White Dwarfs are Often Polluted With Heavier Elements. Now We Know Why

In this artist's illustration, lumps of debris from a disrupted planetesimal are irregularly spaced on a long and eccentric orbit around a white dwarf. Credit: Dr Mark Garlick/The University of Warwick

When stars exhaust their hydrogen fuel at the end of their main sequence phase, they undergo core collapse and shed their outer layers in a supernova. Whereas particularly massive stars will collapse and become black holes, stars comparable to our Sun become stellar remnants known as “white dwarfs.” These “dead stars” are extremely compact and dense, having mass comparable to a star but concentrated in a volume about the size of a planet. Despite being prevalent in our galaxy, the chemical makeup of these stellar remnants has puzzled astronomers for years.

For instance, white dwarfs consume nearby objects like comets and planetesimals, causing them to become “polluted” by trace metals and other elements. While this process is not yet well understood, it could be the key to unraveling the metal content and composition (aka. metallicity) of white dwarf stars, potentially leading to discoveries about their dynamics. In a recent paper, a team from the University of Colorado Boulder theorized that the reason white dwarf stars consume neighboring planetesimals could have to do with their formation.

Continue reading “White Dwarfs are Often Polluted With Heavier Elements. Now We Know Why”

What Happens to Solar Systems When Stars Become White Dwarfs?

In this artist's illustration, lumps of debris from a disrupted planetesimal are irregularly spaced on a long and eccentric orbit around a white dwarf. Credit: Dr Mark Garlick/The University of Warwick

In a couple billion years, our Sun will be unrecognizable. It will swell up and become a red giant, then shrink again and become a white dwarf. The inner planets aren’t expected to survive all the mayhem these transitions unleash, but what will happen to them? What will happen to the outer planets?

Continue reading “What Happens to Solar Systems When Stars Become White Dwarfs?”

The Meteorites That Made Earth Were Filled With Water

Water's Early Journey in a Solar System
Somehow, life originated on Earth. Even without knowing everything about how that happened, can we learn how likely it is to happen elsewhere? Image Credit: NASA/JPL-Caltech

According to the most widely accepted scientific theory, our Solar System formed from a nebula of dust and gas roughly 4.56 billion years ago (aka. Nebula Theory). It began when the nebula experienced gravitational collapse at the center, fusing material under tremendous pressure to create the Sun. Over time, the remaining material fell into an extended disk around the Sun, gradually accreting to form planetesimals that grew larger with time. These planetesimals eventually experienced hydrostatic equilibrium, collapsing into spherical bodies to create Earth and its companions.

Based on modern observations and simulations, researchers have been trying to understand what conditions were like when these planetesimals formed. In a new study, geologists from the California Institute of Technology (Caltech) combined meteorite data with thermodynamic modeling to better understand what went into these bodies from which Earth and the other inner planets formed. According to their results, the earliest planetesimals have formed in the presence of water, which is inconsistent with current astrophysical models of the early Solar System.

Continue reading “The Meteorites That Made Earth Were Filled With Water”

Planetesimals Are Buffeted by Wind in their Nebula, Throwing Debris into Space

This artist's illustration shows planetisimals around a young star. New research shows that planetesimals are blasted by headwind, losing debris into space. Image Credit: NASA/JPL

Before planets form around a young star, the protosolar disk is populated with innumerable planetesimals. Over time, these planetesimals combine to form planets, and the core accretion theory explains how that happens. But before there are planets, the disk full of planetesimals is a messy place.

Continue reading “Planetesimals Are Buffeted by Wind in their Nebula, Throwing Debris into Space”

Arrokoth is Covered in Bizarre Mounds

The large mound structures that dominate one of the lobes of the Kuiper belt object Arrokoth are similar enough to suggest a common origin. Credit: Southwest Research Institute.

When New Horizons flew past Arrokoth in 2019, it revealed close-up images of this enigmatic Kuiper Belt Object for the first time. Astronomers are still studying all the data sent home by the spacecraft, trying to understand this two-lobed object, which looks like a red, flattened snowman.

