Multimode Propulsion Could Revolutionize How We Launch Things to Space

An illustration of the Gateway’s Power and Propulsion Element and Habitation and Logistics Outpost in orbit around the Moon. Credits: NASA

In a few years, as part of the Artemis Program, NASA will send the “first woman and first person of color” to the lunar surface. This will be the first time astronauts have set foot on the Moon since the Apollo 17 mission in 1972. This will be followed by the creation of permanent infrastructure that will allow for regular missions to the surface (once a year) and a “sustained program of lunar exploration and development.” This will require spacecraft making regular trips between the Earth and Moon to deliver crews, vehicles, and payloads.

In a recent NASA-supported study, a team of researchers at the University of Illinois Urbana-Champaign investigated a new method of sending spacecraft to the Moon. It is known as “multimode propulsion,” a method that integrates a high-thrust chemical mode and a low-thrust electric mode – while using the same propellant. This system has several advantages over other forms of propulsion, not the least of which include being lighter and more cost-effective. With a little luck, NASA could rely on multimode propulsion-equipped spacecraft to achieve many of its Artemis objectives.

Continue reading “Multimode Propulsion Could Revolutionize How We Launch Things to Space”

After a Boost from Earth and the Moon, Juice is On its Way to Venus and Beyond

The ESA's Juice spacecraft is on a long journey to the Jovian system. It's the first spacecraft to perform an Earth-lunar flyby for a gravity assist. Image Credit: ESA

The first spacecraft to use gravity assist was NASA’s Mariner 10 in 1974. It used a gravity assist from Venus to reach Mercury. Now, the gravity assist maneuver is a crucial part of modern space travel.

The latest spacecraft to use gravity assist is the ESA’s JUICE spacecraft.

Continue reading “After a Boost from Earth and the Moon, Juice is On its Way to Venus and Beyond”

Making Rocket Fuel Out of Lunar Regolith

An illustration of a Moon base that could be built using 3D printing and ISRU, In-Situ Resource Utilization. Credit: RegoLight, visualisation: Liquifer Systems Group, 2018
An illustration of a Moon base that could be built using 3D printing and ISRU, In-Situ Resource Utilization. Credit: RegoLight, visualisation: Liquifer Systems Group, 2018

In the coming years, NASA and other space agencies plan to extend the reach of human exploration. This will include creating infrastructure on the Moon that will allow for crewed missions on a regular basis. This infrastructure will allow NASA and its international partners to make the next great leap by sending crewed missions to Mars (by 2039 at the earliest). Having missions operate this far from Earth for extended periods means that opportunities for resupply will be few and far between. As a result, crews will need to rely on In-Situ Resource Utilization (ISRU), where local resources are leveraged to provide for basic needs.

In addition to air, water, and building materials, the ability to create propellant from local resources is essential. According to current mission architectures, this would consist of harvesting water ice in the polar regions and breaking it down to create liquid oxygen (LOX) and liquid hydrogen (LH2). However, according to a new study led by engineers from McGill University, rocket propellant could be fashioned from lunar regolith as well. Their findings could present new opportunities for future missions to the Moon, which would no longer be restricted to the polar regions.

Continue reading “Making Rocket Fuel Out of Lunar Regolith”

Martian Astronauts Will Create Fuel by Having a Shower

Credit: ESA

When astronauts begin exploring Mars, they will face numerous challenges. Aside from the time and energy it takes to get there and all the health risks that come with long-duration missions in space, there are also the hazards of the Martian environment itself. These include Mars’ incredibly thin and toxic and toxic atmosphere, the high levels of radiation the planet is exposed to, and the fact that the surface is extremely cold and drier than the driest deserts on Earth.

As a result, missions to Mars will need to leverage local resources to provide all the basic necessities, a process known as In-Situ Resource Utilization (ISRU). Looking to address the need for propellant, a team from the Spanish innovation company Tekniker is developing a system that uses solar power to convert astronaut wastewater into fuel. This technology could be a game-changer for missions to deep space in the coming years, including the Moon, Mars, and beyond!

Continue reading “Martian Astronauts Will Create Fuel by Having a Shower”

SpaceX is Hoping to Turn Atmospheric CO2 Into Rocket Fuel

Earth is in the midst of a climate crisis. Thanks to the way CO2 emissions have been rising rapidly since the early 20th century, global temperatures are rising, triggering a positive feedback cycle that threatens to make it worse. According to recent analyses, even if the industrialized nations agree to slash carbon emissions drastically, global warming will not begin to slow until mid-century. For this reason, emission reduction needs to be paired with carbon capture to ensure we avoid the worst-case scenarios.

Meanwhile, there is a significant outcry from the public concerning commercial space. Whereas advocates like Elon Musk argue that increasing access to space is key to our long-term survival, critics and detractors respond by stating that commercial space “steals focus” from Earth’s problems and that rocket launches produce excessive carbon emissions. In what could be a response to these challenges, Musk recently announced that SpaceX would be starting a carbon capture (CC) program to create propellants for his rockets.

Continue reading “SpaceX is Hoping to Turn Atmospheric CO2 Into Rocket Fuel”