Dawn Closing in on Asteroid Vesta as Views Exceed Hubble

Hubble and Dawn Views of Vesta. These views of the protoplanet Vesta were obtained by NASA's Dawn spacecraft and NASA's Hubble Space Telescope. The image from Dawn, on the left, is a little more than twice as sharp as the image from Hubble, on the right. The image from Hubble, which is in orbit around the Earth, was obtained on May 14, 2007, when Vesta was 109 million miles (176 million kilometers) away from Earth. Dawn's image was taken on June 20, 2011, when Dawn was about 117,000 miles (189,000 kilometers) away from Vesta. The framing cameras were developed and built under the leadership of the Max Planck Institute for Solar System Research in Katlenburg-Lindau, Germany. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/PSI and NASA/ESA/STScI/UMd

[/caption]

A new world in our Solar System is about to be unveiled for the first time – the mysterious protoplanet Vesta, which is the second most massive object in the main Asteroid Belt between Mars and Jupiter.

NASA’s Dawn Asteroid orbiter has entered its final approach phase to Vesta and for the first time is snapping images that finally exceed those taken several years ago by the iconic Hubble Space Telescope.

“The Dawn science campaign at Vesta will unveil a mysterious world, an object that can tell us much about the earliest formation of the planets and the solar system,” said Jim Adams, Deputy Director, Planetary Science Directorate at NASA HQ at a briefing for reporters.

Vesta holds a record of the earliest history of the solar system. The protoplanet failed to form into a full planet due to its close proximity to Jupiter.

Check out this amazing NASA approach video showing Vesta growing in Dawn’s eyes. The compilation of navigation images from Dawn’s framing camera spans about seven weeks from May 3 to June 20 was released at the NASA press briefing by the Dawn science team.

Dawn’s Approach to Vesta – Video

Best View from Hubble – Video

Be sure to notice that Vesta’s south pole is missing due to a cataclysmic event eons ago that created a massive impact crater – soon to be unveiled in astounding clarity. Some of that colossal debris sped toward Earth and survived the terror of atmospheric entry. Planetary Scientists believe that about 5% of all known meteorites originated from Vesta, based on spectral evidence.

After a journey of four years and 1.7 billion miles, NASA’s revolutionary Dawn spacecraft thrusting via exotic ion propulsion is now less than 95,000 miles distant from Vesta, shaping its path through space to match the asteroid.

The internationally funded probe should be captured into orbit on July 16 at an initial altitude of 9,900 miles when Vesta is some 117 million miles from Earth.

After adjustments to lower Dawn to an initial reconnaissance orbit of approximately 1,700 miles, the science campaign is set to kick off in August with the collection of global color images and spectral data including compositional data in different wavelengths of reflected light.

Dawn Approaching Vesta
Dawn obtained this image on June 20, 2011. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/PSI and NASA/ESA/STScI/UMd

Dawn will spend a year investigating Vesta. It will probe the protoplanet using its three onboard science instruments – provided by Germany, Italy and the US – and provide researchers with the first bird’s eye images, global maps and detailed scientific measurements to elucidate the chemical composition and internal structure of a giant asteroid.

“Navigation images from Dawn’s framing camera have given us intriguing hints of Vesta, but we’re looking forward to the heart of Vesta operations, when we begin officially collecting science data,” said Christopher Russell, Dawn principal investigator, at the University of California, Los Angeles (UCLA). “We can’t wait for Dawn to peel back the layers of time and reveal the early history of our solar system.”

Because Dawn is now so close to Vesta, the frequency of imaging will be increased to twice a week to achieve the required navigational accuracy to successfully enter orbit., according to Marc Rayman, Dawn Chief Engineer at the Jet Propulsion Laboratory (JPL) in Pasadena, Calif.

“By the beginning of August, it will see Vesta with more than 100 times the clarity that Hubble could ever obtain,” says Rayman.

Vesta in Spectrometer View
On June 8, 2011, the visible and infrared mapping spectrometer aboard NASA's Dawn spacecraft captured the instrument's first images of Vesta that are larger than a few pixels, from a distance of about 218,000 miles (351,000 kilometers). The image was taken for calibration purposes. An image obtained in the visible part of the light spectrum appears on the left. An image obtained in the infrared spectrum, at around 3 microns in wavelength, appears on the right. The spatial resolution of this image is about 60 miles (90 kilometers) per pixel. Credit: NASA/JPL-Caltech/UCLA/ASI/INAF

Dawn will gradually edge down closer to altitudes of 420 miles and 120 miles to obtain ever higher resolution orbital images and spectal data before spiraling back out and eventually setting sail for Ceres, the largest asteroid of them all.

Dawn will be the first spacecraft to orbit two celestial bodies, only made possible via the ion propulsion system. With a wingspan of 65 feet, it’s the largest planetary mission NASA has ever launched.

