Update on Phobos-Grunt: Might the LIFE Experiment be Recovered?

Phobos-Grunt
An artists concept of the Phobos-Grunt Mission. Credit: Roscosmos

[/caption]

Editor’s note: With Russian engineers trying to save the Phobos-Grunt mission, Dr. David Warmflash, principal science lead for the US team from the LIFE experiment on board the spacecraft, provides an update of the likelihood of saving the mission, while offering the intriguing prospect that their experiment could possibly be recovered, even if the mission fails.

With the latest word from Roscosmos being that the Mars moon probe, Phobos-Grunt is “not officially lost,” but yet remains trapped in low Earth orbit, people are wondering what may happen over the next several weeks. Carried into space early Wednesday morning, November 9, Moscow time, atop a Zenit 2 rocket, Grunt, Russian for “soil”, entered what is known in space exploration as a parking orbit. After the engine of the Zenit upper stage completed its burn, it separated from another stage, known as Fregat, which now still remains attached to Phobos-Grunt. Ignition of the Fregat engine was to occur twice during the first five hours in space. The first Fregat burn would have taken the spacecraft to a much higher orbit; the second burn, about 2.5 hours later would have propelled the probe on its way to Mars and its larger moon, Phobos. From this moon, a sample of soil would be scooped into a special capsule which would return to Earth for recovery in 2014.

Grunt is still in a low orbit, because neither Fregat burn occurred. While the spacecraft is believed to be in safe mode and even has maneuvered such that its orbital altitude has increased, controllers have been unable to establish contact to send new commands. If communication cannot be established, it will re-enter the atmosphere.

In addition to the sample return capsule, Grunt carries an instrument package designated to remain on the Phobosian surface, plus a Chinese probe, Yinghuo-1, designed to orbit Mars. The mission also includes the Planetary Society’s Living Interplanetary Flight Experiment (LIFE) , for which I serve as principal science lead of the US team. Carried inside the return capsule into which the Phobosian soil is to be deposited, LIFE consists of a discoid-shaped canister, a biomodule, weighing only 88 grams. Inside are 30 sample tubes carrying ten biological species, each in triplicate. Surrounded by the 30 tubes is a sample of soil with a mixed population of microorganisms, taken from the Negev desert in Israel to be analyzed by Russian microbiologists.

The Planetary Society’s Living Interplanetary Flight Experiment (LIFE) capsule, on board the Phobos-Grunt spacecraft. Credit:The Planetary Society

Organisms carried within the LIFE biomodule include members of all three domains of Earth life: bacteria, archaea, and eukaryota. The purpose of the experiment is to test how well the different species can endure the space environment, akin to microorganisms moving in space within a meteoroid ejected from Mars by an impact event. If organisms can remain viable within rock material that is transferred naturally from Mars to Earth, it would lend support to the Mars transpermia hypothesis –the idea that life on Earth may have began by way of a seeding event by early organisms from Mars.

We know of microorganisms that could survive the pressures and temperatures associated with the ejection itself. We also know that during atmospheric entry, only the most outer few millimeters of rocks are heated on their way to Earth; thus, anything alive in a rock’s interior at this point should still be alive when the rock hits Earth as a meteorite. If life forms also could survive the journey itself from Mars to Earth, a Martian origin for Earth’s life would be a major possibility. It also would mean that life originating on its own anywhere in the Cosmos could spread from each point of origin, thus increasing the number of living planets and moons that may exist.

Numerous studies of the survivability of many of the LIFE species have been conducted in low Earth orbit, but much of the challenge to life in space comes from highly energetic space radiation. A large portion of space radiation is trapped by a system of magnetic fields known as the Van Allen radiation belts, or the geomagnetosphere. Since very few controlled studies of microorganisms, plant seeds, and other life have been conducted beyond the Van Allen belts, which reach an altitude of about 60,000 kilometers (about 1/7th the distance to the Moon), the Planetary Society arranged to have the LIFE biomodule carried within Grunt’s return capsule.

Over last weekend, the spacecraft surprised everyone by maneuvering on its own, raising its orbit. Due to this, the estimated reentry date was moved back from late November to mid January, meaning that the LIFE biomodule will be in space for more than nine weeks. An intriguing possibility that looms as controllers consider how the mission might end is that the Grunt sample return capsule will break off from the rest of the craft intact. If this happens, it could assume the stable atmospheric entry, descent, and landing that were expected after the return from Phobos. If this happens and the capsule comes down on land, we could recover the LIFE biomodule and test the state of the organisms packaged within it. The result of yet another biological test in low orbit, it would not be the experiment of our dreams. But, amidst the loss of a mission into which so many engineers and scientists have invested their dreams, a little bit could mean a lot.

Russians Race against Time to Save Ambitious Phobos-Grunt Mars Probe from Earthly Demise

Russian graphic shows the planned Earth departure trajectory (at right) and two engine burns that failed to ignite from the Fregat upper stage following the launch of the Phobos-Grunt spacecraft from Baikonur Cosmodrome on Nov. 9 at 00:16am Moscow time. Illustration at left shows Phobos-Grunt spacecraft folded for flight inside the payload fairing. Credit: Roscosmos.

