How Much Water Would Extinguish the Sun?

How Much Water Would Extinguish the Sun?

Have you ever wondered how much water it would take to put out the Sun? It turns out, the Sun isn’t on fire. So what would happen if you did try to hit the Sun with a tremendous amount of water?

How much water would it take to extinguish the Sun? I recently saw this great question on Reddit, and I couldn’t resist taking a crack at it: We know that the question doesn’t make a lot of sense.

A fire is a chemical reaction, where material releases heat as it oxidizes. If you take away oxygen from a fire, it goes out. But.. there’s no oxygen in space, it’s a vacuum. So, there’s not a whole lot of room for regular flavor water-extinguishable fire in space. You know this. How many times have we had to seal off the living quarters and open the bay doors to vent all the oxygen in the space because there was a fire in the cargo bay? We have to do that, like, all the time.

Our wonderful Sun is something quite different. It’s a nuclear fusion reaction, converting hydrogen atoms into helium under the immense temperatures and pressures at its core. It doesn’t need oxygen to keep producing energy. It’s already got its fuel baked in. All the Sun needs is our adoration, quiet, and yet ever present fear. Only if we constantly pray will it be happy and perhaps we’ll go another day where it doesn’t hurl a giant chunk of itself at our smug little faces because it’s tired of our shenanigans.

So, I’m still going to take a swing at this question… so let’s talk about what would happen if you did pour a tremendous amount of water on the Sun? Let’s say another Sun’s worth of H20. Conveniently, Hydrogen is what the Sun uses for fuel, so if you give the Sun more hydrogen, it should just get larger and hotter.

Oxygen is one of the byproducts of fusion. Right now, our Sun is turning hydrogen into helium using the proton-proton fusion reaction. But there’s another type of reaction that happens in there called the carbon-nitrogen-oxygen reaction. As of right now, only 0.8% of the Sun’s fusion reactions proceed along this path.

So if you fed the Sun more oxygen as part of the water, it would allow it to perform more of these fusion reactions too. For stars which are 1.3 times the mass of the Sun, this CNO reaction is the main way fusion is taking place. So, if we did dump a giant pile of water onto the Sun, we’d just be making Sun bigger and hotter.

Cutaway to the Interior of the Sun. Credit: NASA
Cutaway to the Interior of the Sun. Credit: NASA

Conveniently, larger hotter stars burn for a shorter amount of time before they die. The largest, most massive stars only last a few million years and then they explode as supernovae. So, if you’re out to destroy the Sun, and you’re playing a really, really long game, this might actually be a viable route.

I’m pretty sure that wasn’t the intent though. Let’s say we just want to snuff out the Sun. Vsauce provides a strategy for this. If you could somehow blast your water at the Sun at high enough velocity, you might be able to tear it apart. If you can reduce the Sun’s mass, you can decrease the temperature and pressure in its core so that it can no longer support fusion reactions.

I’m going to sum up. The Sun isn’t on fire. There’s no amount of water you could add that would quench it, you’d just make it explode, but if you used firehoses that could spray water at nearly the speed of light, you could probably shut the thing off and eventually freeze us all, which is what I think you were hoping for in the first place.

What do you think? What else could we do to snuff out the Sun?

How to See Airglow, the Green Sheen of Night

Airglow shows as wavy stripes of pale green across the northeastern sky on May 24, 2014. Andromeda Galaxy at left. the banding was faintly visible with the naked eye as a soft, diffuse glow. The red glow at lower left is airglow from atomic oxygen 90-185 miles up. Details: 20mm lens, ISO 3200, 30". Credit: Bob King

Emerald green, fainter than the zodiacal light and visible on dark nights everywhere on Earth, airglow pervades the night sky from equator to pole. Airglow turns up in our time exposure photographs of the night sky as ghostly ripples of aurora-like light about 10-15 degrees above the horizon. Its similarity to the aurora is no coincidence. Both form at around the same altitude of  60-65 miles (100 km) and involve excitation of atoms and molecules, in particular oxygen. But different mechanisms tease them to glow. 

