Lessons From Ancient Earth’s Atmosphere: From Hostile to Hospitable

Earth's ancient atmosphere was much different than now. How did it transition from hostile to hospitable? If scientists can figure that out, they'll be better able to understand exoplanets and their atmospheres. Image Credit: Tohoku University

Will we ever understand how life got started on Earth? We’ve learned much about Earth’s long, multi-billion-year history, but a detailed understanding of how the planet’s atmospheric chemistry evolved still eludes us. At one time, Earth was atmospherically hostile, and its transition from that state to a planet teeming with life followed a complex path.

Continue reading “Lessons From Ancient Earth’s Atmosphere: From Hostile to Hospitable”

A NASA Rocket Has Finally Found Earth’s Global Electric Field

NASA's Endurance Rocket lifts off from Svalbard in 2022. The results are in and the rocket successfully measured Earth's global electric field. Image Credit: NASA/Brian Bonsteel

Scientists have discovered that Earth has a third field. We all know about the Earth’s magnetic field. And we all know about Earth’s gravity field, though we usually just call it gravity.

Now, a team of international scientists have found Earth’s global electric field.

Continue reading “A NASA Rocket Has Finally Found Earth’s Global Electric Field”

Fast-Tracking the Search for Habitable Worlds

Astronomers have detected thousands of planets, including dozens that are potentially habitable. To winnow them down, they need to understand their atmospheres and other factors. (NASA Illustration)
Astronomers have detected thousands of planets, including dozens that are potentially habitable. To winnow them down, they need to understand their atmospheres and other factors. (NASA Illustration)

Modern astronomy would struggle without AI and machine learning (ML), which have become indispensable tools. They alone have the capability to manage and work with the vast amounts of data that modern telescopes generate. ML can sift through large datasets, seeking specified patterns that would take humans far longer to find.

The search for biosignatures on Earth-like exoplanets is a critical part of contemporary astronomy, and ML can play a big role in it.

Continue reading “Fast-Tracking the Search for Habitable Worlds”

A Surprising Source of Oxygen in the Deep Sea

Manganese nodules from the seafloor are often rich in metals like manganese, iron, nickel, copper, and cobalt.

I have always found Mariana’s Trench fascinating, it’s like an alien world right on our doorstep. Any visitor to the oceans or seas of our planet will hopefully get to see fish flitting around and whilst they can survive in this alien underwater world they still need oxygen to survive. Breathing in oxygen is a familiar experience to us, we inflate our lungs and suck air into them to keep us topped up with life giving oxygen. Fish are different, they get their oxygen as water flows over their gills. Water is full of oxygen which at the surface comes from the atmosphere or plants. But deep down, thousands of meters beneath the surface, it is not so easy. Now a team of scientists think that potato-sized chunks of metal called nodules act like natural batteries, interacting with the water and putting oxygen into the deep water of the ocean. 

Continue reading “A Surprising Source of Oxygen in the Deep Sea”

The Most Dangerous Part of a Space Mission is Fire

This AI generated image shows a fire spreading in a spacecraft. Researchers are working to understand how fire behaves differently in spacecraft environments so they can protect astronauts. Image Credit: ZARM/ University of Bremen

Astronauts face multiple risks during space flight, such as microgravity and radiation exposure. Microgravity can decrease bone density, and radiation exposure is a carcinogen. However, those are chronic effects.

The biggest risk to astronauts is fire since escape would be difficult on a long mission to Mars or elsewhere beyond Low Earth Orbit. Scientists are researching how fire behaves on spacecraft so astronauts can be protected.

Continue reading “The Most Dangerous Part of a Space Mission is Fire”

What Can Early Earth Teach Us About the Search for Life?

This view of Earth from space is a fusion of science and art, drawing on data from multiple satellite missions and the talents of NASA scientists and graphic artists. This image originally appeared in the NASA Earth Observatory story Twin Blue Marbles. Image Credits: NASA images by Reto Stöckli, based on data from NASA and NOAA.

Earth is the only life-supporting planet we know of, so it’s tempting to use it as a standard in the search for life elsewhere. But the modern Earth can’t serve as a basis for evaluating exoplanets and their potential to support life. Earth’s atmosphere has changed radically over its 4.5 billion years.

A better way is to determine what biomarkers were present in Earth’s atmosphere at different stages in its evolution and judge other planets on that basis.

Continue reading “What Can Early Earth Teach Us About the Search for Life?”

Juno Measures How Much Oxygen is Being Produced by Europa

This view of Jupiter’s icy moon Europa was captured by the JunoCam imager aboard NASA’s Juno spacecraft during the mission’s close flyby on Sept. 29, 2022. Image data: NASA/JPL-Caltech/SwRI/MSSS Image processing: Kevin M. Gill CC BY 3.0

If the periodic table listed the elements in order of their importance to life, then oxygen might bully its way to the top. Without oxygen, Earth’s complex life likely would not exist. So when scientists detect oxygen on another world, they turn their attention to it.

Continue reading “Juno Measures How Much Oxygen is Being Produced by Europa”

Is K2-18b Covered in Oceans of Water or Oceans of Lava?

This illustration shows what exoplanet K2-18 b could look like based on science data. NASA’s James Webb Space Telescope examined the exoplanet and revealed the presence of carbon-bearing molecules. The abundance of methane and carbon dioxide, and shortage of ammonia, support the hypothesis that there may be a water ocean underneath a hydrogen-rich atmosphere in K2-18 b. But more extensive observations with the JWST are needed to understand its atmosphere with greater confidence. Image Credit: By Illustration: NASA, ESA, CSA, Joseph Olmsted (STScI)Science: Nikku Madhusudhan (IoA)

In the search for potentially life-supporting exoplanets, liquid water is the key indicator. Life on Earth requires liquid water, and scientists strongly believe the same is true elsewhere. But from a great distance, it’s difficult to tell what worlds have oceans of water. Some of them can have lava oceans instead, and getting the two confused is a barrier to understanding exoplanets, water, and habitability more clearly.

Continue reading “Is K2-18b Covered in Oceans of Water or Oceans of Lava?”

Webb Finds Icy Complex Organic Molecules Around Protostars: Ethanol, Methane, Formaldehyde, Formic Acid and Much More

Astronomers have used JWST to study the environments around 30 young protostars and found a vast collection of icy organic molecules. A recent survey identified methane, sulfur dioxide, ethanol, formaldehyde, formic acid, and many more. Image Credit: NASA/ESA/STScI

In the quest to understand how and where life might arise in the galaxy, astronomers search for its building blocks. Complex Organic Molecules (COMs) are some of those blocks, and they include things like formaldehyde and acetic acid, among many others. The JWST has found some of these COMs around young protostars. What does this tell astronomers?

Continue reading “Webb Finds Icy Complex Organic Molecules Around Protostars: Ethanol, Methane, Formaldehyde, Formic Acid and Much More”

Astronomers Have Been Watching a Supernova’s Debris Cloud Expand for Decades with Hubble

This is a Hubble image of a very small region of the Cygnus Loop, a supernova remnant. The image shows a small part of the leading edge of the expanding bubble. Image Credit: NASA, ESA, Ravi Sankrit (STScI)

Twenty thousand years ago, a star in the constellation Cygnus went supernova. Like all supernovae, the explosion released a staggering amount of energy. The explosion sent a powerful shockwave into the surrounding space at half a million miles per hour, and it shows no signs of slowing down.

For twenty years, the Hubble Space Telescope has been watching some of the action.

Continue reading “Astronomers Have Been Watching a Supernova’s Debris Cloud Expand for Decades with Hubble”