Weekly Space Hangout – April 17, 2015: Amy Shira Teitel and “Breaking the Chains of Gravity”

Host: Fraser Cain (@fcain)
Special Guest: Amy Shira Teitel (@astVintageSpace) discussing space history and her new book Breaking the Chains of Gravity
Guests:
Morgan Rehnberg (cosmicchatter.org / @MorganRehnberg )

This Week’s Stories:
Falcon 9 launch and (almost!) landing
NASA Invites ESA to Build Europa Piggyback Probe
Bouncing Philae Reveals Comet is Not Magnetised
Astronomers Watch Starbirth in Real Time
SpaceX Conducts Tanking Test on In-Flight Abort Falcon 9
Rosetta Team Completely Rethinking Comet Close Encounter Strategy
Apollo 13 Custom LEGO Minifigures Mark Mission’s 45th Anniversary
LEGO Launching Awesome Spaceport Shuttle Sets in August
New Horizons Closes in on Pluto
Work Platform to be Installed in the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida.
Watching the Sunsets of Mars Through Robot Eyes: Photos
NASA Invites ESA to Build Europa Piggyback Probe
ULA Plans to Introduce New Rocket One Piece at a Time
Two Mysterious Bright Spots on Dwarf Planet Ceres Are Not Alike
18 Image Montage Show Off Comet 67/P Activity
ULA’s Next Rocket To Be Named Vulcan
NASA Posts Huge Library of Space Sounds And You’re Free to Use Them
Explaining the Great 2011 Saturn Storm
Liquid Salt Water May Exist on Mars
Color Map Suggests a Once-Active Ceres
Diverse Destinations Considered for New Interplanetary Probe
Paul Allen Asserts Rights to “Vulcan” Trademark, Challenging Name of New Rocket
First New Horizons Color Picture of Pluto and Charon
NASA’s Spitzer Spots Planet Deep Within Our Galaxy
Icy Tendrils Reaching into Saturn Ring Traced to Their Source
First Signs of Self-Interacting Dark Matter?
Anomaly Delays Launch of THOR 7 and SICRAL 2
Nearby Exoplanet’s Hellish Atmosphere Measured
The Universe Isn’t Accelerating As Fast As We Thought
Glitter Cloud May Serve As Space Mirror
Cassini Spots the Sombrero Galaxy from Saturn
EM-1 Orion Crew Module Set for First Weld Milestone in May
Special Delivery: NASA Marshall Receives 3D-Printed Tools from Space
The Roomba for Lawns is Really Pissing Off Astronomers
Giant Galaxies Die from the Inside Out
ALMA Reveals Intense Magnetic Field Close to Supermassive Black Hole
Dawn Glimpses Ceres’ North Pole
Lapcat A2 Concept Sup-Orbital Spaceplane SABRE Engine Passed Feasibility Test by USAF Research Lab
50 Years Since the First Full Saturn V Test Fire
ULA CEO Outlines BE-4 Engine Reuse Economic Case
Certification Process Begins for Vulcan to Carry Military Payloads
Major Advance in Artificial Photosynthesis Poses Win/Win for the Environment
45th Anniversary [TODAY] of Apollo 13’s Safe Return to Earth
Hubble’s Having A Party in Washington Next Week (25th Anniversary of Hubble)

Don’t forget, the Cosmoquest Hangoutathon is coming soon!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Google+, Universe Today, or the Universe Today YouTube page.

You can join in the discussion between episodes over at our Weekly Space Hangout Crew group in G+, and suggest your ideas for stories we can discuss each week!

First Attempt to Contact Hibernating Philae Lander Will Be March 12

Artist rendition of the Philae lander on Comet 67P/Churyumov-Gerasimenko. Credit: DLR.

Where is the Philae lander and will it wake up again? Those are the questions the team at the DLR Lander Control Center will be trying to answer starting this week. Thursday, March 12 provides the first possibility to receive a signal from Rosetta’s lander, sitting somewhere on Comet 67P/Churyumov-Gerasimenko.

“It could be that the lander has already woken up from its winter sleep 500 million kilometers away, but does not yet have sufficient power to inform the team on Earth,” said Koen Geurts from the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt) in a blog post today.

The animated image below provides strong evidence that Philae touched down for the first time almost precisely where intended. The animation comprises images recorded by Rosetta's navigation camera as the orbiter flew over the (intended) Philae landing site on November 12th. The dark area is probably dust raised by the craft on touchdown. The boulder to the right of the circle is seen in detail in the photo below. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
The animated image below provides strong evidence that Philae touched down for the first time almost precisely where intended. The animation comprises images recorded by Rosetta’s navigation camera as the orbiter flew over the (intended) Philae landing site on November 12th. The dark area is probably dust raised by the craft on touchdown. The boulder to the right of the circle is seen in detail in the photo below. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

The lander has been sleeping in a shaded spot on the comet’s surface after its dramatic touchdown (actually, three touchdowns) four months ago on Nov. 12, 2014 when it flew, landed, bounced and then repeated that process for more than two hours across the surface. Scientists estimated it could have bounced as high as 3.2 kilometers (2 miles) before becoming wedged in a spot that –- at that time — didn’t get much sunlight. The solar-powered lander quickly ran out of power, just hours after landing.