[/caption]

Teams of Russian engineers are in a race against time to save the ambitious and unprecedented Phobos-Grunt sample return mission from crashing back to Earth following the post launch failure of the upper stage rocket firings essential to propel the probe onward to destination Mars and scooping up dirt and dust from the tiny moon Phobos.

Roscomos, the Russian Federal Space Agency says they have perhaps two weeks to salvage the spacecraft – now stuck in Earth orbit – before its batteries run out and its orbit would naturally decay leading to an ignominious and uncontrollable reentry and earthly demise. Vladimir Popovkin, head of Roscosmos Chief had initially indicated a survival time limited to only 2 days in a briefing to Russian media.

“I give them a good chance — better than even — of recovering the mission and making the Mars insertion burn in a day or two, said James Oberg, a renowned expert on Russian and US spaceflight in commentary to Universe Today.

But Oberg also told me that having such problems so early in the mission was not a good sign. It all depends on whether the root cause is related to a simple software patch or serious hardware difficulties.

Following yesterday’s eerie midnight blastoff of Phobos-Grunt at 00:16 a.m. Moscow time atop an upgraded Zenit- 2SB booster and the apparently flawless performance of the first and second stages, the situation turned decidedly negative some 5 hours later when the pre-planned ignition burns of the Fregat upper stage failed to ignite twice.

Blastoff of Phobos-Grunt spacecraft atop Zenit-2 rocket from Baikonur Cosmodrome on Nov. 9. Credit: Roscosmos

The 13,000 kg Phobos-Grunt (which means Phobos-Soil) spacecraft was to embark on an 11 month interplanetary cruise and arrive in the vicinity of Mars around October 2012, along with a piggybacked mini-satellite from China named Yinghuo-1, the nation’s first ever probe to orbit the Red Planet, and the Phobos-LIFE experiment from the Planetary Society.

“It has been a tough night for us because we could not detect the spacecraft [after the separation],” Vladimir Popovkin said according to the Ria Novosti Russian news agency. “Now we know its coordinates and we found out that the [probe’s] engine failed to start.”

“It is a complex trajectory, and the on-board computers could have simply failed to send a “switch on” command to the engine,” Popovkin added.

Fortunately, the engine ignition malfunction was one of the anticipated failure scenarios and a corrective action plan already exists for it – but only if it can be implemented to save the $163 million mission and Russian hopes to revive their long dormant interplanetary forays.

“But it’s an old old superstition that when leaving your house for a long voyage, if you trip on the door step, you better just lay down your suitcases and go back inside,” Oberg said.

“Seriously, on a mission so complex and innovative as this one is, with so much stuff that has to be done RIGHT the first time they’ve ever tried it, having this kind of error — even if it’s only a coding mishap — right at the start, is NOT a good omen about the quality of work on preparing the later steps,” Oberg warned.

The goal of the complicated and first of its-kind 3 year round trip mission is to deploy a lander to the surface of Phobos, grab up to 200 grams of pristine regolith and rocks, and then take off and sail back to Earth with the precious samples for analysis by the most scientifically advanced instruments available to humankind. Watch the detailed mission animation in my article here.

Russia’s historic Phobos-Grunt sample return mission to Mars and Phobos will retrieve 200 grams of soil from the surface of Martian moon Phobos and fly the samples back to Earth by August 2014. Credit: Roscosmos

Another serious problem was a lengthy gap in tracking coverage and thus two way communications with the spacecraft which minimized and seriously delayed Russian controller’s ability to diagnose and correct the malfunction.

Roscosmos stated today that after two communications sessions all necessary parameters of the spacecrafts motion have been determined and they hoped to regain contact sometime Wednesday afternoon through a ground station at Baikonur and upload new software to orient the vehicle and commands for an engine firing at some point soon. Luckily the hydrazine filled propellant tank had not been jettisoned – or all would be lost.

It appears that the earliest day the Fregat engines can be fired is sometime Thursday. The Fregat would also journey all the way to Mars and conduct the critical braking maneuver to insert Phobos-Grunt and Yinghuo-1 into separate Mars orbits.

The engine ignition failure has left Phobos-Grunt stuck in an elliptical orbit ranging from about 207 by 347 kilometers and inclined 51 degrees. The engine firings would have placed the ship into a higher altitude elliptical orbit of 250 by 4150 km and then cruising to Mars.

The Russianspaceweb website reported that “the editor of this web site received a message from the director of Moscow-based Space Research Institute, IKI, Lev Zeleny, informing that tracking facilities of the US military provided significant help in establishing exact orbital parameters of the Phobos-Grunt spacecraft. This data was to be used during the previous night to send commands to the spacecraft as it was passing within range of ground control stations. Zeleny reassured that the mission team still had had “few days for reprogramming before the end of the Mars accessibility window for 2011.”

Alexey Kuznetsov, Head of the Roskosmos Press Office told me previously that, “The Phobos-Grunt launch window extends until November 25.” So theoretically, there is still some time to propel Phobos-Grunt to Mars but there are also many unknowns.

Labeled Schematic of Phobos-Grunt and Yinghou-1 (YH-1) orbiter. Main propulsion is the Fregat upper stage that failed to ignite twice following flawless liftoff on Nov. 9. Credit: Roskosmos

Further details will be reported as they emerge.

Meanwhile, NASA’s car sized Curiosity Mars Science Laboratory (MSL) Rover is posied atop an Atlas V rocket at her Florida launch pad awaiting a Nov. 25 liftoff.