Photo taken of Earth at night from the International Space Station showing bright splashes of city lights and the airglow layer off in the distance rimming the Earth's circumference. Credit: NASA
Earth at night from the International Space Station showing bright splashes of city lights and the airglow layer created by light-emitting oxygen atoms some 60 miles high in the atmosphere.  This green cocoon of light is familiar to anyone who’s looked at photos of Earth’s night-side from orbit. Credit: NASA

Auroras get their spark from high-speed electrons and protons in the solar wind that bombard oxygen and nitrogen atoms and molecules. As excited electrons within those atoms return to their rest states, they emit photons of green and red light that create shimmering, colorful curtains of northern lights.

Green light from excited oxygen atoms dominates the glow. The atoms are 90-100 km (56-62 mile) high in the thermosphere. The weaker red light is from oxygen atoms further up. Sodium atoms, hydroxyl radicals (OH) and molecular oxygen add to the light. Credit: Les Cowley
Green light from excited oxygen atoms dominates the light of airglow. The atoms are 56-62 miles high in the thermosphere. The weaker red light is from oxygen atoms further up. Sodium atoms, hydroxyl radicals (OH) and molecular oxygen add their own complement to the light. Credit: Les Cowley

Airglow’s subtle radiance arises from excitation of a different kind. Ultraviolet light from the daytime sun ionizes or knocks electrons off of oxygen and nitrogen atoms and molecules;  at night the electrons recombine with their host atoms, releasing energy as light of different colors including green, red, yellow and blue.  The brightest emission, the one responsible for creating the green streaks and bands visible from the ground and orbit, stems from excited oxygen atoms beaming light at 557.7 nanometers, smack in the middle of  the yellow-green parcel of spectrum where our eyes are most sensitive.

Airglow across the eastern sky below the summertime Milky Way. Notice that unlike the vertical rays and gently curving arcs of the aurora, airglow is banded and streaky and in places almost fibrous. Credit: Bob King
Airglow across the eastern sky below the summertime Milky Way. Notice that unlike the vertical rays and gently curving arcs of the aurora, airglow is banded, streaky and in places almost fibrous. It’s brightest and best visible 10-15 degrees high along a line of sight through the thicker atmosphere. If you look lower, its feeble light is absorbed by denser air and dust. Looking higher, the light spreads out over a greater area and appears dimmer. Credit: Bob King
A large, faint patch of airglow below the Dippers photographed last month on a very dark night. To the eye, all airglow appears as colorless streaks and patches. Unlike the aurora, it's typically too faint to see color. No problem for the camera though! Credit: Bob King
A large, faint patch of airglow below the Dippers photographed May 24. To the eye, airglow appears as colorless streaks and patches. Unlike the aurora, it’s typically too faint to excite our color vision. Time exposures show its colors well. This swatch is especially faint because it’s much higher above the horizon. Credit: Bob King

That’s not saying airglow is easy to see! For years I suspected streaks of what I thought were high clouds from my dark sky observing site even when maps and forecasts indicated pristine skies. Photography finally taught me to trust my eyes. I started noticing green streaks near the horizon in long-exposure astrophotos. At first I brushed it off as camera noise. Then I noticed how the ghostly stuff would slowly shape-shift over minutes and hours and from night to night. Gravity waves created by jet stream shear, wind flowing over mountain ranges and even thunderstorms in the lower atmosphere propagate up to the thermosphere to fashion airglow’s ever-changing contours.

Airglow across Virgo last month. Mars is the bright object right and below center. Credit: Bob King
An obvious airglow smear across Virgo last month. Mars is the bright object below and right of center. Light pollution from Duluth, Minn. creeps in at lower left. Credit: Bob King

Last month, on a particularly dark night, I made a dedicated sweep of the sky after my eyes had fully adapted to the darkness. A large swath of airglow spread south of the Big and Little Dipper. To the east, Pegasus and Andromeda harbored hazy spots of  varying intensity, while brilliant Mars beamed through a long smear in Virgo.