The team admits they would be very lucky if a signal were to be received from Philae at the first opportunity, which is 05:00 CET on March 12, 2015 (midnight on March 11 EDT) when the communication unit on the Rosetta orbiter will be switched on to call the lander.

While the comet is coming ever-closer to the Sun, Philae needs to receive enough solar energy to activate a few systems before it can wake up and begin communicating.

“Philae currently receives about twice as much solar energy as it did in November last year,” said Lander Project Manager Stephan Ulamec from DLR. “Comet 67P/Churyumov-Gerasimenko and its companion, Philae, are now only 300 million kilometers from the Sun. It will probably still be too cold for the lander to wake up, but it is worth trying. The prospects will improve with each passing day.”

The team did give a caveat that several conditions must be met for Philae to wake up and start operating again. By no means is it a given that Philae will awake.

First, the interior of the lander must be at least at minus 45 degrees Celsius before Philae can wake up from its winter sleep. In addition, the lander must be able to generate at least 5.5 watts using its solar panels to wake up. The temperatures are significantly lower in the shadowed region where it sits (named Abydos, even though the exact location has not been identified) than at the originally planned landing location.

While hibernating, the lander has been gathering and storing as much power as possible to heat up and Geurts said that as soon as Philae ‘realizes’ that it is receiving more than 5.5 watts of power and its internal temperature is above minus 45 degrees Celsius, it will turn on, heat up further and attempt to charge its battery.

Then, once awakened, Philae will switch on its receiver every 30 minutes and listens for a signal from the Rosetta orbiter. This, too, can be performed in a very low power state, but Philae needs a total of 19 watts to begin operating and allow two-way communication.

Until March 20, Rosetta will be transmitting to the lander and listening for a response. The team said the most likely time for contact is during the 11 flybys where the orbiter’s path puts it in a particularly favorable position with respect to the lander during comet ‘daytime’ – that is, when Philae is in sunlight and being supplied with power by its solar panels. Communication will be attempted continuously because Philae’s environment could have changed since the landing.

“If we cannot establish contact with Philae before 20 March, we will make another attempt at the next opportunity,” said Ulamec. “Once we can communicate with Philae again, the scientific work can begin.”

Once Philae wakes up and can transmit, it will first send data about the health of its systems.

“We will then evaluate the data. What is the state of the rechargeable battery? Is everything on the lander still functioning? What is the temperature? How much energy is it receiving?” said Geurts.

Then the team will determine if all 10 instruments will be able to function with the available power. If sufficient energy cannot be stored in the battery, the solar energy available during the comet daytime will determine whether a reduced version of the science operations can be performed.

Currently, scientists believe that Philae is in sunlight for 1.3 hours. A day on 67P/Churyumov-Gerasimenko lasts 12.4 hours. If the battery can be charged as planned, then science operations could be done even at night. But in the event that the rechargeable battery on board Philae did not survive the intense cold of its hibernation, the engineers are prepared. “We are working to ensure that we can operate the lander and its instruments at least during the comet’s daytime, when it is in direct sunlight.”

Also, new commands have been sent to Philae to optimize the heating and provide energy savings to improve its chances of communication with Earth. Even if Philae does not have enough energy yet to answer, it could receive and execute these commands. This is referred to as ‘blind commanding’ by the engineers, because the lander is initially very unlikely give them feedback.

Philae’s exact location is still being determined by looking at images acquired by the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) on board the Rosetta orbiter.

Read more about Philae at the DLR website.

There’s a Crack Forming on Rosetta’s 67P. Is it Breaking Up?

A Fissure spanning over 100 meters across the neck of Rosetta's comet 67P raises the question of if or when will the comet breakup. The fissure is part of released studies by Rosetta scientists in the Journal Science (Image Credits: ESA/Rosetta, Illustration, T.Reyes)

Not all comets break up as they vent and age, but for Rosetta’s comet 67P, the Rubber Duckie comet, a crack in the neck raises concerns. Some comets may just fizzle and uniformly expel their volatiles throughout their surfaces. They may become like puffballs, shrink some but remain intact.

Comet 67P is the other extreme. The expulsion of volatile material has led to a shape and a point of no return; it is destined to break in two. Songwriter Neil Sedaka exclaimed, “Breaking Up is Hard to Do,” but for comets this may be the norm. The fissure is part of the analysis in a new set of science papers published this week.