Read Ken’s continuing features about Phobos-Grunt here:
Russia’s Bold Sample Return Mission to Mars and Phobos Blasts Off
Russian Mars Moon Sample Probe Poised to Soar atop Upgraded Rocket – VideoAwesome Action Animation Depicts Russia’s Bold Robot Retriever to Mars moon Phobos
Phobos-Grunt and Yinghuo-1 Encapsulated for Voyage to Mars and Phobos
Phobos and Jupiter Conjunction in 3 D and Amazing Animation – Blastoff to Martian Moon near
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

Trouble for the Phobos-Grunt Mission

The Phobos-Grunt mission profile. Credit: Roscosmos

[/caption]

Russia’s unmanned Phobos-Grunt spacecraft may be in serious trouble, as it apparently has encountered problems with either computer software or the propulsion system, or perhaps both. There appears to be some confusion about what may have happened, with various sources reporting different things.

Russian Space Agency head Vladimir Popovkin was quoted by the Ria news agency, with a Google translation, “We’ve had a bad night, we could not detect long spacecraft, now found his position. It was found that the propulsion system failed. There was neither the first nor the second inclusion.”

Roughly, it appears that at first they lost telemetry with the spacecraft, but then were able to locate it and found that the first and second burns did not occur.

The spacecraft launched from the Baikonur Cosmodrome in Kazakhstan by a Zenit-2 booster rocket at 12:16 a.m. Moscow time on Wednesday and separated from the booster about 11 minutes later.

From various translated sources, it appears the probe is now in a parking orbit. What should have happened is that two and a half hours after launch, the first burn should have put the spacecraft into an higher orbit around Earth, and a second burn should have occurred 126 minutes later, which would have sent it the spacecraft to Mars. Neither occurred, and it is yet to be determined if the problem was with the flight computer or flight hardware.

According to Interfax, Russian officials has said if it is a computer problem, they have three days to resolve the software issue before the battery power on the spacecraft runs out. But if the problem is related to flight hardware, the mission will likely be lost.

Another quote from Popovkin via Ria sounded hopeful: “It is possible that the spacecraft wasn’t able to reorient itself from Sun to stars, so the engines weren’t able to receive commands from sensors. No fuel tanks are lost, no fuel is dumped. We still have the whole spacecraft. Salvation may be possible.”

“During the day we will definitely inform all of the future situation,” Popovkin added.

We’ll provide more details as they become available.

Sources: Ria, Interfax, Hayka, NASASpaceflight.com

Russia’s Bold Sample Return Mission to Mars and Phobos Blasts Off

Russia’s historic Phobos-Grunt sample return mission to Mars and Phobos blasts off atop a Zenit-2SB rocket from the Baikonur Cosmodrome, Kazakhstan on November 9, 2011 at 00:16 a.m. Moscow time (Nov. 8, 3:16 p.m. EST) from Launch Pad 45. Credit: Roscosmos/Spaceflight Now

Russia has successfully launched the Phobos-Grunt sample return mission to Mars aiming to return a soil sample from Phobos, the first time in history such a bold and complicated feat has been attempted.

The ambitious mission lifted off just past midnight at 00:16 Moscow time atop an upgraded version of the Zenit-2 rocket from the Baikonur Cosmodrome in Kazakhstan.

[/caption]

Phobos-Grunt is now in a parking orbit around Earth and further burns are required by the modified Fregat upper stage by 8:20 p.m. tonight to put the probe of course for Earth departure and an interplanetary cruise to the Red Planet. Watch for updates later.

The liftoff of the $163 million robotic spacecraft marks Russia’s first attempt to conduct an interplanetary mission in some 15 years since the launch failure of the Mars 96 probe back in 1996. Phobos-Grunt translates as Phobos-Soil.

Russia’s historic Phobos-Grunt sample return mission to Mars and Phobos liftoff off on top of a Zenit-2SB rocket from the Baikonur Cosmodrome, Kazakhstan on November 9, 2011 at 00:16 a.m. Moscow time (Nov. 8, 3:16 p.m. EST) from Launch Pad 45. Credit: Roscosmos

The mission goal is to deploy a lander to Phobos and bring back up to 200 grams of pristine regolith and rocks from the surface of Phobos.

Also along for the ride is China’s first Mars mission named Yinghuo-1 (which means means Firefly-1) which will be jettisoned into Mars orbit as Phobos-Grunt inserts into a different orbit about Mars. Additionally, the Planetary Society’s Phobos LIFE biomodule is also on board.

The 12,000 kg Phobos-Grunt spacecraft should arrive in the vicinity of Mars around October 2012 after an 11 month interplanetary cruise. Following several months of orbital science investigations of Mars and its two moons and searching for a safe landing site, Phobos-Grunt will attempt history’s first ever touchdown on Phobos in February 2013. It will conduct a comprehensive analysis of Phobos surface and gather up to 200 grams of soil and rocks with a pair of robotic arms and a scoop device.

The samples will be transferred by a long tube onto the return vehicle mounted atop the lander. By March 2013 the ascent vehicle will take off for the trip back back to Earth.

Phobos-Grunt is equipped with a 50 kg array of 20 sophisticated science instruments including lasers, spectrometers, cameras and a microscope provided by an international team of scientists and science institutions from across Europe and Asia.

