We’ve said it before: Mars’ moon Phobos is doomed. But a new study indicates it might be worse than we thought.
One of the most striking features we see on images of Phobos is the parallel sets of grooves on the moon’s surface. They were originally thought to be fractures caused by an impact long ago. But scientists now say the grooves are early signs of the structural failure that will ultimately destroy this moon.
“We think that Phobos has already started to fail, and the first sign of this failure is the production of these grooves,” said Terry Hurford, from NASA’s Goddard Space Flight Center.
Why is Phobos falling apart?
Two words: tidal forces.
Phobos orbits closer to its planet than any moon in the Solar System. As it orbits just 6,000 km (3,700 miles) above Mars, and the planet’s gravity is pulling Phobos in closer and closer; it is also tearing Phobos apart. Scientists estimate the ultimate destruction of this tiny moon (22 kilometers/13.5-miles in diameter) might take place in about 30 to 50 million years.
It only take about 7.5 hours for Phobos to complete an orbit around the planet, while Mars takes almost 25 hours to complete one rotation on its axis. So Phobos travels three times around the planet for every Martian day. And as Fraser explains in this video, this is a problem.
Mars’ gravity is pulling in Phobos closer by about 2 meters (6.6 feet) every hundred years. The orbit will get lower and lower until it reaches a level known as the Roche Limit. This is the point where the tidal forces between the two sides of the moon are so different that it gets torn apart.
Hurford and his colleagues, who presented their latest findings at the annual Meeting of the Division of Planetary Sciences of the American Astronomical Society this week, also delivered other bad news about the interior of Phobos – which could ultimately speed up the demise of the moon. Phobos’ insides are likely to be just a big pile of rubble — barely holding together — surrounded by a layer of powdery regolith about 100 meters (330 feet) thick.
“The funny thing about the result is that it shows Phobos has a kind of mildly cohesive outer fabric,” said Erik Asphaug of the School of Earth and Space Exploration at Arizona State University in Tempe and a co-investigator on the study. “This makes sense when you think about powdery materials in microgravity, but it’s quite non-intuitive.”
Phobos’ grooves have long been an issue up for debate. As mentioned previously, one idea is that the grooves were associated with the impact that formed Stickney Crater, a big 10 km-wide crater that dominates one side of Phobos. However, scientists eventually determined that the grooves don’t radiate outward from the crater itself but from a focal point nearby. Another idea is they came from Phobos moving through streams of debris thrown up from impacts 6,000 km away on the surface of Mars, with each ‘family’ of grooves corresponding to a different impact event.
But new modeling by Hurford and his team supports the idea that the grooves are more like “stretch marks” that occur when Phobos gets deformed by tidal forces.
The team said that stress fractures predicted by their model coincide with the grooves seen in images of Phobos. This explanation also fits with the observation that some grooves are younger than others, which would be the case if the process that creates them is ongoing.
Huford also said the same fate may await Neptune’s moon Triton, which is also slowly falling inward and has a similarly fractured surface. The work also has implications for extrasolar planets, according to researchers.
“We can’t image those distant planets to see what’s going on, but this work can help us understand those systems, because any kind of planet falling into its host star could get torn apart in the same way,” said Hurford.
Here’s a video showing Mars Express images of Phobos over the last 10 years. The images show the grooves running across the small moon:
What would it take to destroy our moon, and eliminate the enemy of stellar astronomy for all time?
In the immortal words of Mr. Burns, “ever since the beginning of time, man has wished to destroy the Sun.” Your days are numbered, Sun.
But supervillains, being the practical folks they are, know that a more worthy goal would be to destroy the Moon, or at least deface it horribly. Nothing wrecks a beautiful night sky like that hideous pockmarked spotlight. What would it take to destroy it and eliminate the enemy of stellar astronomy for all time?
Crack out your Acme brand blueprint paper and white pencils, it’s Wile E. Coyote time.
The energy it takes to dismantle a gravitationally held object is known as its binding energy, we talked about it in a Death Star episode and inventive ways to overcome it.