Top left: The Hathor cliff face is to the right in this view. The aligned linear structures can be clearly seen. The smooth Hapi region is seen at the base of the Hathor cliff. Boulders are prevalent along the long axis of the Hapi region. Bottom left and right: Crack in the Hapi region. The left panel shows the crack (indicated by red arrows) extending across Hapi and beyond. The right panel shows the crack where it has left Hapi and is extending into Anuket, with Seth at the uppermost left and Hapi in the lower left. (Credit: ESA/Rosetta)
Top left: The Hathor cliff face is to the right in this view. The aligned linear structures can be clearly seen. The smooth Hapi region is seen at the base of the Hathor cliff. Boulders are prevalent along the long axis of the Hapi region. Bottom left and right: Crack in the Hapi region. The left panel shows the crack (indicated by red arrows) extending across Hapi and beyond. The right panel shows the crack where it has left Hapi and is extending into Anuket, with Seth at the uppermost left and Hapi in the lower left. (Credit: ESA/Rosetta)

The images show a fissure spanning a few hundred meters across the neck of the two lobe comet. The fissure is just one of the many incredible features on Comet 67P and is reported in research articles released in the January 22, 2015, edition of the journal Science.

What it means is not certain, but Rosetta team scientists have stated that flexing of the comet might be causing the fissure. As the comet approaches the Sun, the solar radiation is raising the temperature of the surface material. Like all materials, the comet’s will expand and contract with temperature. And diurnal (daily) changes in the tidal forces from the Sun is a factor, too.

An image sequence from the Navcam of the Rosetta spacecraft (right) is shown beside a simulation. Further work on the interaction of comets with solar radiation will include computer models that utilize Rosetta data to reveal how comet nuclei evolve over time – over many orbits of the Sun- and break up. Peanut, rubber-duck, potatoes or just round-shaped comet nuclei likely result from combinations of rotation, changes in rotation, spin rate, composition and  internal structure, as a nucleus interacts with the Sun over many orbits. (Credits: ESA/Rosetta, Illustration – J.Schmidt)

 

The crack, or fissure, could spell the beginning of the end for comet 67P/Churyumov–Gerasimenko. It is located in the neck area, in the region named Hapi, between the two lobes that make 67P appear so much like a Rubber Duck from a distance. The fissure could represent a focal point of many properties and forces at work, such as the rotation rate and axis – basically head over heels of the comet. The fissure lies in the most active area at present, and possibly the most active area overall. Though the Hapi region appears to receive nearly constant sunlight, at this time, Rosetta measurements (below) show otherwise – receiving 15% less sunlight than elsewhere.

Left: A map looking at the northern (right-hand rule, positive) pole of 67P showing the total energy received from the Sun per rotation on 6 August 2014. The base of the neck (Hapi) receives ~15% less energy than the most illuminated region, 3.5 × 106 J m-2 (per rotation). If self-heating were not included, the base of the neck would receive ~30% less total energy. Right: Similar to the left panel but showing total energy received over an entire orbital period in J m-2 (per orbit). (Credit:ESA/Journal Science Article, Figure 5)
Left: A map looking at the northern (right-hand rule, positive,) pole of 67P showing the total energy received from the Sun per rotation on 6 August 2014. The base of the neck (Hapi) receives ~15% less energy than the most illuminated region, 3.5 × 106 J m-2 (per rotation). If self-heating were not included, the base of the neck would receive ~30% less total energy. Right: Similar to the left panel but showing total energy received over an entire orbital period in J m-2 (per orbit). (Credit:ESA/Journal Science Article, Figure 5)

Sunlight and heating are major factors and the neck likely experiences the greatest mechanical stresses – internal torques – from heating or tidal forces from the sun as it rotates and approaches perihelion. Rosetta scientists are still not certain whether 67P is two bodies in contact – a contact binary – or a shape that formed from material expelled about the neck area leading to its narrowing.

Fragmentation of comets is common. Many sungrazers are broken up by thermal and tidal stresses during their perihelions. At top, an image of the comet Shoemaker-Levy 9 (May 1994) after a close approach with Jupiter which tore the comet into numerous fragments. An image taken by Andrew Catsaitis of components B and C of Comet 73P/Schwassmann–Wachmann 3 as seen together on 31 May 2006 (Credit: NASA/HST, Wikipedia, A.Catsaitis)
Fragmentation of comets is common. Many sungrazers are broken up by thermal and tidal stresses during their perihelions. At top, an image of the comet Shoemaker-Levy 9 (May 1994) after a close approach with Jupiter which tore the comet into numerous fragments. An image taken by Andrew Catsaitis of components B and C of Comet 73P/Schwassmann–Wachmann 3 as seen together on 31 May 2006 (Credit: NASA/HST, Wikipedia, A. Catsaitis)

The Philae lander’s MUPUS thermal sensor measured a temperature of –153°C (–243°F) at the landing site, while VIRTIS, an instrument on the primary spacecraft Rosetta, has measured -70°C (-94°F) at present. These temperatures will rise as perihelion is reached on August 13, 2015, at a distance of 1.2432 A.U. (24% further from the Sun than Earth). At present – January 23rd – 67P is 2.486 A.U. from the Sun (2 1/2 times farther from the Sun than Earth). While not a close approach to the Sun for a comet, the Solar radiation intensity will increase by 4 times between the present (January 2014) and perihelion in August.