The entire voyage will last just under 3 years with the capsule plummeting through the Earth’s atmosphere in August 2014. These would represent the first macroscopic samples returned from another body in the solar system since Russia’s Luna 24 returned soil from the Moon back in 1976.

Russian Mars Moon Sample Probe Poised to Soar atop Upgraded Rocket – Video

Russia’s historic Phobos-Grunt sample return mission to Mars and Phobos poised on top of Zenit-2SB rocket at Baikonur Cosmodrome, Kazakhstan. Liftoff is slated for November 9, 2011 at 00:26 a.m. Moscow time [Nov. 8, 3:36 p.m. EST] from Launch Pad 45. Credit: Roscosmos. See Zenit Rocket rollout Video and Images below

[/caption]

After an absence of almost two decades, Russia is at last on the cusp of resuming an ambitious agenda of interplanetary science missions on Tuesday Nov. 8 3:16 p.m. EST (Nov. 9, 00:16 a.m. Moscow Time) by taking aim at Mars and scooping up the first ever soil and rocks gathered from the mysterious moon Phobos. Russia’s space program was hampered for many years by funding woes after the breakup of the former Soviet Union and doubts stemming from earlier mission failures. The Russian science ramp up comes just as US space leadership fades significantly due to dire NASA budget cutbacks directed by Washington politicians.

Russia’s daring and highly risky Phobos-Grunt soil sampling robot to the battered Martian moon Phobos now sits poised at the launch pad at the Baikonur Cosmodrome in Kazahkstan atop a specially upgraded booster dubbed the “Zenit-2SB” rocket according to Alexey Kuznetsov, Head of the Roscosmos Press Office in an exclusive interveiw with Universe Today. Roscosmos is the Russian Federal Space Agency. Watch the awesome Mars mission animation in my article here. See Zenit Rocket rollout video and images below.

“The Phobos-Grunt automatic interplanetary station will launch on November 9, 2011 at 00:26 a.m. Moscow time [Nov. 8, 3:36 p.m. EST],” Kuznetsov confirmed to Universe Today.

The Roscosmos video and photos here show the Zenit rocket rollout starting from Building 45 where the final prelaunch processing was conducted late last week mounting the nose cone holding the Phobos-Grunt and companion Yinghuo-1 spacecraft to the upgraded Fregat upper stage.

Russia’s Phobos-Grunt automatic interplanetary station - lander. Credit: Roscosmos

If successful, Phobos Grunt will complete the Earth to Mars round trip voyage in some 34 months and the history making soil samples will plummet through the Earth’s atmosphere in August 2014 to waiting Russian military helicopters.

Following an 11 month interplanetary journey, the spaceship will enter Mars orbit and spend several months searching for a suitable landing site on Phobos. The probe is due to touchdown very gently on Phobos surface in Feb. 2013 using radar and precision thrusters accounting for the moon’s extremely weak gravity. After gathering samples with two robotic arms, the soil transferred to the Earth return capsule will take off in the ascent vehicle for the trip back home.

“The Zenit can launch spacecraft from Baikonur into LEO, MEO, HEO and elliptical near-Earth orbits (including GTO and geostationary orbit) and to escape trajectories as well,” Kuznetsov explained.

Zenit-2SB rocket rollout from Building 45 at Baikonur with Russia’s Phobos-Grunt automatic interplanetary station. Credit: Roscosmos

The Zenit-2SB booster with Phobos-Grunt and the piggybacked Yinghuo-1 Mars orbiter from China were rolled out horizontally by train on a railed transporter on Nov. 6, raised and erected vertically into launch position at Launch Pad 45 at Baikonur.

“The ‘Zenit-2SB’ rocket belongs to the rocket family using nontoxic fuel components – liquid oxygen and kerosene,” Kuznetsov elaborated. “The Zenit was manufactured by the A.M. Makarov Yuzhny Machine-Building Plant in Ukraine.”

“This “Zenit-2” rocket modification has significant improvements,” Kuznetsov told me. “The improvements include a new navigation system, a new generation on-board computer, and better performance by mass reduction and increase in thrust of the second stage engine.”

Zenit-2SB rocket rollout on train car to Baikonur launch pad with Phobos-Grunt sampling return mission to Mars and Phobos. Credit: Roscosmos

Likewise the upper stage was upgraded for the historic science flight.

“The Zenit’s Fregat upper stage has also been modified. The “Phobos Grunt” automatic interplanetary station cruise propulsion system was built onto the base of the “Fregat-SB” upper stage. Its main task is to insert the automatic interplanetary station onto the Mars flight path and accomplish the escape trajectory.”

“The “Phobos Grunt” automatic interplanetary station mission was constructed by the Russian Academy of Sciences Space Research Institute in Moscow and the spacecraft was manufactured by NPO Lavochkin in Moscow,” Kuznetsov told me.

The 12,000 kg Phobos-Grunt automatic interplanetary station is equipped with a powerful 50 kg payload of some 20 science instruments provided by a wide ranging team of international scientists and science institutions from Europe and Asia.

