Enjoy This Eye-Meltingly Awesome Photo of Our Sun

Photo of the Sun captured and processed by Alan Friedman. (All rights reserved.)

Here’s yet another glorious photo of our home star, captured and processed by New York artist and photographer Alan Friedman on August 24, 2014. Alan took the photo using his 90mm hydrogen-alpha telescope – aka “Little Big Man” –  from his backyard in Buffalo, inverted the resulting image and colorized it to create the beautiful image above. Fantastic!

Hydrogen is the most abundant element in our Sun. The “surface” of the Sun and the layer just above it — the photosphere and chromosphere — are regions where atomic hydrogen exists profusely in upper-state form, and it’s these layers that hydrogen alpha photography reveals in the most detail.

In Alan’s image from Aug. 24 several active sunspot regions can be seen, as well as long snaking filaments (which show up bright in this inverted view – in optical light they appear darker against the face of the Sun) and several prominences rising up along the Sun’s limb, one of which along the left side stretching completely off the frame a hundred thousand miles into space!

Click here to see the image above as well as some close-ups from the same day on Alan’s astrophotography website AvertedImagination.com. And you can learn more about how (and why) Alan makes such beautiful images of our home star here.

Photo © Alan Friedman. All rights reserved.

A Stunning Image of our Home Star

Sunspots and a detached prominence photographed on July 11, 2014. (© Alan Friedman, All Rights Reserved.)

Active regions 2108 and 2109 are now passing around the limb of the Sun, but not before solar photography specialist Alan Friedman grabbed a few pictures of them on Friday!   The image above, captured by Alan from his location in Buffalo, NY, shows the two large sunspots nestled in a forest of solar spicules while a large detached prominence hovers several Earth-diameters inside the corona. A beautiful snapshot of our home star!

Captured in hydrogen-alpha wavelengths, the image above has been colored by Alan, rotated 90 degrees counterclockwise, and inverted from the original. The sunspots and standing prominence are cooler in Ha than the surrounding chromosphere and corona, and so actually photograph darker.

A view of sunspot 2109 in visible light can be seen below:

AR2109 photographed by Alan Friedman on July 11, 2014.
AR2109 photographed by Alan Friedman on July 11, 2014.

Sunspots are the result of magnetic fields rising up from deep within the Sun, preventing convection from occurring in large areas on the Sun’s surface and thereby creating relatively cooler regions we see as dark spots. They can often be many times the size of Earth and can be sources of powerful solar flares.

See these and more images by Alan on his blog here.

Images © Alan Friedman. All rights reserved.

Watch the Rise and Fall of a Towering Inferno on the Sun

A solar prominence imaged on May 27, 2014. Earth and Moon are shown to scale at the bottom. (NASA/SDO)

Caught on camera by NASA’s Solar Dynamics Observatory, a prominence blazes hundreds of thousands of miles out from the Sun’s surface (i.e., photosphere) on May 27, 2014. The image above, seen in extreme ultraviolet wavelengths, shows a brief snapshot of the event with the column of solar plasma stretching nearly as far as the distance between Earth and the Moon.

Watch a video of the event below:

The video covers a span of about two hours.

Although it might look fiery in these images, a prominence isn’t flame — it’s powered by rising magnetic fields trapping and carrying the Sun’s superheated material up into the corona. And while this may not have been a unique or unusual event — or even particularly long-lived — it’s still an impressive reminder of the immense scale and energy of our home star!

Credit: NASA/SDO

Watch the Sun Split Apart

Canyon of Fire on the Sun, Credit: NASA/SDO/AIA)

Here’s your amazing oh-my-gosh-space-is-so-cool video of the day — a “canyon of fire” forming on the Sun after the liftoff and detachment of an enormous filament on September 29-30. A new video, created from images captured by the Solar Dynamics Observatory (SDO) and assembled by NASA’s Goddard Space Flight Center, shows the entire dramatic event unfolding in all its mesmerizing magnetic glory.

Watch it below:

Solarrific! (And I highly suggest full-screening it in HD.) That filament was 200,000 miles long, and the rift that formed afterwards was well over a dozen Earths wide!

Captured in various wavelengths of light by SDO’s Atmospheric Imaging Assembly (AIA) the video shows the solar schism in different layers of the Sun’s corona, which varies greatly in temperature at different altitudes.

According to the description from Karen Fox at GSFC:

“The red images shown in the movie help highlight plasma at temperatures of 90,000° F and are good for observing filaments as they form and erupt. The yellow images, showing temperatures at 1,000,000° F, are useful for observing material coursing along the sun’s magnetic field lines, seen in the movie as an arcade of loops across the area of the eruption. The browner images at the beginning of the movie show material at temperatures of 1,800,000° F, and it is here where the canyon of fire imagery is most obvious.”