Hubble capture a sequence of images of the comet 73P/Schwassman-Wachmann 3. The comet fragmented and like 73P, Rosetta's 67P will likely breakup some day in two majore fragments with debris spreading out as in these images. The Solar wind pressure as well as any explosive force from the breakup causes the comet fragments to slowly disperse but altogether remain effectively in the same orbit. (Image Credit: NASA/Hubble)
Hubble captured a sequence of images of the comet 73P/Schwassman-Wachmann 3. The comet fragmented, and like 73P, Rosetta’s 67P will likely break some day into two major fragments with debris spreading out as in these images. The Solar wind pressure, as well as any explosive force from the break up, will cause the comet fragments to slowly disperse but effectively remain in the same orbit. (Image Credit: NASA/Hubble)

Stresses due to temperature changes from diurnal variations, the changing Sun angle during perihelion approach, from loss of material, and finally from changes in the tidal forces on a daily basis (12.4043 hours) may lead to changes in the fissure causing it to possibly widen or increase in length. Rosetta will continue escorting the comet and delivering images of the whole surface that will give Rosetta scientists the observations and measurements to determine 67P/Churyumov–Gerasimenko’s condition now and its fate in the longer term.

The fissure is not a very recent event. Universe Today's Bob King published an earlier image in his blog in September and added a question to illustrate. Whether the crack has widen since this time is not certain. (Image Credit: ESA, Illustration, Bob King)
The fissure is not a very recent event. Universe Today’s Bob King published an earlier image in his blog in September and added a question to illustrate. Whether the crack has widened since that time is not certain. (Image Credit: ESA, Illustration, Bob King)

Stay tuned for a forthcoming article from UT’s writer Bob King about numerous Rosetta mission scientific findings published this week in the journal Science.

Reference:

The morphological diversity of comet 67P/Churyumov-Gerasimenko

On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko

Best Space Photos Of 2014 Bring You Across The Solar System

A raw shot from the front hazcam of NASA's Opportunity rover taken on Sol 3757, on Aug. 19, 2014. Credit: NASA/JPL-Caltech

Feel like visiting a dwarf planet today? How about a comet or the planet Mars? Luckily for us, there are sentinels across the Solar System bringing us incredible images, allowing us to browse the photos and follow in the footsteps of these machines. And yes, there are even a few lucky humans taking pictures above Earth as well.

Below — not necessarily in any order — are some of the best space photos of 2014. You’ll catch glimpses of Pluto and Ceres (big destinations of 2015) and of course Comet 67P/Churyumov–Gerasimenko (for a mission that began close-up operations in 2014 and will continue next year.) Enjoy!

The Philae that could! The lander photographed during its descent by Rosetta. Credit: ESA/Rosetta/MPS for Rosetta Team/
The Philae that could! The lander photographed during its descent by Rosetta. Credit: ESA/Rosetta/MPS for Rosetta Team/
The Aurora Borealis seen from the International Space Station on June 28, 2014, taken by astronaut Reid Wiseman. Credit: Reid Wiseman/NASA.
The Aurora Borealis seen from the International Space Station on June 28, 2014, taken by astronaut Reid Wiseman. Credit: Reid Wiseman/NASA.
NASA's Mars Curiosity Rover captures a selfie to mark a full Martian year -- 687 Earth days -- spent exploring the Red Planet.  Curiosity Self-Portrait was taken at the  'Windjana' Drilling Site in April and May 2014 using the Mars Hand Lens Imager (MAHLI) camera at the end of the roboic arm.  Credit: NASA/JPL-Caltech/MSSS
NASA’s Mars Curiosity Rover captures a selfie to mark a full Martian year — 687 Earth days — spent exploring the Red Planet. Curiosity Self-Portrait was taken at the ‘Windjana’ Drilling Site in April and May 2014 using the Mars Hand Lens Imager (MAHLI) camera at the end of the roboic arm. Credit: NASA/JPL-Caltech/MSSS
This global map of Dione, a moon of Saturn, shows dark red in the trailing hemisphere, which is due to radiation and charged particles from Saturn's intense magnetic environment. Credit: NASA/JPL/Space Science Institute
This global map of Dione, a moon of Saturn, shows dark red in the trailing hemisphere, which is due to radiation and charged particles from Saturn’s intense magnetic environment. Credit: NASA/JPL/Space Science Institute
Comet Siding Spring shines in ultraviolet in this image obtained by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. Credit: Laboratory for Atmospheric and Space Physics/University of Colorado; NASA
Comet Siding Spring shines in ultraviolet in this image obtained by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. Credit: Laboratory for Atmospheric and Space Physics/University of Colorado; NASA
This "movie" of Pluto and its largest moon, Charon b yNASA's New Horizons spacecraft taken in July 2014 clearly shows that the barycenter -center of mass of the two bodies - resides outside (between) both bodies. The 12 images that make up the movie were taken by the spacecraft’s best telescopic camera – the Long Range Reconnaissance Imager (LORRI) – at distances ranging from about 267 million to 262 million miles (429 million to 422 million kilometers). Charon is orbiting approximately 11,200 miles (about 18,000 kilometers) above Pluto's surface. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)
This “movie” of Pluto and its largest moon, Charon b yNASA’s New Horizons spacecraft taken in July 2014 clearly shows that the barycenter -center of mass of the two bodies – resides outside (between) both bodies. The 12 images that make up the movie were taken by the spacecraft’s best telescopic camera – the Long Range Reconnaissance Imager (LORRI) – at distances ranging from about 267 million to 262 million miles (429 million to 422 million kilometers). Charon is orbiting approximately 11,200 miles (about 18,000 kilometers) above Pluto’s surface. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)
The Mars Reconnaissance Orbiter took this image of a "circular feature" estimated to be 1.2 miles (2 kilometers) in diameter. Picture released in December 2014. Credit: NASA/JPL-Caltech/University of Arizona
The Mars Reconnaissance Orbiter took this image of a “circular feature” estimated to be 1.2 miles (2 kilometers) in diameter. Picture released in December 2014. Credit: NASA/JPL-Caltech/University of Arizona
Jets of gas and dust are seen escaping comet 67P/C-G on September 26 in this four-image mosaic. Click to enlarge. Credit: ESA/Rosetta/NAVCAM
Jets of gas and dust are seen escaping comet 67P/C-G on September 26 in this four-image mosaic. Click to enlarge. Credit: ESA/Rosetta/NAVCAM
Ceres as seen from the Earth-based Hubble Space Telescope in 2004 (left) and with the Dawn spacecraft in 2014 as it approached the dwarf planet. Hubble Credit: NASA, ESA, J. Parker (Southwest Research Institute), P. Thomas (Cornell University), L. McFadden (University of Maryland, College Park), and M. Mutchler and Z. Levay (STScI). Dawn Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA. Photo Combination: Elizabeth Howell
Ceres as seen from the Earth-based Hubble Space Telescope in 2004 (left) and with the Dawn spacecraft in 2014 as it approached the dwarf planet. Hubble Credit: NASA, ESA, J. Parker (Southwest Research Institute), P. Thomas (Cornell University), L. McFadden (University of Maryland, College Park), and M. Mutchler and Z. Levay (STScI). Dawn Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA. Photo Combination: Elizabeth Howell