To prove what I saw was real, I made the photos you see in this article and found they exactly matched my visual sightings. Except for color. Airglow is typically too faint to fire up the cone cells in our retinas responsible for color vision. The vague streaks and patches were best seen by moving your head around to pick out the contrast between them and the darker, airglow-free sky. No matter what part of the sky I looked, airglow poked its tenuous head. Indeed, if you were to travel anywhere on Earth, airglow would be your constant companion on dark nights, unlike the aurora which keeps to the polar regions. Warning – once you start seeing it, you

Excited oxygen at higher altitude creates a layer of faint red airglow. Sodium excitation forms the yellow layer at 57 miles up. Credit: NASA with annotations by Alex Rivest
Excited oxygen at higher altitude creates a layer of faint red airglow. Sodium excitation forms the yellow layer at 57 miles up. Airglow is brightest during daylight hours but invisible against the sunlight sky. Credit: NASA with annotations by Alex Rivest

Airglow comes in different colors – let’s take a closer look at what causes them:

* Red –  I’ve never seen it, but long-exposure photos often reveal red/pink mingled with the more common green. Excited oxygen atoms much higher up at 90-185 miles (150-300 km) radiating light at a different energy state are responsible. Excited -OH (hydroxyl) radicals give off deep red light in a process called chemoluminescence when they react with oxygen and nitrogen. Another chemoluminescent reaction takes place when oxygen and nitrogen molecules are busted apart by ultraviolet light high in the atmosphere and recombine to form nitric oxide  (NO).

* Yellow – From sodium atoms around 57 miles (92 km) high. Sodium arrives from the breakup and vaporization of minerals in meteoroids as they burn up in the atmosphere as meteors.

* Blue – Weak emission from excited oxygen molecules approximately 59 miles (95 km) high.

Comet Lovejoy passing behind green oxygen and sodium airglow layers on December 22, 2011 seen from the space station. Credit: NASA/Dan Burbank
Comet Lovejoy passing behind green oxygen and sodium airglow layers on December 22, 2011 seen from the space station. Credit: NASA/Dan Burbank

Airglow varies time of day and night and season, reaching peak brightness about 10 degrees, where our line of sight passes through more air compared to the zenith where the light reaches minimum brightness. Since airglow is brightest around the time of solar maximum (about now), now is an ideal time to watch for it. Even cosmic rays striking molecules in the upper atmosphere make a contribution.


See lots of airglow and aurora from orbit in this video made using images taken from the space station.

If you removed the stars, the band of the Milky Way and the zodiacal light, airglow would still provide enough illumination to see your hand in front of your face at night. Through recombination and chemoluminescence, atoms and molecules creates an astounding array of colored light phenomena. We can’t escape the sun even on the darkest of nights.

How Life Could Have Produced Most Minerals On Earth

First ever image of Earth Taken by Mars Color Camera aboard India’s Mars Orbiter Mission (MOM) spacecraft while orbiting Earth and before the Trans Mars Insertion firing on Dec. 1, 2013. Image is focused on the Indian subcontinent. Credit: ISRO

While astronomers are trying to figure out which planets they find are habitable, there are a range of things to consider. How close are they to their parent star? What are their atmospheres made of? And once those answers are figured out, here’s something else to wonder about: how many minerals are on the planet’s surface?

In a talk today, the Carnegie Institution of Washington’s Robert Hazen outlined his findings showing that two-thirds  of minerals on Earth could have arisen from life itself. The concept is not new — he and his team first published on that in 2008 — but his findings came before the plethora of exoplanets discovered by the Kepler space telescope.

As more information is learned about these distant worlds, it will be interesting to see if it’s possible to apply his findings — if we could detect the minerals from afar in the first place.

“We live on a planet of remarkable beauty, and when you look at it from the proximity of our moon, you see what is obviously a very dynamic planet,” Hazen told delegates at “Habitable Worlds Across Time and Space”, a spring symposium from the Space Telescope Science Institute that is being webcast this week (April 28-May 1).