The audacious goal is to bring back up to 200 grams of pristine regolith and rocks that help unlock the mysteries of the origin and evolution of Phobos, Mars and the Solar System

Zenit-2SB rocket rollout on train to launch pad at Baikonur with Russia’s Phobos-Grunt automatic interplanetary station. Credit: Roscosmos

Zenit-2SB rocket erected vertically to launch position at Baikonur launch pad with Russia’s Phobos-Grunt Mars spacecraft. Credit: Roscosmos

Russia’s Phobos-Grunt sample return mission to Mars and Phobos poised atop Zenit rocket at Pad 45 at Baikonur Cosmodrome. Kazakhstan. Liftoff set for November 9, 2011 at 00:26 a.m. Moscow time - Nov. 8, 3:36 p.m. EST. Credit: Roscosmos.

NASA’s Curiosity Mars Science Laboratory (MSL) Rover has also arrived at her Florida launch pad awaiting Nov. 25 liftoff.

Join me in wishing all the best to Roscosmos and NASA for this duo of fabulous Mars missions in 2011 that will help unravel our place in the Universe – like never before!

Read Ken’s continuing features about Phobos-Grunt upcoming Nov 9 launch here:
Awesome Action Animation Depicts Russia’s Bold Robot Retriever to Mars moon Phobos
Phobos-Grunt and Yinghuo-1 Encapsulated for Voyage to Mars and Phobos
Phobos and Jupiter Conjunction in 3 D and Amazing Animation – Blastoff to Martian Moon near
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

Awesome Action Animation Depicts Russia’s Bold Robot Retriever to Mars moon Phobos

Artist concept of Russia’s Phobos-Grunt spacecraft. Credit Roscosmos.

[/caption]

In less than 48 hours, Russia’s bold Phobos-Grunt mechanized probe will embark on a historic flight to haul humanities first ever soil samples back from the tiny Martian moon Phobos. Liftoff from the Baikonur Cosmodrome remains on target for November 9 (Nov 8 US 3:16 p.m. EDT).

For an exquisite view of every step of this first-of-its-kind robot retriever, watch this spectacular action packed animation (below) outlining the entire 3 year round trip voyage. The simulation was produced by Roscosmos, Russia’s Federal Space Agency and the famous IKI Space Research Institute. It’s set to cool music – so don’t’ worry, you don’t need to understand Russian.

Another video below shows the arrival and uncrating of the actual Phobos-Grunt spacecraft at Baikonur in October 2011.

The highly detailed animation begins with the blastoff of the Zenit booster rocket and swiftly progresses through Earth orbit departure, Phobos-Grunt Mars orbit insertion, deployment of the piggybacked Yinghuo-1 (YH-1) mini satellite from China, Phobos-Grunt scientific reconnaissance of Phobos and search for a safe landing site, radar guided propulsive landing, robotic arm manipulation and soil sample collection and analysis, sample transfer to the Earth return capsule and departure, plummeting through Earth’s atmosphere and Russian helicopter retrieval of the precious cargo carrier.


Video Caption: Every step of Russia’s Phobos-Grunt soil retrieval mission. Credit: Roscosmos/IKI


Video Caption: On October 21, the Phobos-Grunt spacecraft arrived at the Baikonur Cosmodrome and was uncrated and moved to assembly building 31 for fueling, final preflight processing and encapsulation in the nose cone. Credit: Roscosmos

Labeled Schematic of Phobos-Grunt and Yinghou-1 (YH-1) orbiter. Credit: Roskosmos

Read Ken’s continuing features about Phobos-Grunt upcoming Nov. 9 launch here:
Phobos-Grunt and Yinghuo-1 Encapsulated for Voyage to Mars and Phobos
Phobos and Jupiter Conjunction in 3 D and Amazing Animation – Blastoff to Martian Moon near
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats

The payload fairing containing Curiosity, NASA's Mars Science Laboratory (MSL) rover rises from the transporter below as it is lifted up the side of the Vertical Integration Facility At Space Launch Complex 41. The fairing, which protects the payload during launch, was attached to the Atlas V rocket already stacked inside the facility. Credit: NASA/Kim Shiflett

[/caption]

Only time now stands in the way of Curiosity’s long awaited date with the Red Planet. NASA’s next, and perhaps last Mars rover was transported to the launch pad at Cape Canaveral Air Force Station and then hoisted on top of the mighty Atlas V rocket that will propel her on a 10 month interplanetary journey to Mars to seek out the potential habitats of Extraterrestrial life.

In less than three weeks on November 25 – the day after Thanksgiving – the Curiosity Mars Science Laboratory (MSL) rover will soar to space aboard the Atlas V booster. Touchdown astride a layered mountain at the Gale Crater landing site is set for August 2012.

Collage showing transport of Curiosity inside nose cone to Space Launch Complex 41 at Cape Canaveral, Florida. Credit: NASA

The $2.5 Billion rover must liftoff by Dec. 18 at the latest, when the launch window to Mars closes for another 26 months. Any delay would cost hundreds of millions of dollars.

Curiosity represents a quantum leap in science capabilities and is by far the most advanced robotic emissary sent to the surface of another celestial body. MSL will operate for a minimum of one Martian year, equivalent to 687 days on earth.

After years of meticulous design work and robotic construction by dedicated scientists and engineers at NASA’s Jet Propulsion Laboratory in California and months of vigilant final assembly and preflight processing at the Payload Hazardous Servicing Facility (PHSF) at NASA’s Kennedy Space Center in Florida, Curiosity was finally moved the last few miles (km) she’ll ever travel on Earth – in the dead of night – to Space Launch Complex 41 at the Cape.