For example, the binding energy of the Earth is 2.2 x 10^32 joules. It’s a lot. The binding energy of a smaller object, like our Moon is a tidy little 1.2 x 10^29 joules. It takes about 1800 times more energy to destroy the Earth than it takes to destroy the Moon.
It’s 1800 times easier. That’s downright doable, isn’t it? That’s almost 2000 times easier. Which, on the scale of easy to less easy, is definitely closer to easy.
Take the event that created the Caloris Basin on Mercury. It’s a crater, 1,500 km across. Astronomers think that a big fat asteroid, a fatsteroid(?) around 100 km in diameter crashed into Mercury billions of years ago. This event released 1.3 x 10^26 joules of energy, carving out this giant pit. It’s a thousandth of the binding energy of the Moon. We’ll need something more.
Our Sun produces 3.8 x 10^26 joules of energy every second, the equivalent of about a billion hydrogen bombs. If you directed the full power of the Sun at the Moon for 15 minutes, it’d tear apart.
That’s quite a superweapon you’ve got there, perhaps you’ll want to mount that on a space station and take it for a cruise through a galaxy far far away?
If that scene took that long, we’d have fallen asleep. It’s as if millions of voices gradually became a little hoarse from crying out for a quarter of an hour. There’s another way you could tear the Moon apart that doesn’t require an astral gate accident: gravity.
Astronomers use the Roche Limit to calculate how close an object – like a moon – can orbit another object – like a planet.
This is the point where the difference between the tidal forces on the “front” and “backside” are large enough that the object is torn apart, and if this sounds familiar you might want to look up “spaghettification”.
This is all based on the radius of the planet and the density of the planet and moon. If the Moon got close enough to the Earth, around 18,000 km, it would pull apart and be shredded into a beautiful ring.
And then the objects in the ring would enter the Earth’s atmosphere and rain down beautiful destruction for thousands of years.
Fortunately or unfortunately, depending your position in this “Die Moon, Die” discussion, the Moon is drifting away from the Earth. It’ll never be closer than it is right now, at almost 400,000 km, without a little nudge.
Phobos, the largest moon orbiting Mars is slowly approaching the planet, and astronomers think it’ll reach the Roche Limit in the next few million years.
It turns out that if we really want to destroy the Moon, we’ll need to destroy all life on Earth as well.
Now we know your new supervillain project, what’s your supervillain name? Tell us your handle in the comments below.
Spectacular 3D view of Arsia Mons, a huge volcano on Mars, taken by camera on India’s Mars Orbiter Mission (MOM). Credit: ISRO
Story updated with more details and imagery[/caption]
The Indian Space Research Organization (ISRO), India’s space agency, has recently published a beautiful gallery of images featuring a variety of picturesque Martian canyons, volcanoes, craters, moons and more.
We’ve gathered a collection here of MOM’s newest imagery snapped by the probes Mars Color Camera (MCC) for the enjoyment of Martian fans worldwide.
The spectacular 3D view of the Arsia Mons volcano, shown above, was “created by draping the MCC image on topography of the region derived from the Mars Orbiter Laser Altimeter (MOLA), one of five instruments on board NASA’s Mars Global Surveyor (MGS) spacecraft.
The Arsia Mons image was taken from Mars orbit on 1 April 2015 at a spatial resolution of 556 meters from an altitude of 10707 km. Volcanic deposits can be seen located at the flanks of the Mons, according to ISRO.
The view of Pital crater below was released in late May and taken on 23 April 2015. Pital is a 40 km wide impact crater located in the Ophir Planum region of Mars and the image shows a chain of small impact craters. It is located in the eastern part of Valles Marineris region, says an ISRO description. MCC took the image from an altitude of 808 km.
It is an odd shaped crater, neither circular nor elliptical in shape, possibly due to “regional fracture in the W-E trending fracture zone.”
A trio of images, including one in stunning 3D, shows various portions of Valles Marineris, the largest known canyon in the Solar System.
Valles Marineris stretches over 4,000 km (2,500 mi) across the Red Planet , is as much as 600 km wide and measures as much as 7 kilometers (4 mi) deep.
For context here’s a previously taken global image of the red planet from MOM showing Valles Marinaris and Arsia Mons, which belongs to the Tharsis Bulge trio of shield volcanoes. They are both near the Martian equator.
Valles Marineris is often called the “Grand Canyon of Mars.” It spans about as wide as the entire United States.
A gorgeous view of Phobos, the largest of Mars’ two tiny moons, silhouetted against the surface is shown below.
MOM’s goal is to study Mars atmosphere, surface environments, morphology, and mineralogy with a 15 kg (33 lb) suite of five indigenously built science instruments. It is also sniffing for methane, a potential marker for biological activity.
MOM is India’s first deep space voyager to explore beyond the confines of her home planets influence and successfully arrived at the Red Planet after the “history creating” orbital insertion maneuver on Sept. 23/24, 2014 following a ten month journey from Earth. MOM swoops around Mars in a highly elliptical orbit whose nearest point to the planet (periapsis) is at about 421 km and farthest point (apoapsis) at about 76,000 km, according to ISRO.
It takes MOM about 3.2 Earth days or 72 hours to orbit the Red Planet.
MOM was launched on Nov. 5, 2013 from India’s spaceport at the Satish Dhawan Space Centre, Sriharikota, atop the nations indigenous four stage Polar Satellite Launch Vehicle (PSLV) which placed the probe into its initial Earth parking orbit.
The $73 million MOM mission was expected to last at least six months. In March, ISRO extended the mission duration for another six months since its healthy, the five science instruments are operating fine and it has sufficient fuel reserves.
And with a communications blackout between Mars and Earth imminent as a result of natures solar conjunction, it’s the perfect time to catch up on all things Martian.
Solar conjunctions occur periodically between Mars and Earth about every 26 months, when the two planets line up basically in a straight line geometry with the sun in between as the two planets travel in their sun-centered orbits.
Since Mars will be located behind the Sun for most of June, communications with all the Terran spacecraft at the planet is diminished to nonexistent.
“MOM faces a communication outage during June 8-25,” according to The Hindu.
Normal science operations resume thereafter.
“Fuel on the spacecraft is not an issue,” ISRO Satellite Centre Director M. Annadurai told The Hindu.
Including MOM, Earth’s invasion fleet at the Red Planet numbers a total of seven spacecraft comprising five orbiters from NASA, ESA and ISRO as well as the sister pair of mobile surface rovers from NASA – Curiosity and Opportunity.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
What fate awaits Phobos, one of the moons of Mars?
“All these worlds are yours except Europa, attempt no landing there.”
As much as I love Arthur C. Clarke and his books, I’ve got to disagree with his judgement on which moons we should be avoiding. Europa is awesome. It’s probably got a vast liquid ocean underneath its icy surface. There might even be life swimming down there, ready to be discovered. Giant freaky Europa whales or some kind of alien sharknado. Oh man, I just had the BEST idea for a movie.
So yea, Europa’s fine. The place we should really be avoiding is the Martian Moon Phobos. Why? What’s wrong with Phobos? Have I become some kind of Phobo…phobe? Is there any good reason to avoid this place?
Well first, its name tells us all we need to know. Phobos is named for the Greek god of Horror, and I don’t mean like the usual gods of horror as in Clive Barker, John Carpenter or Wes Craven, I mean that Phobos is the actual personification of Fear… possibly with a freaky lion’s head. And… there’s also the fact that Phobos is doomed.
Literally doomed. Living on borrowed time. Its days are numbered. It’s been poisoned and there’s no antidote. It’s got metal shards in its heart and the battery on it’s electro-magnet is starting to brown out. More specifically, in a few million years, the asteroid-like rock is going to get torn apart by the Martian gravity and then get smashed onto the planet.
It all comes down to tidal forces. Our Moon takes about 27 days to complete an orbit, and our planet takes around 24 hours to complete one rotation on its axis. Our Moon is pulling unevenly on the Earth and slowing its rotation down.
To compensate, the Moon is slowly drifting away from us. We did a whole episode about this which we’ll link at the end of the episode. On Mars, Phobos only takes 8 hours to complete an orbit around the planet. While the planet takes almost 25 hours to complete one rotation on its axis. So Phobos travels three times around the planet for every Martian day. And this is a problem.
It’s actually speeding up Mars’ rotation. And in exchange, it’s getting closer and closer to Mars with every orbit. The current deadpool gives the best odds on Phobos taking 30 to 50 million years to finally crash into the planet. The orbit will get lower and lower until it reaches a level known as the Roche Limit. This is the point where the tidal forces between the near and far sides of the moon are so different that it gets torn apart. Then Mars will have a bunch of teeny moons from the former Phobos.
And then good news! Those adorable moonlets will get further pulverized until Mars has a ring. But then bad news… that ring will crash onto the planet in a cascade of destruction to be described as “the least fun balloon drop of all time”. So, you probably wouldn’t want to live on Mars then either.
Count yourself lucky. What were the chances that we would exist in the Solar System at a time that Phobos was a thing, and not a string of impacts on the surface of Mars.
Enjoy Phobos while you can, but remember that real estate there is temporary. Might I suggest somewhere in the alien sharknado infested waters of Europa instead?
What do you think. Did Arthur C Clarke have it wrong? Should we explore Europa?
And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!
NASA’s Curiosity Rover spends most of its time staring at the ground, but like humans, it looks up once in a while too. As reported earlier, NASA ground controllers pointed the rover’s Mast Camera (mastcam) skyward to shoot a series of photos of Comet Siding Spring when it passed closest to the Red Planet on October 19th. Until recently, noise-speckled pictures available on the raw image site confounded interpretation. Was the comet there or wasn’t it? In these recently released versions, the fuzzy intruder is plain to see, tracking from right to left across the field of view.
Ten exposures of 25 seconds each were taken between 4:33 p.m. and 5:54 p.m. CDT on October 19th to create the animation. The few specks you see are electronic noise, but the sharp, bright streaks are stars that trailed during the time exposure. Curiosity’s Mastcam camera system has dual lenses – a 100mm f/10 lens with a 5.1° square field of view and a 34mm, f/8 lens with a 15° square field of view. NASA didn’t include the information about which camera was used to make the photos, but if I had to guess, the faster, wide-angle view would be my choice. Siding Spring was moving relatively quickly across the Martian sky at closest approach.
Prowling through the Curiosity raw image files, I came across this photo of the Sun on November 10th. Three dark spots at the left are immediately obvious and a dead-ringer for Active Region 2192, now re-named 2209 as it rounds the Sun for Act II. You’ll recall this was the sunspot group that nearly stole the show during the October 23rd partial solar eclipse. From Mars’ perspective, which currently allows Curiosity to see further around the solar “backside”, AR 2209 showed up a few days before it was visible from Earth.
Although it’s slimmed down in size, the region is still large enough to view with the naked eye through a safe solar filter. More importantly, it possesses a complex beta-gamma-delta magnetic field where magnetic north and south poles are in close proximity and ripe for reconnection and production of M-class and X-class flares. Already, the region’s crackled with three moderate M-class flares over the past two days. In no mood to take a back seat, AR 2209 continues to dominate solar activity even during round two.
Mars possesses two small moons, Deimos and Phobos. Curiosity has photographed them both before including an occultation Deimos (9 miles/15 km) by the larger Phobos (13.5 miles/22 km). Phobos orbits closer to Mars than any other moon does to its primary in the Solar System, just 3,700 miles (6,000 km). As a result, it moves too fast for Mars’ rotation to overtake it the way Earth’s rotation overtakes the slower-moving Moon, causing it to set in the west overnight. Contrarian Phobos rises in the western sky and sets in the east just 4 hours 15 minutes later. When nearest the horizon and farthest from an observer, it’s apparent size is just 0.14º. At the zenith it grows to 0.20º of 1/3 the diameter of the Moon.
One longish observing session on the planet would cover a complete rise-set cycle during which Phobos would first appear as a crescent and finish up a full moon a few hours later. All this talk about Phobos is only meant to direct you to the picture above taken by Curiosity on October 20, 2014 when the moon was a thick crescent. As on Earth, where Earthshine fills out the remainder of the crescent Moon, so too does Mars-shine provide enough illumination to see the full outline of Phobos.
Curiosity has also photographed Earth, sunsets and transits of Phobos across the Sun while rambling across the dusty red landscape since August 2012. Before we depart, it seems only fair to aim our gaze Mars-ward again to see what’s up. Or down. The rover’s been doing a geological “Walkabout” in the Pahrump Hills outcrop at the base of Mt. Sharp in Gale Crater since September. Earlier this fall it drilled and sampled rock there containing more hematite than at any of its previous stops. Hematite is an iron oxide that’s often associated with water.
The mission may spend weeks or months at the outcrop looking for and drilling new target rocks before moving further up the geological layer cake better known as Mt. Sharp.
Ask any space enthusiast, and almost anyone will say humankind’s ultimate destination is Mars. But NASA is currently gearing up to go to an asteroid. While the space agency says its Asteroid Initiative will help in the eventual goal of putting people on Mars, what if instead of going to an asteroid, we went to Mars’ moon Phobos?
Three prominent planetary scientists have joined forces in a new paper in the journal Planetary and Space Science to explain the case for a mission to the moons of Mars, particularly Phobos.
“Phobos occupies a unique position physically, scientifically, and programmatically on the road to exploration of the solar system,” say the scientists. In addition, the moons may possibly be a source of in situ resources that could support future human exploration in circum-Mars space or on the Martian surface. But a sample return mission first could provide details on the moons’ origins and makeup.
The Martian moons are riddles, wrapped in a mystery, inside an enigma.Phobos and its sibling Deimos seem like just two asteroids which were captured by the planet Mars, and they remain the last objects of the inner solar system not yet studied with a dedicated mission. But should the moons be explored with flybys or sample-return? Should we consider “boots or bots”?
The publications and mission concepts for Phobos and Deimos are numerous and go back decades. The authors of “The Value of a Phobos Sample Return,” Murchie, Britt, and Pieters, explore the full breadth of questions of why and how to explore Phobos and Deimos.
Dr. Murchie is the principal investigator of the Mars Reconnaissance Orbiter’s CRISM instrument, a visible/infrared imaging spectrometer. He is a planetary scientist from John Hopkins’ Applied Physics Lab (APL) which has been at the forefront of efforts to develop a Phobos mission. Likewise, authors Dr. Britt, from the University of Central Florida, and Dr. Pieters, from Brown University, have partnered with APL and JPL in Phobos/Deimos mission proposals.
APL scientists are not the only ones interested in Phobos or Deimos. The Jet Propulsion Laboratory, Ames Research Center and the SETI Institute have also proposed several missions to the small moons. Every NASA center has been involved at some level.
But the only mission to actually get off the ground is the Russian Space Agency’s Phobos-GRUNT[ref]. The Russian mission was launched November 9, 2011, and two months later took a bath in the Pacific Ocean. The propulsion system failed to execute the burns necessary to escape the Earth’s gravity and instead, its orbit decayed despite weeks of attempts to activate the spacecraft. But that’s a whole other story.
“The Value of a Phobos Sample Return” first discusses the origins of the moons of Mars. There is no certainty. There is a strong consensus that Earth’s Moon was born from the collision of a Mars-sized object with Earth not long after Earth’s formation. This is just one possibility for the Martian moons. Murchie explains that the impacts that created the large basins and craters on Mars could have spawned Phobos and Deimos: ejecta that achieved orbit, formed a ring and then coalesced into the small bodies. Alternative theories claim that the moons were captured by Mars from either the inner or outer solar system. Or they could have co-accreted with Mars from the Solar Nebula. Murchie and the co-authors describe the difficulties and implications of each scenario. For example, if captured by Mars, then it is difficult to explain how their orbits came to be “near-circular and near-equatorial with synchronous rotational periods.”
To answer the question of origins, the paper turns to the questions of their nature. Murchie explains that the limited compositional knowledge leaves several possibilities for their origins. They seem like D-type asteroids of the outer asteroid belt. However, the moons of Mars are very dry, void of water, at least on their surfaces as the paper discusses in detail. The flybys of Phobos and Deimos by NASA and ESA spacecraft are simply insufficient for drawing any clear picture of their composition or structure, let alone their origins, Murchie and co-authors explain.
If the moons were captured then they have compositions different from Mars; however if they accreted with or from Mars, then they share similar compositions with the early Mars when forming, or from Martian crustal material, respectively.
The paper describes in some detail the problem that billions of years of Martian dust accumulation presents. Every time Mars has been hit by a large asteroid, a cloud of debris is launched into space. Some falls back to the planet but much ends up in orbit. Each time, some of the debris collided with Phobos and Deimos; Murchie uses the term “Witness plate” to describe what the two moons are to Mars. There is an accumulation of Martian material and also material from the impactors covering the surfaces of the moons. Flyby images of Phobos show a reddish surface similar to Mars, and numerous tracks along the surface as if passing objects struck, plowed or rolled along. However, the reddish hue could be weathering from Solar flux over billions of years.
The paper continues with questions of the composition and how rendezvous missions could go further to understanding the moons makeup and origins, however, it is sample return that would deliver, the pay dirt. Despite how well NASA and ESA engineers have worked to shrink and lighten the instruments that fly, orbit, and land on Mars, returning a sample of Phobos to labs on Earth would permit far more detailed analysis.
Science Fiction writers and mission designers have imagined Phobos, in particular, as a starting point for the human exploration and colonization of Mars. A notable contemporary work is “Red Mars” by Kim Stanley Robinson; however, the story line is dated due to the retirement of the Space Shuttle and the external tanks Robinson clustered to form the colonization vessel. While this paper by Murchie et al. is purely scientific, fiction writers have used the understanding that Phobos is far easier to reach from Earth than is the surface of Mars (see Delta-V chart below).
Phobos, orbiting at 9,400 kilometers (5,840 miles), and Deimos, at 23,500 km (14,600 miles), above Mars avoids the need for the 7-odd minutes of EDL terror – Entry, Descent, and Landing — and pulling oneself out of the Martian gravity well to return to Earth. Furthermore, there is the interest in using Phobos as a material resource – water, material for rocket fuel or building materials. “The Value of a Phobos Sample Return” discusses the potential of Phobos as a resource for space travelers – “In Situ Resource Utilization” (ISRU), in the context of its composition, how the solar flux may have purged the moons of water or how Martian impact debris covers materials of greater interest and value to explorers.
With so many questions and interests, what missions have been proposed and explored? The Murchie paper describes a half dozen missions but there are several others that have been conceived and proposed to some level over several decades.
At present, there is at least one mission actively pursuing funds. The SETI and Ames proposed “Phobos and Deimos & Mars Environment” (PADME) mission led by Dr. Pascal Lee is competing for Discovery program funding. Such projects must limit cost to $425 million or less and be capable of launching in less than 3 years. They are proposing a launch date of 2018 on a SpaceX Falcon 9. The PADME mission design would reuse Ames LADEE hardware and expertise, however, it does not go so far as what Murchie and co-authors argue – returning a sample from Phobos. PADME would maintain in a synchronized orbit with Phobos and then Deimos foe repeated flybys. The mission is likely to cost in the range of $300 million. Stardust, a relevant mission due to its sample return capsule, launched in 1999 and had costs which likely reached a similar level by end of mission in 2012.
The Russian Space Agency is attempting to gain funding for Phobos-Grunt 2 but possible launch dates continue to be moved back – 2020, 2022, and now possibly 2024.
Additionally, each of this papers’ authors has mission proposals described. Dr. Pieters, JPL, and Lockheed-Martin proposed the Aladdin mission; Dr. Britt at APL, also with Lockheed-Martin, proposed the mission Gulliver; both would re-use the Stardust sample-return capsule (photo, above). Dr. Murchie also describes his APL/JPL mission concept called MERLIN (Mars–Moon Exploration, Reconnaissance and Landed Investigation).
Phobos and Deimos are the last two of what one would call major objects of the inner Solar System that have not had dedicated missions of exploration. Several bodies of the Asteroid Belt have been targeted with flybys and Dawn is nearing its second target, the largest of the Asteroids, Ceres.
So sooner rather than later, a spacecraft from some nation (not necessarily the United States) will target the moons of Mars. Targeted Phobos/Deimos missions are also likely to include both flyby missions and one or more sample-return missions. A US-led mission with sample-return in the Discovery program will be strained to meet both criteria – $425 million cost cap and 3 year development period.
Those utilizing the Lockheed-Martin (LM) Stardust design have a proven return capsule and spacecraft buses (structure, mechanisms and avionics) for re-use for cost and time savings. This includes five generations of the LM flight software that holds an incredible legacy of mission successes starting with Mars Odyssey/Genesis/Spitzer to now Maven.
All three proposals by this paper’s authors could be re-vamped and proposed again and compete against each other. All three could use Lockheed-Martin past designs. Cooperation in writing this paper may be an indicator that they will join forces, combine concepts, and share investigator positions on a single NASA-led project. The struggle for federal dollars remains a tough, tight battle and with the human spaceflight program struggling to gain a new footing after Space Shuttle, dollars for inter-planetary missions are likely to remain very competitive. However, it appears a Phobos-Deimos mission is likely within the next ten years.
A moon rocket thundering from a pad in Florida. Two moons discovered around Mars. Space tourism. These are all things that are part of history today — and which were also predicted in literature years or decades before the event actually happened.
This fun infographic (embedded below) shows a series of fiction books that were curiously prescient about our future, ranging from From The Earth to the Moon to 2001: A Space Odyssey. Submarines, rocket ships and other pieces of technology were all imagined long before they were reality, so what inspired these authors?
“Many writers of the past have predicted the facts of our present society with a level of detail that seems impossibly accurate,” wrote Printerinks, a print and toner shop that produced the graphic.
“Some of them were even derided in their times for what were called outlandish and unbelievable fictions. Yet their imaginations were in reality painting portraits that would eventually be mirrored by history books a century later. Which seems to beg the question, Where does inspiration come from? So to decide for yourself whether these writers were seers or just plain lucky, explore our History of Books that Predicted the Future.”
You can click on the graphic for a larger version. Is it missing anything? Let us know in the comments.
NASA’s Curiosity Mars rover has caught the first image of asteroids taken from the surface of Mars on April 20, 2014. The image includes two asteroids, Ceres and Vesta. This version includes Mars’ moon Deimos in a circular, exposure-adjusted inset and square insets at left from other observations the same night. Credit: NASA/JPL-Caltech/MSSS/Texas A&M
More night sky views and surface mosaics below[/caption]
The Curiosity rover has captured the first images of asteroids even taken by a Human probe from the alien surface of the Red Planet during night sky imaging.
And it’s not just one asteroid, but two asteroids caught in the same night time pointing on the Red Planet. Namely, asteroids Ceres and Vesta.
The stupendous image – seen above – was snapped by Curiosity’s high resolution Mastcam camera earlier this week on Sunday, April 20, 2014, Sol 606, whilst she was scanning about during daylight for her next drilling target at “The Kimberley” waypoint she pulled into at the start of this month.
Ceres and Vesta appear as streaks since the Mastcam image was taken as a 12 second time exposure.