Scientists have now identified 12 mounds on Arrokoth’s larger lobe, which are roughly the same size – about 5-kilometers long – as well as the same shape, color, and reflectivity. The scientists think their similar look is because they all formed the same way, where icy material slowly accumulated on the surface of Arrokoth.

Continue reading “Arrokoth is Covered in Bizarre Mounds”

Earth’s Water is 4.5 Billion Years Old

A protosolar disk is the disk of material around a young stellar object that isn't yet a star. It's called a protoplanetary disk once the star has formed and begun fusion. Planetesimals are the building blocks of planets and are present in both stages of a disk's evolution. Image Credit: NASA/JPL

The origin of Earth’s water has been an enduring mystery. There are different hypotheses and theories explaining how the water got here, and lots of evidence supporting them.

But water is ubiquitous in protoplanetary disks, and water’s origin may not be so mysterious after all.

Continue reading “Earth’s Water is 4.5 Billion Years Old”

Asteroids Didn’t Create the Moon’s Largest Craters. Left-Over Planetesimals Did

The largest impact basin on the Moon is the South-Pole Aitken basin. It, and other impact basins, were created by planetesimals according to a new study. Image Credit: Moriarty et al., 2021.

The Moon’s pock-marked surface tells the story of its history. It’s marked by over 9,000 impact craters, according to the International Astronomical Union (IAU.) The largest ones are called impact basins, not craters. According to a new study, asteroids didn’t create the basins; leftover planetesimals did.

Continue reading “Asteroids Didn’t Create the Moon’s Largest Craters. Left-Over Planetesimals Did”

A Group of Meteorites All Came From a Destroyed Planetesimal With a Magnetic Core

Samples from a rare meteorite family, including the one shown here, reveal that their parent planetesimal, formed in the earliest stages of the solar system, was a complex, layered object, with a molten core and solid crust similar to Earth. Photo credit: Carl Agee, Institute of Meteoritics, University of New Mexico. Background edited by MIT News.

Before our Solar System had planets, it had planetesimals. Scientists think that most of the meteorites that have struck Earth are fragments of these planetesimals. Scientists also think that these planetesimals either melted completely, very early in their history, or that they remained as little more than collections of rocks, or “rubble piles.”

But one family of meteorites, that have been found spread around the world, appear to come from a planetesimal that bucked that trend.

Continue reading “A Group of Meteorites All Came From a Destroyed Planetesimal With a Magnetic Core”

Interstellar Asteroid ‘Oumuamua Had a Violent Past

Artist’s impression of the first interstellar asteroid/comet, "Oumuamua". This unique object was discovered on 19 October 2017 by the Pan-STARRS 1 telescope in Hawaii. Credit: ESO/M. Kornmesser

On October 19th, 2017, the Panoramic Survey Telescope and Rapid Response System-1 (Pan-STARRS-1) telescope in Hawaii announced the first-ever detection of an interstellar asteroid – I/2017 U1 (aka. ‘Oumuamua). Originally mistaken for a comet, follow-up observations conducted by the European Southern Observatory (ESO) and others confirmed that ‘Oumuamua was actually a rocky body that had originated outside of our Solar System.

Since that time, multiple investigations have been conducted to determine ‘Oumuamua’s structure, composition, and just how common such visitors are. At the same time, a considerable amount of attention has been dedicated to determining the asteroid’s origins. According to a new study by a team of international researchers, this asteroid had a chaotic past that causes it to tumble around chaotically.

The study, titled “The tumbling rotational state of 1I/‘Oumuamua“, recently appeared in the scientific journal Nature Astronomy. The study was led by Wesley C. Fraser, a research fellow at the University of Queens Belfast’s Astrophysics Research Center, and included members from the Academy of Sciences of the Czech Republic, the The Open University and the University of Belgrade.

As they indicate, the discovery of ‘Oumuamua has provided scientists with the first opportunity to study a planetesimal born in another planetary system. In much the same way that research into Near-Earth Asteroids, Main Belt Asteroids, or Jupiter’s Trojans can teach astronomers about the history and evolution of our Solar System, the study of a ‘Oumuamua would provide hints as to what was going on when and where it formed.