Curiosity inside the Nose Cone to Mars. In the Payload Hazardous Servicing Facility at the Kennedy Space Center in Florida, the Atlas V rocket's payload fairing containing the Mars Science Laboratory (MSL) spacecraft stands securely atop the transporter that will carry it to Space Launch Complex 41. Credit: NASA/Kim Shiflett

The robo behemoth was tucked inside her protective aeroshell Mars entry capsule and clamshell-like nose cone, gingerly loaded onto the payload transporter inside the PHSF and arrived – after a careful drive – at Pad 41 at about 4:35 a.m. EDT on Nov. 3. The move was delayed one day by high winds at the Cape.

Employees at Space Launch Complex 41 keep watch as the payload fairing containing NASA's Mars Science Laboratory (MSL) spacecraft is lifted up the side of the Vertical Integration Facility. Credit: NASA/Kim Shiflett

Teams from rocket builder United Launch Alliance then hoisted MSL by crane on top of the Atlas V rocket already assembled inside the launch gantry known as the Vertical Integration Facility, or VIF, and bolted it to the venerable Centaur upper stage. Technicians also attached umbilicals for mechanical, electrical and gaseous connections.

Curiosity’s purpose is to search for evidence of habitats that could ever have supported microbial life on Mars and determine whether the ingredients of life exist on Mars today in the form of organic molecules – the building blocks of life.

We are all made of organic molecules – which is one of the essential requirements for the genesis of life along with water and an energy source. Mars harbors lots of water and is replete with energy sources, but confirmation of organics is what’s lacking.

Curiosity, inside the payload fairing at Pad 41, has been attached to a lifting device in order to be raised and attached to the Atlas V rocket inside the Vertical Integration Facility. The fairing will protect the payload from heat and aerodynamic pressure generated during ascent. Credit: NASA/Kim Shiflett

The Atlas V will launch in the configuration known as Atlas 541. The 4 indicates a total of four solid rocket motors (SRM) are attached to the base of the first stage. The 5 indicates a five meter diameter payload fairing. The 1 indicates use of a single engine Centaur upper stage.

One of the last but critical jobs remaining at the pad is installation of Curiosity’s MMRTG (Multi-Mission Radioisotope Thermoelectric Generator) power source about a week before launch around Nov. 17. Technicians will install the MMRTG through small portholes on the side of the payload fairing and aeroshell.

The nuclear power source will significantly enhance the driving range, scientific capability and working lifetime of the six wheeled rover compared to other solar powered landed surface explorers like Pathfinder, Spirit, Opportunity, Phoenix and Phobos-Grunt.

The minivan sized rover measures three meters in length, roughly twice the size of the MER rovers; Spirit and Opportunity. MSL is equipped with 10 science instruments for a minimum two year expedition across Gale crater. The science payload weighs ten times more than any prior Mars rover mission.

The Atlas V rocket and Curiosity will roll out to the launch pad on Wednedsay, November 23, the day before Thanksgiving.

Meanwhile, Russia’s Phobos-Grunt mission to Mars and Phobos is on target to blast off on November 9, Moscow time [Nov 8, US time].

Curiosity Mars Science Laboratory Rover - inside the Cleanroom at KSC. Credit: Ken Kremer

Read Ken’s continuing features about Curiosity starting here:
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action

Read Ken’s continuing features about Phobos-Grunt upcoming Nov 9 launch here:
Phobos-Grunt and Yinghuo-1 Encapsulated for Voyage to Mars and Phobos
Phobos and Jupiter Conjunction in 3 D and Amazing Animation – Blastoff to Martian Moon near
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

Phobos-Grunt and Yinghuo-1 Encapsulated for Voyage to Mars and Phobos

Phobos-Grunt spacecraft being encapsulated inside the nose cone for November 9 launch to Mars and its tiny moon Phobos. Credit: Roscosmos

[/caption]

Phobo-Grunt, Russia’s first interplanetary mission in nearly two decades, has now been encapsulated inside the payload fairing and sealed to the payload adapter for mating to the upper stage of the Zenit booster rocket that will propel the probe to Mars orbit and carry out history’s first ever landing on the petite Martian moon Phobos and eventually return pristine samples to Earth for high powered scientific analysis.

Phobos-Grunt will launch on November 9, 2011 at 00:16 a.m. Moscow time [Nov. 8 3:16 p.m. EST],” said Alexey Kuznetsov, Head of the Roscosmos Press Office in an exclusive interview with Universe Today. Roscosmos is the Russian Federal Space Agency, equivalent to NASA and ESA.

“The launch window extends until November 25.”

“At this moment we are preparing the “Zenit-2SB” launch vehicle, the cruise propulsion system and the “Phobos Grunt” automatic interplanetary station at the Baikonur Cosmodrome,” Kuznetzov told me. Phobos-Grunt translates as Phobos-Soil.

Phobos-Grunt spacecraft attached to payload adapter prior to encapsulation. Note folded solar panels, gold colored sample transfer tube leading to return capsule, landing legs, antennae and propulsion tanks. Credit: Roscosmos

China’s first ever mission to Mars, the Yinghuo-1 micro-satellite, is also encased inside the nose cone and is tucked in a truss segment between the lander and interplanetary propulsion stage.