His point was that planets don’t necessarily start out that way, but he said in his talk that he’d invite comments and questions on his work for alternative processes. His team believes that minerals and life co-evolved: life became more complex and the number of minerals increased over time.

Artist’s impression of a baby star still surrounded by a protoplanetary disc in which planets are forming.  Credit: ESO
Artist’s impression of a baby star still surrounded by a protoplanetary disc in which planets are forming. Credit: ESO

The first mineral in the cosmos was likely diamonds, which were formed in supernovas. These star explosions are where the heavier elements in our cosmos were created, making the universe more rich than its initial soup of hydrogen and helium.

There are in fact 10 elements that were key in the Earth’s formation, Hazen said, as well as that of other planets in our solar system (which also means that presumably these would apply to exoplanets). These were carbon, nitrogen, oxygen, magnesium, silicon, carbon, titanium, iron and nitrogen,which formed about a dozen minerals on the early Earth.

Here’s the thing, though. Today there are more than 4,900 minerals on Earth that are formed from 72 essential elements. Quite a change.

Hazen’s group proposes 10 stages of evolution:

  1. Primary chondrite minerals (4.56 billion years ago) – what was around as the solar nebula that formed our solar system cooled. 60 mineral species at this time.
  2. Planetesimals — or protoplanets — changed by impacts (4.56 BYA to 4.55 BYA). Here is where feldspars, micas, clays and quartz arose. 250 mineral  species.
  3. Planet formation (4.55 BYA to 3.5 BYA). On a “dry” planet like Mercury, evolution stopped at about 300 mineral species, while “wetter” planets like Mars would have seen about 420 mineral species that includes hydroxides and clays produced from processes such as volcanism and ices.
  4. Granite formation (more than 3.5 BYA). 1,000 mineral species including beryl and tantalite.
  5. Plate tectonics (more than 3 BYA). 1,500 mineral species. Increases produced from changes such as new types of volcanism and high-pressure metamorphic changes inside the Earth.
The official poster of the World Space Week Association 2013 campaign. Credit: World Space Week Association
The official poster of the World Space Week Association 2013 campaign. Credit: World Space Week Association

These stages above are about as far as you would get on a planet without life, Hazen said. As for the remaining stages on Earth, here they are:

  1. Anoxic biosphere (4 to 2.5 BYA), again with about 1,500 mineral species existing in the early atmosphere. Here was the rise of chemolithoautotrophs, or life that obtains energy from oxidizing inorganic compounds.
  2. Paleoproterozoic oxidation (2.5 to 1.5 BYA) — a huge rise in mineral species to 4,500 as oxygen becomes a dominant player in the atmosphere. “We’re trying to understand if this is really true for every other planet, or if there is alternative pathways,” Hazen said.

And the final three stages up to the present day was the emergence of large oceans, a global ice age and then (in the past 540 million years or so) biomineralization or the process of living organisms producing minerals. This latter stage included the development of tree roots, which led to species such as fungi, microbes and worms.

'The Moon rising behind a couple of palm trees with cows grazing in the foreground. As you can see in the image,  the bottom half of the moon has a different tint due to the earths atmosphere.' Credit:  Tom Connor, Parrish, FL
‘The Moon rising behind a couple of palm trees with cows grazing in the foreground. As you can see in the image, the bottom half of the moon has a different tint due to the earths atmosphere.’ Credit: Tom Connor, Parrish, FL

It should be noted here that oxygen does not necessarily indicate there is complex life. Fellow speaker David Catling from the University of Washington, however, noted that oxygen rose in the atmosphere about 2.4 billion years ago, coincident with the emergence of complex life.

Animals as we understand them could have been “impossible for most of Earth’s history because they couldn’t breathe,” he noted. But more study will be needed on this point. After all, we’ve only found life on one planet: Earth.

The STSCI conference continues through May 1; you can see the agenda here.