Universe Today’s Top 10 Space Stories of 2014

Images from the Rosetta spacecraft show Philae drifting across the surface of its target comet during landing Nov. 12, 2014. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

It seems a lot of the space stories of this year involve spacecraft making journeys: bouncing across a comet, or making their way to Mars. Private companies also figure prominently, both in terms of successes and prominent failures.

These are Universe Today’s picks for the top space stories of the year. Disagree? Think we forgot something? Let us know in the comments.

10. End of Venus Express

Artist's impression of Venus Express performing aerobreaking maneuvers in the planet's atmosphere in June and July 2014. Credit: ESA–C. Carreau
Artist’s impression of Venus Express performing aerobreaking maneuvers in the planet’s atmosphere in June and July 2014. Credit: ESA–C. Carreau

This month saw the end of Venus Express’ eight-year mission at the planet, which happened after the spacecraft made a daring plunge into part of the atmosphere to learn more about its properties. The spacecraft survived the aerobraking maneuvers, but ran out of fuel after a few engine burns to raise it higher. Soon it will plunge into the atmosphere for good. But it was a productive mission overall, with discoveries ranging from a slowing rotation to mysterious “glories”.

9. Continued discoveries by Curiosity and Opportunity

1 Martian Year on Mars!  Curiosity treks to Mount Sharp in this photo mosaic view captured on Sol 669, June 24, 2014.    Navcam camera raw images stitched and colorized.   Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer – kenkremer.com
1 Martian Year on Mars! Curiosity treks to Mount Sharp in this photo mosaic view captured on Sol 669, June 24, 2014. Navcam camera raw images stitched and colorized. Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer – kenkremer.com

Methane? Organics? Water? Mars appears to have had these substances in abundance over its history. Continued work from the Curiosity rover — passing its second Earth year on Mars — found methane fluctuating in Gale Crater, and the first confirmed discovery of organics on the Martian surface. Opportunity is almost 11 years into its mission and battling memory problems, but the rover is still on the move (passing 41 kilometers) to an area that could be full of clay.

8. Siding Spring at Mars and the level of study of the comet by other missions at Mars

Comet Siding Spring near Mars in a composite image by the Hubble Space Telescope, capturing their positions between Oct. 18 8:06 a.m. EDT (12:06 p.m. UTC) and Oct. 19 11:17 p.m. EDT (Oct. 20, 3:17 a.m. UTC). Credit: NASA, ESA, PSI, JHU/APL, STScI/AURA
Comet Siding Spring near Mars in a composite image by the Hubble Space Telescope, capturing their positions between Oct. 18 8:06 a.m. EDT (12:06 p.m. UTC) and Oct. 19 11:17 p.m. EDT (Oct. 20, 3:17 a.m. UTC). Credit: NASA, ESA, PSI, JHU/APL, STScI/AURA

We had a rare opportunity to watch a comet make a grazing pass by Mars, not close enough to pose significant danger to spacecraft, but definitely close enough to affect its atmosphere! Siding Spring caught everyone’s attention throughout the year, and did not disappoint. The numerous spacecraft at the Red Planet caught glimpses, including from the surface and from orbit. It likely created a meteor shower and could alter the Martian atmosphere forever.