Yinghuo-1 follows closely on the heels of China’s stunning success in demonstrating the nation’s first ever docking in space between two Chinese spacecraft earlier this week on November 3.

Sealing up Phobos-Grunt. Credit: Roscosmos

Technicians completed the two vehicles enclosure inside the protective fairing at Building 31 at the Baikonur Cosmodrome and have now transported the spaceships to Building 41 where the payload is now being stacked to the upgraded “Fregat-SB” upper stage atop the Zenit-2SB rocket.

Martian moon Phobos imaged by Mars Express Orbiter from ESA. Credits: ESA/DLR/FU Berlin (G. Neukum)

The payload fairing protects the Phobos-Grunt and Yinghuo-1 spacecraft during the first few minutes of flight from the intense frictional heating and buildup of aerodynamic pressures. After the rocket soars through the discernable atmosphere the fairing splits in half and is jettisoned and falls back to Earth.

The nose cone sports a beautiful mission logo painted on the side of the fairing along with the logos of various Russian and International partner agencies and science institutes.

Phobos-Grunt payload fairing. Credit: Roscosmos

Propellants have already been loaded aboard the cruise stage, Phobos-Grunt lander and Earth return vehicle.

“The Phobos Grunt automatic interplanetary station was built, prepared and tested at NPO Lavochkin [near Moscow]. They were also responsible for inspection of the devices, instruments and systems integration,” Kuzntezov explained.

“Significant improvements and modifications and been made to both the “Fregat-SB” upper stage and the “Zenit-2SB” rocket,” said Kuznetzov.

View inside nose cone and preparing to encapsulate Phobos-Grunt. Click to enlarge. Credit: Roscosmos

Phobos-Grunt will blastoff from Launch Pad 45 at Baikonur,

Following an 11 month journey, the spaceship will enter Mars orbit in October 2012, spend several months investigating Phobos and then land around February 2013.

The goal is to snatch up to 200 grams of soil and rock from Phobos and fly them back to Earth in a small capsule set to plummet through the atmosphere in August 2014.

ESA, the European Space Agency, is assisting Russia determine a safe landing site by targeting their Mars Express Orbiter to collect high resolution images of Phobos. Look at 2 D and 3 D images and an animation here.

The regolith samples will help teach volumes about the origin and evolution of Phobos, Mars and the Solar System. Scientists would be delighted if miniscule bits of Martian soil were mixed in with Phobos soil.

Phobos-Grunt , Earth’s next mission to Mars, is equipped with an advanced 50 kg payload array of some 20 science instruments.

NASA’s Curiosity Mars rover was also enclosed in her payload fairing a few days ago and is on course for liftoff on November 25.

The Phobos-Grunt spacecraft is scheduled to blastoff on November 9, 2011 from Baikonur Cosmodrome. It will reach Mars orbit in 2012 and eventually land on Phobos and return the first ever soil samples back to Earth in 2014. Credit Roscosmos

Read Ken’s continuing features about Phobos-Grunt here:
Phobos and Jupiter Conjunction in 3 D and Amazing Animation – Blastoff to Martian Moon near
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

Read Ken’s continuing features about Curiosity & Nov. 25 launch starting here:
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action

Phobos and Jupiter Conjunction in 3 D and Amazing Animation – Blastoff to Martian Moon near

3 D view of the rare Phobos–Jupiter conjunction taken on 1 June 2011 by the High Resolution Stereo Camera on Mars Express. Credits: ESA/DLR/FU Berlin (G. Neukum)

Video Caption: Phobos and Jupiter in Conjunction – taken from Mars orbit !
A movie of the 1 June 2011 Phobos–Jupiter conjunction made by combining a sequence of 100 images of the encounter taken by the High Resolution Stereo Camera on ESA’s Mars Express orbiter. Mars Express is searching for safe landing zones on Phobos for Russia’s Phobos-Grunt lander blasting off on November 9. Credits: ESA/DLR/FU Berlin (G. Neukum)
3 D images of Phobos-Jupiter conjuction below
Update – Phobos-Grunt launch processing photo below

In just 7 days, Russia’s Phobos-Grunt sample return mission will blast off for Mars on November 9 on a daring mission to grab soil samples from the surface of the miniscule martian moon Phobos and return them back to Earth for analysis to give us breathtaking new insights into the formation and evolution of Mars, Phobos and our Solar System.

So, check out the amazing animation and 3 D stereo images of fish-like Phobos and banded Jupiter snapped by Europe’s Mars Express orbiter to get a bird’s eye feel for the battered terrain, inherent risks and outright beauty that’s in store for the Phobos -Grunt spaceship when it arrives in the Red Planet’s vicinity around October 2012. Whip out your red-cyan 3 D glasses – Now !

[/caption]

ESA’s Mars Express orbiter (MEX) was tasked to help Russia locate suitable and safe landing sites on Phobos’ pockmarked terrain. MEX was built by ESA, the European Space Agency and has been in Mars orbit since 2003.

To capture this impressive series of rare photos of Jupiter and Phobos in conjunction, Mars Express performed a special maneuver to observe an unusual alignment of Jupiter and Phobos on 1 June 2011.

Mars Express High Resolution Stereo Camera (HRSC) snapped a total of 104 images over 68 seconds when the distance from the spacecraft to Phobos was 11,389 km and the distance to Jupiter was 529 million km.