Technicolor Auroras? A Reality Check

Beautiful red and green aurora the night of Oct. 1-2, 2013. See below for how it appeared to the eye. Details: 20mm lens, f/2.8, ISO 1600 and 25-second exposure. Credit: Bob King

I shoot a lot of pictures of the northern lights. Just like the next photographer, I thrill to the striking colors that glow from the back of my digital camera. When preparing those images for publication, many of us lighten or brighten the images so the colors and forms stand out better. Nothing wrong with that, except most times the aurora never looked that way to our eyes.

Shocked? I took the photo above and using Photoshop adjusted color and brightness to match the naked eye view. Credit: Bob King
Surprised? I took the photo above and using Photoshop adjusted color and brightness to match the naked eye view. Notice the green tinge in the bright arc at bottom. The rays were colorless. Credit: Bob King


The colors you see in aurora photos ARE real but exaggerated because the pictures are time exposures. Once the camera’s shutter opens, light accumulates on the electronic sensor, making faint and pale subjects bright and vivid. The camera can’t help it, and who would deny a photographer the chance to share the beauty? Most of us understand the magic of time exposures and factor in a mental fudge factor when looking at astronomical photos including those of the aurora.

But photos can be misleading, especially so for beginners, who might anticipate “the second coming” when they step out to watch the northern lights only to feel disappointment at the real thing. Which is too bad, because the real aurora can make your jaw drop.

A massive wall of bright purple and green rays from July 20, 2012. Details: 16mm at f/2.8, ISO 800 and 20 second exposure. Credit: Bob King
A massive wall of bright purple and green rays from July 20, 2012. Details: 16mm at f/2.8, ISO 800 and 20 second exposure. Credit: Bob King

That’s why I thought it would instructive to take a few aurora photos and tone them down to what the eye normally sees.  Truth in advertising you know. I’ve also started to include disclaimers in my captions when the images show striking crimson rays. Veteran aurora watchers know that some of the most memorable auroral displays glow blood-red, but most of the ruddy hues recorded by the camera are simply invisible to the eye. Our eyes evolved their greatest sensitivity to green light, the slice of the rainbow spectrum in which the sun shines most intensely. We’re slightly less sensitive to yellow and only a 1/10 as sensitive to red.

Image adjusted to better represent the visual view. Credit: Bob King
Image adjusted to better represent the visual view. Most auroras are between 60 and 150 miles high, but occasionally reach to 400 miles. Credit: Bob King

A typical aurora begins life as a pale white band low in the northern sky. If we’re lucky, the band intensifies, crosses the color threshold and glows pale green. Deeper and brighter greens are also common in active and bright auroras, but red is elusive because are eyes are far less sensitive to it than green. Often a curtain of green rays will be topped off by red, blue or purple emission recorded with sumptuous fidelity in the camera. What does the eye see? Smoky, colorless haze with hints of pink. Maybe.

Again, this doesn’t mean we only see green and white. I’ve watched brilliant (pale) green rays stretch from horizon to zenith with their bottoms bathed in rosy-purple, a most wonderful sight. Another factor to keep in mind is dark adaption – the longer you’ve been out under a dark sky, the more sensitive your eyes will be to whatever color might be present. At night, however, we’re mostly color blind, relying on our low-light-sensitive rod cells to get around. Cone cells, fine-tuned for color vision, are activated only when light intensity reaches certain thresholds. That happens often when it comes to auroral green but less so with other colors to which our cells are less responsive.