7. Kepler K2

Illustration of the Kepler spacecraft (NASA/Kepler mission/Wendy Stenzel)
Illustration of the Kepler spacecraft (NASA/Kepler mission/Wendy Stenzel)

The Kepler space telescope lost the second of its four pointing devices last year, requiring a major rethink for the veteran planet hunter. The solution was a new mission called K2 that uses the pressure of the Sun to maintain the spacecraft’s direction, although it has to flip every 83 days or so to a new location to avoid the star’s glare. It’s not as precise as before, but with the mission approved we now know for sure K2 can locate exoplanets. The first confirmed one is a super-Earth.

6. MAVEN at Mars

An artist's conception of MAVEN orbiting Mars. Image Credit: NASA / Goddard Space Flight Center
An artist’s conception of MAVEN orbiting Mars. Image Credit: NASA / Goddard Space Flight Center

Where did the Martian atmosphere go? Why was it so thick in the past, allowing water to flow on the surface, and so thin right now? The prevailing theory is that the Sun’s pressure on the Martian atmosphere pushed lighter isotopes (such as that of hydrogen) away from the planet, leaving heavier isotopes behind. NASA is now investigating this in more detail with MAVEN (Mars Atmosphere and Volatile Evolution), which arrived at the planet this fall.

5. India’s MOM

Artist's impression of India’s Mars Orbiter Mission (MOM). Credit ISRO
Artist’s impression of India’s Mars Orbiter Mission (MOM). Credit ISRO

India made history this year as only the third entity to successfully reach the Red Planet (after the United States and Europe). While updates from the Mars Orbiter Mission have been slow in recent weeks, we know for sure that it observed Siding Spring at Mars and it has been diligently taking pictures of the Red Planet, such as this one of the Solar System’s largest volcano and a huge canyon on Mars.

4. Accidents by Virgin and Orbital

NTSB investigators are seen making their initial inspection of debris from the Virgin Galactic SpaceShipTwo. The debris field stresses over a fiver mile range in the Mojave desert. (Credit: Getty Images)
NTSB investigators are seen making their initial inspection of debris from the Virgin Galactic SpaceShipTwo. The debris field stresses over a fiver mile range in the Mojave desert. (Credit: Getty Images)

In one sobering week in October, the dangers of space travel were again made clear after incidents affected Virgin Galactic and Orbital Sciences. Virgin lost a pilot and seriously injured another when something went seriously awry during a flight test. Investigators have so far determined that the re-entry system turned on prematurely, but more details are being determined. Orbital meanwhile suffered the catastrophic loss of one of its Antares rockets, perhaps due to Soviet-era-designed engines, but the company is looking at other ways to fulfill its NASA contractual obligations to send cargo to the International Space Station.

3. SpaceX rocket landing attempts

The Falcon 9 rocket with landing legs in SpaceX’s hangar at Cape Canaveral, Fl, preparing to launch Dragon to the space station this Sunday March 30.  Credit: SpaceX
The Falcon 9 rocket with landing legs in SpaceX’s hangar at Cape Canaveral, Fl, preparing to launch Dragon to the space station this Sunday March 30. Credit: SpaceX

SpaceX is attempting a daunting technological feat, which is bringing back its rocket first stages for re-use. The company is hoping that this will cut down on the costs of launch in the long term, but this technological innovation will take some time. The Falcon 9 rocket stage that made it back to the ocean in July was deemed a success, although the force of the landing broke it apart. Next, SpaceX is trying to place its rocket on an ocean platform.

2. Orion flight

Orion Service Module fairing separation. Credit: NASA TV
Orion Service Module fairing separation. Credit: NASA TV

NASA’s spacecraft for deep space exploration (Orion) successfully finished its first major uncrewed test this month, when it rode into orbit, made a high-speed re-entry and successfully splashed down in the ocean. But it’s going to be a while before Orion flies again, likely in 2017 or even 2018. NASA hopes to put a crew on this spacecraft type in the 2020s, potentially for trips to the Moon, an asteroid or (more distantly) Mars.

1. Rosetta

New Rosetta mission findings do not exclude comets as a source of water in and on the Earth's crust but does indicate comets were a minor contribution. A four-image mosaic comprises images taken by Rosetta’s navigation camera on 7 December from a distance of 19.7 km from the centre of Comet 67P/Churyumov-Gerasimenko. (Credit: ESA/Rosetta/Navcam Imager)
New Rosetta mission findings do not exclude comets as a source of water in and on the Earth’s crust but does indicate comets were a minor contribution. A four-image mosaic comprises images taken by Rosetta’s navigation camera on 7 December from a distance of 19.7 km from the centre of Comet 67P/Churyumov-Gerasimenko. (Credit: ESA/Rosetta/Navcam Imager)

It’s been an exciting year for the Rosetta mission. First it woke up from a lengthy hibernation, then it discovered that Comet 67P/Churyumov-Gerasimenko looks a bit like a rubber duckie, and then it got up close and released the Philae lander. The soft touchdown did not go as planned, to say the least, as the spacecraft bounced for two hours and then came to rest in a spot without a lot of sunlight. While Philae hibernates and controllers hope it wakes up again in a few months, however, science results are already showing intriguing things. For example, water delivered to Earth likely came mostly from other sources than comets.