For the sake of their study, Dr. Fraser and his international team of colleagues have been measuring ‘Oumuamua brightness since it was first discovered. What they found was that ‘Oumuamua wasn’t spinning periodically (like most small asteroids and planetesimals in our Solar System), but chaotically. What this means is that the asteroid has likely been tumbling through space for billions of years, an indication of a violent past.

While it is unclear why this is, Dr. Fraser and his colleagues suspect that it might be due to an impact. In other words, when ‘Oumuamua was thrown from its own system and into interstellar space, it is possible it collided violently with another rock. As Dr. Fraser explained in a Queen’s University Belfast press release:

“Our modelling of this body suggests the tumbling will last for many billions of years to hundreds of billions of years before internal stresses cause it to rotate normally again. While we don’t know the cause of the tumbling, we predict that it was most likely sent tumbling by an impact with another planetesimal in its system, before it was ejected into interstellar space.”

These latest findings mirror what other studies have been able to determine about ‘Oumuamua based on its object changes in its brightness. For example, brightness measurements conducted by the Institute for Astronomy in Hawaii – and using data from the ESO’s Very Large Telescope (VLT) – confirmed that the asteroid was indeed interstellar in origin, and that its shape is highly elongated (i.e. very long and thin).

However, measurements of its color have produced little up until now other than confusion. This was due to the fact that the color appeared to vary between measurements. When the long face of the object is facing telescopes on Earth, it appears largely red, while the rest of the body has appeared neutral in color (like dirty snow). Based on their analysis, Dr. Fraser and his team resolved this mystery by indicating that the surface is “spotty”.

In essence, most of the surface reflects neutrally, but one of its long faces has a large red region – indicating the presence of tholins on its long surface. A common feature of bodies in the outer Solar System, tholins are organic compounds (i.e. methane and ethane) that have turned a deep shade of reddish-brown thanks to their exposure to ultra-violet radiation.

What this indicates, according to Dr. Fraser, is broad compositional variations on ‘Oumuamua, which is unusual for such a small body:

“We now know that beyond its unusual elongated shape, this space cucumber had origins around another star, has had a violent past, and tumbles chaotically because of it. Our results are really helping to paint a more complete picture of this strange interstellar interloper. It is quite unusual compared to most asteroids and comets we see in our own solar system,” comments Dr Fraser.

Oumuamua as it appeared using the William Herschel Telescope on the night of October 29. Queen’s University Belfast/William Herschel Telescope

To break it down succinctly, ‘Oumuamua may have originated closer to its parent star (hence its rocky composition) and was booted out by strong resonances. In the course of leaving its system, it collided with another asteroid, which sent it tumbling towards interstellar space. It’s current chaotic spin and its unusual color are both testaments to this turbulent past, and indicate that its home system and the Solar System have a few things in common.

Since its arrival in our system, ‘Oumuamua has set off a flurry of scientific research. All over the world, astronomers are hoping to get a glimpse of it before it leaves our Solar System, and there are even those who hope to mount a robotic mission to rendezvous with it before its beyond our reach (Project Lyra). In any event, we can expect that this interstellar visitor will be the basis of scientific revelations for years to come!

This study is the third to be published by their team, which has been monitoring ‘Oumuamua since it was first observed in October. All studies were conducted with support provided by the Science and Technology Facilities Council.

Further Reading: Queen’s University Belfast

Finally, the Missing Link in Planetary Formation!

This artist's illustration shows planetisimals around a young star. New research shows that planetesimals are blasted by headwind, losing debris into space. Image Credit: NASA/JPL

The theory of how planets form has been something of an enduring mystery for scientists. While astronomers have a pretty good understanding of where planetary systems comes from – i.e. protoplanetary disks of dust and gas around new stars (aka. “Nebular Theory“) – a complete understanding of how these discs eventually become objects large enough to collapse under their own gravity has remained elusive.

