrometer (OTES), and the student designed Regolith X-ray Imaging Spectrometer (REXIS).
Lastly, the Touch and Go Camera System (TAGCAMS) navigational camera was successfully powered on and tested.
Furthermore, TAGCAMS took a dramatic image of the spacecraft’s Sample Return Capsule (below) – which is designed to bring at least a 60-gram (2.1-ounce) sample of Bennu’s surface soil and rocks back to Earth in 2023 for study by scientists using the world’s most advanced research instruments.
The capsule image was captured by the StowCam portion of TAGCAMS when it was 3.9 million miles (6.17 million km) away from Earth and traveling at a speed of 19 miles per second (30 km/s) around the Sun.
The StowCam image of the Sample Return Capsule shows it “is in perfect condition,” according to the science team.
The OSIRIS-REx spacecraft departed Earth with an on time engine ignition of a United Launch Alliance Atlas V rocket under crystal clear skies on Thursday, September 8 at 7:05 p.m. EDT from Space Launch Complex 41 at Cape Canaveral Air Force Station.
The ULA Atlas V injected OSIRIS-Rex perfectly onto its desired trajectory.
“We got everything just exactly perfect,” said Dante Lauretta, the principal investigator for OSIRIS-REx at the University of Arizona, at the post launch briefing at the Kennedy Space Center. “We hit all our milestone within seconds of predicts.
The space rock measures about the size of a small mountain at about a third of a mile in diameter.
“The primary objective of the OSIRIS-Rex mission is to bring back pristine material from the surface of the carbonaceous asteroid Bennu, OSIRIS-Rex Principal Investigator Dante Lauretta told Universe Today in a prelaunch interview in the KSC cleanroom with the spacecraft as the probe was undergoing final preparations for shipment to the launch pad.
“We are interested in that material because it is a time capsule from the earliest stages of solar system formation.”
“It records the very first material that formed from the earliest stages of solar system formation. And we are really interested in the evolution of carbon during that phase. Particularly the key prebiotic molecules like amino acids, nucleic acids, phosphates and sugars that build up. These are basically the biomolecules for all of life.”
The asteroid is 1,614-foot (500 m) in diameter and crosses Earth’s orbit around the sun every six years.
After a two year flight through space, including an Earth swing by for a gravity assisted speed boost in 2017, OSIRIS-REx will reach Bennu in Fall 2018 to begin about 2 years of study in orbit to determine the physical and chemical properties of the asteroid in extremely high resolution.
Watch my up close launch video captured directly at the pad with the sights and sounds of the fury of blastoff:
Video Caption: ULA Atlas V rocket lifts off on September 8, 2016 from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s OSIRIS-REx asteroid sampling spacecraft, in this remote camera view taken from inside the launch pad perimeter. Credit: Ken Kremer/kenkremer.com
Watch for Ken’s continuing OSIRIS-REx mission reporting. He reported on the spacecraft and launch from on site at the Kennedy Space Center and Cape Canaveral Air Force Station, FL.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Special Guests:
This week’s guests will be the Universe Sandbox Developers Dan Dixon (Project Lead & Creator) and Jenn Seiler (Astrophysicist & Developer).
We’ve had an abundance of news stories for the past few months, and not enough time to get to them all. So we are now using a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!
We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Universe Today, or the Universe Today YouTube page.
Fraser, Morgan and Sondy were all at the Kennedy Space Center in Florida to watch the launch of the OSIRIS-REx Mission. Sondy and Morgan talked about the mission, answered questions about space and astronomy, Cassini.
Just a sneak preview before the Weekly Space Hangout starts up later this week!
We’ve had an abundance of news stories for the past few months, and not enough time to get to them all. So we are now using a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!
We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Google+, Universe Today, or the Universe Today YouTube page.
You can also join in the discussion between episodes over at our