Now, there’s not really any “fire” on the Sun — that’s just an illustrative term. What we’re actually seeing here is plasma contained by powerful magnetic fields that constantly twist and churn across the Sun’s surface and well up from its interior. The Sun is boiling with magnetic fields, and when particularly large ones erupt from deep below its surface we get the features we see as sunspots, filaments, and prominences.

When those fields break, the plasma they contained gets blasted out into space as coronal mass ejections… and this is what typically happens when one hits Earth. (But it could be much worse.)

Hey, that’s what it’s like living with a star!

Stay up to date on the latest solar events on the SDO mission page here.

A Branching “Tree” of Solar Plasma

Hydrogen-alpha photo of the Sun by Alan Friedman

An enormous tree-shaped prominence spreads its “branches” tens of thousands of miles above the Sun’s photosphere in this image, a section of a photo acquired in hydrogen alpha (Ha) by Alan Friedman last week from his backyard in Buffalo, NY.

Writes Alan on his blog, “gotta love a sunny day in November!”

Check out the full image — along with an idea of just how big this “tree” is — after the jump:

Taken through a special solar telescope and a Grasshopper CCD camera, Alan’s gorgeous solar photos show the Sun in a wavelength absorbed by atomic hydrogen — most present in the photosphere and chromosphere — thus revealing the complex and dynamic activity of the Sun’s “surface”.

Here’s the full image:

The dark circle at upper left (added by me) shows approximately the scale size of Earth (12,756 km, or about 7,926 miles diameter.) As you can see, that particular prominence is easily six times that in altitude, and spreads out many more times wider… and this isn’t even a particularly large prominence! As far as solar activity goes, this is a non-event. (Not like what was seen by SDO on Nov. 16!)

Regardless, it makes for an impressive backyard photo.

Check out more of Alan’s photos on his blog and on his website, AvertedImagination.com. Many of his photos, some of which have been shown at galleries across the U.S., are available as limited-edition prints. (Alan also runs a greeting card print studio.) I’ve found that he usually shares at least a couple of fantastic solar shots every month, if not more.

Image © Alan Friedman. All rights reserved. Used with permission.

 

STEREO Spots a CME Soaring Into Space

Press “play.” Say “wow.”

The enormous eruption of a solar prominence and resulting coronal mass ejection (CME) back on August 31 that was captured in amazing HD by NASA’s Solar Dynamics Observatory was also spotted by the Sun-flanking STEREO-B spacecraft, which observed the gigantic gout of solar material soaring away from the Sun.

This video shows the eruption as it passes across the fields of view of several of STEREO-B’s cameras over the course of 48 hours.

According to NASA’s Goddard Space Flight Center, “while CMEs are routinely seen in the Heliographic Imager (HI) telescopes, it’s very rare for prominences to stay visible for so long. The HI1 field of view ranges from 4 to 24 degrees away from the Sun. To get a sense of scale, we know the Sun is roughly 860,000 miles wide — and look how far the prominence holds together. And this CME is so bright it initially saturates the COR1 telescope.”

The bright spot in the red (COR2) field of view is the planet Venus.

Coronal mass ejections are huge bubbles of gas bounded by magnetic field lines that are ejected from the Sun over the course of several minutes — sometimes even hours. If they are directed toward Earth, the cloud of charged solar particles can interact with our magnetosphere and cause anything from increased auroral activity to radio interference to failure of sensitive electromagnetic equipment.

Particularly long filaments like the one that caused the August 31 CME have been known to collapse with explosive results when they hit the stellar surface.

The CME did not travel directly toward Earth but did connect with Earth’s magnetosphere with a glancing blow, causing bright aurorae to appear around the upper latitudes on the night of September 3.

Image: NASA/STEREO/GSFC

Super Moon? How About a Super Sun!

[/caption]

On May 5, 2012, while everyone else was waiting for the “Super Moon” astrophotographer Alan Friedman was out capturing this super image of a super Sun from his back yard in Buffalo, NY!

Taken with a specialized telescope that can image the Sun in hydrogen alpha light, Alan’s photo shows the intricate detail of our home star’s chromosphere — the layer just above its “surface”, or photosphere.

Prominences can be seen rising up from the Sun’s limb in several places, and long filaments — magnetically-suspended  lines of plasma — arch across its face. The “fuzzy” texture is caused by smaller features called spicules and fibrils, which are short-lived spikes of magnetic fields that rapidly rise up from the surface of the Sun.