Excitation of oxygen and nitrogen atoms and molecules by incoming solar electrons causes them to give off specific colors shown here. Credit: NCAR
Incoming auroral electrons excite oxygen and nitrogen atoms and molecules which then shoot out photons of light at specific wavelengths when they return to their ground states. Oxygen beams light at 557.7 (green) and 603 (red) nanometers. Credit: NCAR

Auroral colors originate when electrons from the sun spiral down Earth’s magnetic field lines like firemen on a firepole and slam into oxygen and nitrogen atoms in Earth’s upper atmosphere between 60 and 150 miles (96-240 km) high. Here’s a breakdown of color, atom and altitude:

* Green – oxygen atoms 60-93 miles up (100-150 km)
* Red – oxygen atoms from 93-155 miles (150-250 km)
* Purple – molecular nitrogen up to 60 miles (100 km)
* Blue/purple – molecular nitrogen ions above 100 miles (160 km)

When an electron strikes an oxygen atom for instance, it bumps one of the oxygen’s electrons to a higher energy level. When that electron drops back down to its previous rest or ground state, it emits a photon of green light. Billions of atoms and molecules, each cranking out tiny flashes of light, make an aurora. It takes about 3/4 second for that electron to drop and the atom to release a photon before it’s given another kick from a solar electron. Most auroras are rich with oxygen emission.

The layers of our atmosphere showing the altitude of the most common auroras. Credit: Wikimedia Commons
The layers of our atmosphere showing the altitude of the most common auroras. Credit: Wikimedia Commons

Higher up, where the air’s so thin it’s identical to a hard vacuum, collisions between atoms happen only about every 7 seconds. With lots of time on their hands, oxygen electrons can transition down to their lowest energy level inside the atom, releasing a photon of red light instead of green. That’s why tall rays often show red tops especially in time exposure photos.

Only during very active geomagnetic storms, when electrons penetrate to low levels in the atmosphere, are they able to excite molecules of nitrogen, giving rise to the familiar purple fringes at the bottoms of bright rays. Bombarded molecular nitrogen ions at high altitude release a deep blue-purple light. Rarely visible to the eye, I did record it one night in the camera.

A striking coronal aurora in Feb. 1999 photographed on film. The red in this aurora was obvious to the naked eye but appeared more like the Photoshopped version at right. Credit: Bob King
A striking coronal aurora in Feb. 1999 photographed on film. The red in this aurora was obvious to the naked eye but appeared more like the Photoshopped version at right. Credit: Bob King

While videos hint at how wildly dynamic auroras can be, they’re no substitute for seeing one yourself. That’s why I never seem to get to bed when that first tempting glow appears over the northern horizon. Colorful or colorless, you’ll be astonished at how the aurora constantly re-invents itself in a multitude of forms from arcs to rays to flaming patches and writhing curlicues. Don’t miss the chance to see one. If there’s one thing that looks absolutely unearthly on this green Earth, it’s the aurora borealis. Click HERE for a guide on when and where to watch for them.

 

Saturn’s “Wispy” Moon Has An Oxygen Atmosphere

Cassini has detected molecular oxygen ions around Saturn's icy Dione

[/caption]

There’s oxygen around Dione, a research team led by scientists at New Mexico’s Los Alamos National Laboratory announced on Friday. The presence of molecular oxygen around Dione creates an intriguing possibility for organic compounds — the building blocks of life — to exist on other outer planet moons.

Dione's signature "wispy lines" are actually the bright walls of long cliff faces. (NASA/JPL/SSI)

One of Saturn’s 62 known moons, Dione (pronounced DEE-oh-nee) is 698 miles (1,123 km) in diameter. It orbits Saturn at about the same distance that our Moon orbits Earth. Heavily cratered and crisscrossed by long, bright scarps, Dione is made mostly of water ice and  rock. It makes a complete orbit of Saturn every 2.7 days.

Data acquired during a flyby of the moon by the Cassini spacecraft in 2010 have been found by the Los Alamos researchers to confirm the presence of molecular oxygen high in Dione’s extremely thin atmosphere — so thin, in fact, that scientists prefer the term exosphere.

While you couldn’t take a deep breath on Dione, the presence of O2 indicates a dynamic process in action.

“The concentration of oxygen in Dione’s atmosphere is roughly similar to what you would find in Earth’s atmosphere at an altitude of about 300 miles,” said Robert Tokar, researcher at Los Alamos National Laboratory and lead author of the paper published in Geophysical Research Letters.  “It’s not enough to sustain life, but—together with similar observations of other moons around Saturn and Jupiter—these are definitive examples of a process by which a lot of oxygen can be produced in icy celestial bodies that are bombarded by charged particles or photons from the Sun or whatever light source happens to be nearby.”