Look Out Below! Rosetta Will Give Its Comet A Close Buzz In February

A mosaic of images of Comet 67P/Churyumov–Gerasimenko taken from the Rosetta spacecraft Dec. 14. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

Remember how breathless we felt when the Philae lander actually made it to the surface of its target comet a few weeks ago? Sure, the maneuvers didn’t go as planned, but the images the spacecraft obtained in its brief spurts of activity on the surface are still being shared and discussed eagerly by scientists (amid a controversial image release policy, to be sure.)

Well, the truck delivery for Philae — the Rosetta spacecraft, still doing maneuvers above — is going to do something special in February. The machine is going to scoot down real close to the comet, just before heating from the Sun could make it dangerous to do so due to gas and dust emissions.

The plan is to bring Rosetta to an astounding four miles (six kilometers) above Comet 67P/Churyumov–Gerasimenko, so close that the images sent back to Earth will have a resolution of just a few inches per pixel. Scientists hope to learn more about how reflective the comet is and also to better understand how gas is emitted as 67P draws close to the Sun.

A mosaic of images of Comet 67P/Churyumov–Gerasimenko taken from the Rosetta spacecraft Dec. 14. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
A mosaic of images of Comet 67P/Churyumov–Gerasimenko taken from the Rosetta spacecraft Dec. 14. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

“As the comet becomes more and more active, it will not be possible to get so close to the comet. So this opportunity is very unique,” stated Matt Taylor, the Rosetta project scientist from the European Space Research and Technology Center, in a NASA press release.

Rosetta’s closest view of the comet previous to this was a six-mile (10 kilometer) mapping orbit that it did for a short time before moving to release the Philae lander. After that, its orbit was expected to range between 20 km and 50 km (12.4 miles and 18.6 miles) through the end of this month.

Philae, meanwhile, made it down to the surface and did manage to send pictures back during its approximately 60 hours of activity, before shutting down due to a lack of sunlight hitting its solar panels. Philae is now wedged in a shady spot on the comet, but it’s possible more sunlight could fall in that area when the comet nears its closest approach to the Sun in 2015, between the orbits of Earth and Mars.

A handful of pictures from Philae were released or re-released publicly last week through ESA and NASA, with far more being shown at the American Geophysical Union annual meeting (see video above, and this link that requires free registration).

The European Space Agency is saying that about 20% of the mission’s science is expected to flow from Philae (at most), and 80% from Rosetta. Early results from both spacecraft present some intriguing properties about the comet. Based on the ratio of isotopes (types) of hydrogen on the comet, it’s more likely that it was asteroids that delivered water to Earth. Also, Philae was unable to dig very far into the surface, implying that underneath the dust must be something like a thick layer of ice.

A recent Rosetta blog post on the European Space Agency says that the team expects to take a break for the holidays from posting — unless, of course, they manage to track down the Philae lander in pictures. The location of the spacecraft is still unknown, but it’s believed that Rosetta’s high-resolution camera may be able to catch the lander or its glint — coupled with clues Philae’s experiments gave to its location.

New Pictures Of Philae’s Lonely Resting Spot On The Comet Emerge

This (in blue) is where the Philae lander came to rest on Comet 67P/Churyumov-Gerasimenko. The graphic is based on topographic modelling of the comet's nucleus and Philae's picture of a nearby cliff (in white). Credit: ESA/Rosetta/Philae/CNES/FD/CIVA

In scientific style, researchers are slowly narrowing down where the Philae lander arrived on Comet 67P/Churyumov-Gerasimenko. Earlier today (Dec. 17) at the American Geophysical Union meeting, more pictures from the European spacecraft were released showing its landing site and also what the terrain looked like underneath Philae as it bounced to its destination. The pictures were also placed on NASA’s website.

The lander is sleeping in a shady spot on the comet’s surface after the dramatic touchdown — actually, three touchdowns — on Nov. 12, when it flew for more than two hours across the surface and bounced as high as two miles (3.2 kilometers). This was partly because harpoons expected to secure it to the surface failed to deploy, and also because the comet crust was icier than expected, according to Gizmodo.

You can see in the diagram above Philae’s predicament; it’s wedged in a spot that doesn’t get a lot of sunlight, at least for now. That could change as 67P draws closer to the Sun in the late winter or early spring, but nobody yet knows for sure. And yes, the search for the landing site still continues in earnest, but the challenge now is the orbiting Rosetta spacecraft only has so much bandwidth to send back images, according to Wired. As more high-resolution OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) pictures arrive, scientists hope to figure out where it went.