Phobos- Jupiter Conjunction: before, during and after on 1 June 2011 from Mars Express. Credits: ESA/DLR/FU Berlin (G. Neukum)

Enjoy the exquisite views of the bands of Jupiter and imagine exploring the deep pockets and mysterious grooves on Phobos – which may be a captured asteroid.

The camera was kept fixed on Jupiter, to ensure it remained static as Phobos passed in front and which afforded an improvement in our knowledge of the orbital position of Phobos.

Phobos in 3 D during flyby of 10 March 2010. Image taken from a distance of 278 km. Russia’s Phobos-Grunt will retrieve rogolith and rock for return to Earth. Credit: ESA/DLR/FU Berlin (G. Neukum)

NASA’s twin Mars rovers Spirit and Opportunity have also occasionally photographed both of Mars’ moons to further refine their orbital parameters.

NASA’s Curiosity rover remains on track to liftoff for Mars on Nov. 25

Orbital Paths of Phobos and Mars Express. The trajectories of Phobos and Mars Express at the time of the conjunction with Jupiter on 1 June 2011. The letter ‘S’ denotes the South Pole of Mars.
Technicians at Baikonur Cosmodrome prepare Phobos-Grunt for upper stage attachment. Credit: Roscosmos

Read Ken’s continuing features about Phobos-Grunt here:
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

Closing the Clamshell on a Martian Curiosity

In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, sections of an Atlas V rocket payload fairing engulf NASA's Mars Science Laboratory (MSL) as they close in around it. The blocks on the interior of the fairing are components of the fairing acoustic protection (FAP) system, designed to protect the payload by dampening the sound created by the rocket during liftoff. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex-41 on Cape Canaveral Air Force Station. Credit: NASA/Jim Grossmann

[/caption]

Curiosity’s clamshell has been closed.

And it won’t open up again until a few minutes after she blasts off for the Red Planet in just a little more than 3 weeks from now on Nov. 25, 2011 – the day after Thanksgiving celebrations in America.

The two halves of the payload fairing serve to protect NASA’s next Mars rover during the thunderous ascent through Earth’s atmosphere atop the powerful Atlas V booster rocket that will propel her on a fantastic voyage of hundreds of millions of miles through interplanetary space.

Spacecraft technicians working inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center (KSC) in Florida have now sealed Curiosity and her aeroshell inside the payload fairing shroud. The fairing insulates the car sized robot from the intense impact of aerodynamic pressure and heating during ascent. At just the right moment it will peal open and be jettisoned like excess baggage after the rocket punches through the discernable atmosphere.

Clamshell-like payload fairing about to be closed around Curiosity at KSC. Credit: NASA/Jim Grossmann

The next trip Curiosity takes will be a few miles to the Launch Pad at Space Launch Complex 41 at adjacent Cape Canaveral Air Force Station. She will be gingerly loaded onto a truck for a sojourn in the dead of night.

Curiosity in front of one payload fairing shell. Credit: NASA/Jim Grossmann

“Curiosity will be placed onto the payload transporter on Tuesday and goes to Complex 41 on Wednesday, Nov. 2,” KSC spokesman George Diller told Universe Today. “The logo was applied to the fairing this weekend.”

At Pad 41, the payload will then be hoisted atop the United Launch Alliance Atlas V rocket and be bolted to the Centaur upper stage.

Installation of Curiosity’s MMRTG (Multi-Mission Radioisotope Thermoelectric Generator) power source is one of the very last jobs and occurs at the pad just in the very final days before liftoff for Mars.

The MMRTG will be installed through a small porthole in the payload fairing and the aeroshell (see photo below).

MMRTG power source will be installed on Curiosity through the porthole at right just days before Nov. 25 launch. Credit: NASA/Jim Grossmann

The plutonium dioxide based power source has more than 40 years of heritage in interplanetary exploration and will significantly enhance the driving range, scientific capability and working lifetime of the six wheeled rover compared to the solar powered rovers Spirit and Opportunity.

After a 10 month voyage, Curiosity is due to land at Gale Crater in August 2012 using the revolutionary sky crane powered descent vehicle for the first time on Mars.

Camera captures one last look at Curiosity before an Atlas V rocket payload fairing is secured around it. Credit: NASA/Jim Grossmann

Curiosity has 10 science instruments to search for evidence about whether Mars has had environments favorable for microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release the gasses so that its spectrometer can analyze and send the data back to Earth.

Technicians monitor Curiosity about to be engulfed by the two halves of the payload fairing. Credit: NASA/Jim Grossmann
Payload fairing sealed around Curiosity at the Payload Hazardous Servicing Facility at KSC. Credit: NASA/Jim Grossmann
Atlas V rocket at Launch Complex 41 at Cape Canaveral, Florida
An Atlas V rocket similar to this one utilized in August 2011 for NASA’s Juno Jupiter Orbiter will blast Curiosity to Mars on Nov. 25, 2011 from Florida. Credit: Ken Kremer

Phobos-Grunt, Earth’s other mission to Mars courtesy of Russia is due to blast off first from the Baikonur Cosmodrome on November 9, 2011.

Read Ken’s continuing features about Curiosity starting here:
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action

Read Ken’s continuing features about Russia’s Phobos-Grunt Mars mission here:
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff