As we began to discover hundreds, then thousands of exoplanets, we found that there were two types of worlds unlike anything in our solar system. The first are super-Earths. These worlds straddle the line between large rocky worlds like Earth and small gas planets like Neptune. The second are hot Jupiters. Large gas giants that orbit their star in a matter of days. While there may be a super-Earth lurking at the outer edge of our solar system, we know our Sun has no hot Jupiters. This is a little surprising since close-orbiting gas giants seem to be fairly common. But a new study could explain why our solar system has no planet Vulcan.
Continue reading “Old Stars Don't Have Hot Jupiters”If Jupiter's Orbit got Weirder, it Would Actually Make Earth More Habitable
Earth is not just habitable, it’s unusually habitable. It’s rather wet for a planet so close to its Sun, it’s geologically active, and it has a stable orbit, all of which are necessary for life as we know it. But there are also secondary advantages, such as not being constantly bombarded by large asteroids, and having a rotational axis that is fairly stable. This is due in part thanks to the planet Jupiter. The giant planet has helped clear the solar system of asteroid debris and may have helped stabilize the orbits of the inner planets. So life is good. But a new study shows that if Jupiter had a different orbit, life could be even better.
Continue reading “If Jupiter's Orbit got Weirder, it Would Actually Make Earth More Habitable”Mini-Neptunes can Lose gas and Turn Into Super-Earths
Can one type of planet become another? Can a mini-Neptune lose its atmosphere and become a super-Earth? Astronomers have found two examples of mini-Neptunes transitioning to super-Earths, and the discovery might help explain a noted “gap” in the size distribution of exoplanets.
Continue reading “Mini-Neptunes can Lose gas and Turn Into Super-Earths”Exoplanetary System Found With 6 Worlds in Orbital Resonance
200 light-years away from Earth, there’s a K-type main-sequence star named TOI (TESS Object of Interest) 178. When Adrian Leleu, an astrophysicist at the Center for Space and Habitability of the University of Bern, observed it, it appeared to have two planets orbiting it at roughly the same distance. But that turned out to be incorrect. In fact, six exoplanets orbit the smallish star.
And five of those six are locked into an unexpected orbital configuration.
Continue reading “Exoplanetary System Found With 6 Worlds in Orbital Resonance”