On the left side it appears that a prominence may have had just detached from the Sun’s limb, as there’s a faint cloud of material suspended there.

Alan masterfully captures the Sun’s finer details in his images on a fairly regular basis… see more of his solar (and lunar, and… vintage headwear) photography on his blog site here.

Image © Alan Friedman. All rights reserved.

Twisting and Eclipsing on the Sun

A filament partially blocks SDO's view of erupting plasma on Dec. 9. (NASA/SDO)


A video posted today by the team at NASA’s Solar Dynamics Observatory shows two recent events on the Sun: a twisting prominence and the “eclipse” of a plasma eruption by the structure of a darker, cooler filament. Most impressive!

From the SDO team:

Over the past 24 hours we have seen some beautiful solar events. None of them have a direct impact on Earth, but they are astonishing to watch. It just shows how an active star our Sun really is… far from boring! 

On December 8, 2011 a twisting prominence eruption occurred on the lower eastern limb. The view through the AIA 304 angstrom filter shows us this beautiful eruption. 

A filament partially blocks SDO's view of erupting plasma on Dec. 9. (NASA/SDO)
In the early hours of December 9, 2011 SDO observed a little bit of a different eclipse. An erupting cloud of plasma was eclipsed by a dark magnetic filament. The eruption is still on the far side of the Sun, behind the eastern limb and is slowly moving forward and over the limb sometime next week. 

In front you can observe the filament of relatively cool dark material floating across the Sun’s surface in the foreground. That filament partially blocks the view of the hot plasma eruption behind it. 

Excellent footage of our constantly-active Sun! It’s easy to forget too that these events and structures are many, many times larger than our entire planet… the sheer power of a star is quite an impressive thing to see. Thanks to SDO we get an unblinking front-row seat to all the action!

See more from SDO on the mission site here.

Thanks to Camilla Corona SDO, the team’s mascot, official spokesbird and all-around “hot chick”!

Solar Explosions Spark Controversy

Solar Prominence

[/caption]

Nowhere in the Solar System are conditions more extreme than the Sun. Every second it converts millions of tons of matter into energy to create the intense levels of heat and light we expect of our local star. Study the Sun in different wavelengths and its violent nature can really become apparent. The STEREO satellite has been studying the Sun at a wavelength of 304Å and the results support a controversial solar theory.

Coronal Mass Ejections (or CMEs) are common on the Sun and they have a very real impact to us here on Earth. The solar explosions expel trillions of trillions of tons of super hot hydrogen gas into space, sometimes in the direction of the Earth. Traveling at speeds up to 2,000 kilometers per second it takes just a day for the magnetized gas to reach us and on arrival it can induce strong electric currents in the Earth’s atmosphere leading not only to the beautiful auroral displays but also to telecommunication outages, GPS system failures and even disturbances to power grids.

Solar flares, to use their other name, were first observed back in 1859 and since then, scientists have been studying them to try to understand the mechanism that causes the eruption. It has been known for some time that the magnetically charged gas or plasma is interacting with the magnetic field of the Sun but the detail has been at best, elusive.

In 2006, the international satellite STEREO was launched with the objective of continuously monitoring and studying the CMEs as they head toward the Earth and its data has helped scientists at the Naval Research Laboratory (NRL) in Washington, D.C., start to understand the phenomenon.

Using this new data, scientists at the NRL compared the observed activity with a controversial theory that was first proposed by Dr James Chen (also from the NRL) in 1989. His theory suggested that the erupting clouds of plasma are giant ‘magnetic flux ropes’, effectively a twisted up magnetic field line shaped like a donut. The Sun being a vast sphere of gas suffers from differential rotation where the polar regions of the Sun and the equatorial regions all rotate at different speeds. As a direct result of this, the plasma ‘drags’ the magnetic field lines around and the Sun and it gets more and more twisted up . Eventually, it bursts through the surface, taking some plasma with it giving us one of the most dramatic yet potentially destructive events in the Universe.

Dr Chen and a Valbona Kunkel, a doctorate student at George Mason University, applied Dr. Chen’s model to the new data from STEREO and found that the theory agrees with the measured trajectories of the ejected material. It therefore looks like his theory, whilst controversial may have been right all along.

Its strange to think that our nearest star, the Sun, still has secrets. Yet thanks to the work of Dr. Chen and his team, this one seems to have been unraveled and understanding the strange solar explosions will perhaps help us to minimise impact to Earth based technologies in years to come.

Mark Thompson is a writer and the astronomy presenter on the BBC One Show. See his website, The People’s Astronomer, and you can follow him on Twitter, @PeoplesAstro