Two pictures from Philae highlighted in today’s release are below. Will the lander take more? Scientists certainly hope so, but even if that doesn’t happen, the lander was only expected to return 20% of the science results in any case. Rosetta is still active and will stick with the comet through mid-2015, when 67P gets closest to the Sun.

The Philae lander captured a picture of a nearby cliff, nicknamed "Perihelion Cliff", on the nucleus of Comet 67P/Churyumov-Gerasimenko. Credit: ESA/Rosetta/Philae/CIVA
The Philae lander captured a picture of a nearby cliff, nicknamed “Perihelion Cliff”, on the nucleus of Comet 67P/Churyumov-Gerasimenko. Reports say this picture had been released before, but was processed to show more detail (such as the glare, believed to be reflection from the lander). Credit: ESA/Rosetta/Philae/CIVA
Philae's blurred view of the surface during its first bounce from Comet 67P/Churyumov-Gerasimenko on Nov. 12, 2014. The lander sailed for about two hours in the first bounce, made contact briefly, then bounced again before coming to rest. The black squares represent areas where data was not collected. Credit: ESA/Rosetta/Philae/CIVA
Philae’s blurred view of the surface during its first bounce from Comet 67P/Churyumov-Gerasimenko on Nov. 12, 2014. The lander sailed for about two hours in the first bounce, made contact briefly, then bounced again before coming to rest. The black squares represent areas where data was not collected. Credit: ESA/Rosetta/Philae/CIVA

Did Philae Land In That Comet Crater? One Month Later, The Search Continues

A mosaic of Comet 67P/Churyumov-Gerasimenko taken Dec. 2 with the Rosetta spacecraft. The shadowed area is a crater in which Philae is expected to be. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

Don’t forget about Philae! The comet lander made a touchdown a month ago this week on its target, marking the first time we’ve ever made a soft landing on such a body. Celebrations were quickly mixed with confusion, however, as controllers realized the spacecraft drifted quite a ways off target. In fact, we still don’t know exactly where it is.

The parent Rosetta spacecraft is working well in orbit and still transmitting images of the comet while Philae hibernates in a shady spot below. This latest image here shows a clear view of where the European Space Agency thinks the lander arrived — somewhere in the rim of that shadowy crater you see up front.

“The internal walls are seen in quite some detail. It is thought that Philae’s final touchdown site might be located close to the rim of this depression, but further high-resolution imaging is still being obtained and analyzed to confirm this,” the agency wrote in a statement concerning the image of Comet 67P/Churyumov-Gerasimenko.

This is based on data collected from Philae in a brief science surge on the surface. Recently, information based on measured magnetic fields showed the spacecraft likely hit an object — perhaps a crater rim — as it drifted for two hours on the surface, unsecured by the harpoons that were supposed to fire to hold it in place.

The distortion at bottom of this mosaic of Comet 67P/Churyumov-Gerasimenko occured as imagers made image joining adjustments for the comet's rotation and the movements of the Rosetta spacecraft. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
The distortion at bottom of this Dec. 1, 2014 mosaic of Comet 67P/Churyumov-Gerasimenko occured as imagers made image joining adjustments for the comet’s rotation and the movements of the Rosetta spacecraft. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

Searches for the lander are ongoing, but it’s hard to pick it out on such a boulder-strewn landscape. Yet the agency is doing its mightiest, and has made some progress on the problem since the landing took place. Rosetta caught several glimpses of the lander during its journey across the surface. And they have data from an experiment that communicated between Rosetta and Philae which could help pinpoint the location.

Rosetta science results have been quiet in the past week, although ESA has released several images of the comet. This comes as the agency has been criticized for its data release policy regarding the mission. It’s a vigorous debate, with there being examples of more open missions (such as Curiosity) and more closed missions (such as the Hubble Space Telescope) to compare Rosetta’s releases with.

As these activities continue, however, Rosetta will remain transmitting information from 67P through at least part of 2015, watching the comet increase in activity as both draw closer to the Sun. Jets and gas are visible already in some of the recent images of the comet, which you can see below.

Comet 67P/Churyumov-Gerasimenko viewed by the Rosetta spacecraft on Nov. 30, 2014 showing off layered material in the "neck" of the comet. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
Comet 67P/Churyumov-Gerasimenko viewed by the Rosetta spacecraft on Nov. 30, 2014 showing off layered material in the “neck” of the comet. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
Erupting gas and dust is just visible in the "neck" region of Comet 67P/Churyumov-Gerasimenko in this montage taken Nov. 26, 2014 by the Rosetta spacecraft. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
Erupting gas and dust is just visible in the “neck” region of Comet 67P/Churyumov-Gerasimenko in this montage taken Nov. 26, 2014 by the Rosetta spacecraft. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
Gas and dust stream from Comet 67P/Churyumov–Gerasimenko in this mosaic from the Rosetta spacecraft taken Nov. 20, 2014. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
Gas and dust stream from Comet 67P/Churyumov–Gerasimenko in this mosaic from the Rosetta spacecraft taken Nov. 20, 2014. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0