“This imaging was part of an experiment checking the opacity of the atmosphere at night in Curiosity’s location on Mars, where water-ice clouds and hazes develop during this season,” said camera team member Mark Lemmon of Texas A&M University, College Station, in a statement.
“The two Martian moons were the main targets that night, but we chose a time when one of the moons was near Ceres and Vesta in the sky.”
View our “Kimberley” region photo mosiacs below to see exactly from where the six wheeled robot took the asteroid image shown above, while driving around the base of “Mount Remarkable”.
And those two asteroids are extra special because not only are they the two most massive objects in the Main asteroid belt between Mars and Jupiter, but they are also the destinations of another superlative NASA unmanned mission – Dawn.
The exotic Dawn probe, propelled by a stream of ions, orbited Vesta for a year in 2011 and is now approaching Ceres for an exciting orbital mission in 2015.
Ceres, the largest asteroid, is about 590 miles (950 kilometers) in diameter. Vesta is the third-largest object in the main belt and measures about 350 miles (563 kilometers) wide.
And as if Curiosity’s mouthwatering and heavenly double asteroid gaze wasn’t already spectacular enough, the tinier of Mars’ moons, Deimos, was also caught in that same image.
A trio of star trails is also seen, again due to the 12 second time exposure time.
Furthermore, Mars largest moon Phobos as well as massive planets Jupiter and Saturn were also visible that same Martian evening, albeit in a different pointing.
These celestial objects are all combined in the composite image above.
“The background is detector noise, limiting what we can see to magnitude 6 or 7, much like normal human eyesight. The two asteroids and three stars would be visible to someone of normal eyesight standing on Mars. Specks are effects of cosmic rays striking the camera’s light detector,” says NASA.
An unannotated image is seen below.
Curiosity’s makers back on Earth are nowhere to be seen. But check out the Curiosity’s earlier photo below of the Earth and Moon from my prior article – here.
To date, Curiosity’s odometer totals 3.8 miles (6.1 kilometers) since landing inside Gale Crater on Mars in August 2012. She has taken over 143,000 images.
The sedimentary foothills of Mount Sharp, which reaches 3.4 miles (5.5 km) into the Martian sky, is the 1 ton robots ultimate destination inside Gale Crater because it holds caches of water altered minerals. Such minerals could possibly indicate locations that sustained potential Martian life forms, past or present, if they ever existed.
Curiosity has some 4 kilometers to go to reach the base of Mount Sharp sometime later this year.
Stay tuned here for Ken’s continuing Curiosity, Opportunity, Chang’e-3, SpaceX, Orbital Sciences, LADEE, MAVEN, MOM, Mars and more planetary and human spaceflight news.
There won’t be any pictures out of this close encounter, but the animations sure were spectacular. The European Space Agency’s Mars Express spacecraft skimmed just 45 kilometers (28 miles) above the surface of the moon Phobos yesterday, and through these various videos you can see what the orbital trajectory would have looked like during that time.
“The flyby on 29 December will be so close and fast that Mars Express will not be able to take any images, but instead it will yield the most accurate details yet of the moon’s gravitational field and, in turn, provide new details of its internal structure,” ESA wrote in a press release last week.
“As the spacecraft passes close to Phobos, it will be pulled slightly off course by the moon’s gravity, changing the spacecraft’s velocity by no more than a few centimetres per second. These small deviations will be reflected in the spacecraft’s radio signals as they are beamed back to Earth, and scientists can then translate them into measurements of the mass and density structure inside the moon.”
The goal is to learn more about the structure of Phobos with the aim of figuring out where the moon came from. There are competing theories about the origin of Phobos and the other Martian moon, Deimos. Perhaps they were captured asteroids, or perhaps they were made up of debris made up from huge collisions from the Martian surface.
“Earlier flybys, including the previous closest approach of 67 km in March 2010, have already suggested that the moon could be between a quarter and a third empty space – essentially a rubble pile with large spaces between the rocky blocks that make up the moon’s interior,” ESA added.