But thanks to a new study by a team of researchers from France, Australia and the UK, it seems that the missing piece of the puzzle may finally have been found. Using a series of simulations, these researchers have shown how “dust traps” – i.e. regions where pebble-sized fragments could collect and stick together – are common enough to allow for the formation of planetesimals.

Their study, titled “Self-Induced Dust Traps: Overcoming Planet Formation Barriers“, appeared recently in the Monthly Notices of the Royal Astronomical Society. Led by Dr. Jean-Francois Gonzalez – of the Lyon Astrophysics Research Center (CRAL) in France – the team examined the troublesome middle-stage of planetary formation that has plagued scientists.

An image of a protoplanetary disk, made using results from the new model, after the formation of a spontaneous dust trap, visible as a bright dust ring. Gas is depicted in blue and dust in red. Credit: Jean-Francois Gonzalez.

Until recently, the process by which protoplanetary disks of dust and gas aggregate to form peddle-sized objects, and the process by which planetesimals (objects that are one hundred meters or more in diameter) form planetary cores, have been well understood. But the process that bridges these two – where pebbles come together to form planetesimals – has remained unknown.

Part of the problem has been the fact that the Solar System, which has been our only frame of reference for centuries, formed billions of years ago. But thanks to recent discoveries (3453 confirmed exoplanets and counting), astronomers have had lots of opportunities to study other systems that are in various stages of formation. As Dr. Gonzalez explained in a Royal Astronomical Society press release:

“Until now we have struggled to explain how pebbles can come together to form planets, and yet we’ve now discovered huge numbers of planets in orbit around other stars. That set us thinking about how to solve this mystery.”

In the past, astronomers believed that “dust traps” – which are integral to planet formation – could only exist within certain environments. In these high-pressure regions, large grains of dust are slowed down to the point where they are able to come together. These regions are extremely important since they counteract the two main obstacles to planetary formation, which are drag and high-speed collisions.

Artist’s impression of the planets in our solar system, along with the Sun (at bottom). Credit: NASA

Drag is caused by the effect gas has on dust grains, which causes them to slow down and eventually drift into the central star (where they are consumed). As for high-speed collisions, this is what causes large pebbles to smash into each other and break apart, thus reversing the aggregation process. Dust traps are therefore needed to ensure that dust grains are slowed down just enough so that they won’t annihilate each other when they collide.

To see just how common these dust traps were, Dr. Gonzalez and his colleagues conducted a series of computer simulations that took into account how dust in a protoplanetary disk could exert drag on the gas component – a process known as “aerodynamic drag back-reaction”. Whereas gas typically has an arresting influence on dust particles, in particularly dusty rings, the opposite can be true.

This effect has been largely ignored by astronomers up until recently, since its generally quite negligible. But as the team noted, it is an important factor in protoplanetary disks, which are known for being incredibly dusty environments. In this scenario, the effect of back-reaction is to slow inward-moving dust grains and push gas outwards where it forms high-pressure regions – i.e. “dust traps”.

Once they accounted for these effects, their simulations showed how planets form in three basic stages. In the first stage, dust grains grow in size and move inwards towards the central star. In the second, the now pebble-sized larger grains accumulate and slow down. In the third and final stage, the gas is pushed outwards by the back-reaction, creating the dust trap regions where it accumulates.

Illustration showing the stages of the formation mechanism for dust traps. Credit: © Volker Schurbert.

These traps then allow the pebbles to aggregate to form planetesimals, and eventually planet-sized worlds. With this model, astronomers now have a solid idea of how planetary formation goes from dusty disks to planetesimals coming together. In addition to resolving a key question as to how the Solar System came to be, this sort of research could prove vital in the study of exoplanets.

Ground-based and space-based observatories have already noted the presence of dark and bright rings that are forming in protoplanetary disks around distant stars – which are believed to be dust traps. These systems could provide astronomers with a chance to test this new model, as they watch planets slowly come together. As Dr. Gonzalez indicated:

“We were thrilled to discover that, with the right ingredients in place, dust traps can form spontaneously, in a wide range of environments. This is a simple and robust solution to a long standing problem in planet formation.”

Further Reading: Royal Astronomical Society, MNRAS