On Dione the energy source is Saturn’s powerful magnetic field. As the moon orbits the giant planet, charged ions in Saturn’s magnetosphere slam into the surface of Dione, stripping oxygen from the ice on its surface and crust. This molecular oxygen (O2) flows into Dione’s exosphere, where it is then steadily blown into space by — once again — Saturn’s magnetic field.

Cassini’s instruments detected the oxygen in Dione’s wake during an April 2010 flyby.

Molecular oxygen, if present on other moons as well (say, Europa or Enceladus) could potentially bond with carbon in subsurface water to form the building blocks of life. Since there’s lots of water ice on moons in the outer solar system, as well as some very powerful magnetic fields emanating from planets like Jupiter and Saturn, there’s no reason to think there isn’t more oxygen to be found… in our solar system or elsewhere.

Read the news release from the Los Alamos National Laboratory here.

 

Image credits: NASA/JPL/Space Science Institute. Research citation: Tokar, R. L., R. E. Johnson, M. F. Thomsen, E. C. Sittler, A. J. Coates, R. J. Wilson, F. J. Crary, D. T. Young, and G. H. Jones (2012), Detection of exospheric O2+ at Saturn’s moon Dione, Geophys. Res. Lett., 39, L03105, doi:10.1029/2011GL050452.

 

Oxygen Cycle

The oxygen cycle is the cycle that helps move oxygen through the three main regions of the Earth, the Atmosphere, the Biosphere, and the Lithosphere. The Atmosphere is of course the region of gases that lies above the Earth’s surface and it is one of the largest reservoirs of free oxygen on earth. The Biosphere is the sum of all the Earth’s ecosystems. This also has some free oxygen produced from photosynthesis and other life processes. The largest reservoir of oxygen is the lithosphere. Most of this oxygen is not on its own or free moving but part of chemical compounds such as silicates and oxides.

The atmosphere is actually the smallest source of oxygen on Earth comprising only 0.35% of the Earth’s total oxygen. The smallest comes from biospheres. The largest is as mentioned before in the Earth’s crust. The Oxygen cycle is how oxygen is fixed for freed in each of these major regions.

In the atmosphere Oxygen is freed by the process called photolysis. This is when high energy sunlight breaks apart oxygen bearing molecules to produce free oxygen. One of the most well known photolysis it the ozone cycle. O2 oxygen molecule is broken down to atomic oxygen by the ultra violet radiation of sunlight. This free oxygen then recombines with existing O2 molecules to make O3 or ozone. This cycle is important because it helps to shield the Earth from the majority of harmful ultra violet radiation turning it to harmless heat before it reaches the Earth’s surface.

In the biosphere the main cycles are respiration and photosynthesis. Respiration is when animals and humans breathe consuming oxygen to be used in metabolic process and exhaling carbon dioxide. Photosynthesis is the reverse of this process and is mainly done by plants and plankton.

The lithosphere mostly fixes oxygen in minerals such as silicates and oxides. Most of the time the process is automatic all it takes is a pure form of an element coming in contact with oxygen such as what happens when iron rusts. A portion of oxygen is freed by chemical weathering. When a oxygen bearing mineral is exposed to the elements a chemical reaction occurs that wears it down and in the process produces free oxygen.

These are the main oxygen cycles and each play an important role in helping to protect and maintain life on the Earth.

If you enjoyed this article there are several other articles on Universe Today that you will like. There is a great article on the Carbon Cycle. There is also an interesting piece on Earth’s atmosphere leaking into space.

There are also some great resources online. There is a diagram of the oxygen cycle with some explanations on the NYU website. You should also check out the powerpoint slide lecture on the oxygen cycle posted on the University of Colorado web site.

You should also check out Astronomy Cast. Episode 151 is about atmospheres.