“We’ve packed our year at Vesta chock-full of science observations to help us unravel the mysteries of Vesta,” said Carol Raymond, Dawn’s deputy principal investigator at JPL.

“This is an unprecedented opportunity to spend a year at a body that we know almost nothing about,” added Raymond. “We are very interested in the south pole because the impact exposed the deep interior of Vesta. We’ll be able to look at features down to tens of meters so we can decipher the geologic history of Vesta.”

Possible Piece of Vesta
Scientists believe a large number of the meteorites that are found on Earth originate from the protoplanet Vesta. A cataclysmic impact at the south pole of Vesta, the second most massive object in the main asteroid belt, created an enormous crater and excavated a great deal of debris. Some of that debris ended up as other asteroids and some of it likely ended up on Earth. Image Credit: NASA/JPL-Caltech
Dawn Trajectory and Current Location on June 29, 2011. Credt: NASA/JPL
Dawn launch on September 27, 2007 by a Delta II rocket from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer

Read my prior feature about Dawn here

Want to Make Planets? Better Hurry.

Artist's impression of planetary formation. Image credit: NASA

[/caption]

Currently, astronomers have two competing models for planetary formation. In one, the planets form in a single, monolithic collapse. In the second, the core forms first and then slowly accretes gas and dust. However, in both situations, the process must be complete before the radiation pressure from the star blows away the gas and dust. While this much is certain, the exact time frames have remained another matter of debate. It is expected that this amount should be somewhere in the millions of years, but low end estimates place it at only a few million, whereas upper limits have been around 10 million. A new paper explores IC 348, a 2-3 million year old cluster with many protostars with dense disks to determine just how much mass is left to be made into planets.

The presence of dusty disks is frequently not directly observed in the visible portion of the spectra. Instead, astronomers detect these disks from their infrared signatures. However, the dust is often very opaque at these wavelengths and astronomers are unable to see through it to get a good understanding of many of the features in which they’re interested. As such, astronomers turn to radio observations, to which disks are partially transparent to build a full understanding. Unfortunately, the disks glow very little in this regime, forcing astronomers to use large arrays to study their features. The new study uses data from the Submillimeter Array located atop Mauna Kea in Hawaii.

To understand how the disks evolved over time, the new study aimed to compare the amount of gas and dust left in IC 348’s disc to younger ones in star forming regions in Taurus, Ophiuchus, and Orion which all had ages of roughly 1 million years. For IC 348, the team found 9 protoplanetary disks with masses from 2-6 times the mass of Jupiter. This is significantly lower than the range of masses in the Taurus and Ophiuchus star forming regions which had protoplanetary clouds ranging to over 100 Jupiter masses.

If planets are forming in IC 348 at the same frequency in which they form in systems astronomers have observed elsewhere, this would seem to suggest that the gravitational collapse model is more likely to be correct since it doesn’t leave a large window in which forming planets could accrete. If the core accretion model is correct, then planetary formation must have begun very quickly.

While this case don’t set any firm pronouncements on which model of planetary formation is dominant, such 2-3 million year old systems could provide an important test bed to explore the rate of depletion of these reservoirs.

Hubble Captures Birth, Annihilation of Young Solar Systems in Orion Nebula

Young stellar objects with circumstellar disk, as seen in the Orion Nebula by Hubble Space Telescope. These newly forming stars may one day also have planetary systems around them.
Young stellar objects with circumstellar disk, as seen in the Orion Nebula by Hubble Space Telescope. These newly forming stars may one day also have planetary systems around them.

Looking deep inside the Orion Nebula, the Hubble Space Telescope has captured a stunning collection of protoplanetary disks – or proplyds – which are embryonic solar systems in the making. Using Hubble’s Advanced Camera for Surveys (ACS), researchers have discovered 42 protoplanetary blobs, which are being illuminated by a bright star cluster. These disks, which sometimes appear like boomerangs, arrows, or space jellyfish, surround baby stars and are shedding light on the mechanism behind planet formation.

One of 42 new proplyds discovered in the Orion Nebula, 181-825 is one of the bright proplyds that lies relatively close to the nebula’s brightest star, Theta 1 Orionis C. Resembling a tiny jellyfish, this proplyd is surrounded by a shock wave that is caused by stellar wind from the massive Theta 1 Orionis C interacting with gas in the nebula.  Credit: NASA/ESA and L. Ricci (ESO)
One of 42 new proplyds discovered in the Orion Nebula, 181-825 is one of the bright proplyds that lies relatively close to the nebula’s brightest star, Theta 1 Orionis C. It resembles a tiny jellyfish. Credit: NASA/ESA and L. Ricci (ESO)

As newborn stars emerge from the nebula’s mixture of gas and dust, proplyds form around them. The center of the spinning disc heats up and becomes a new star, but remnants around the outskirts of the disc attract other bits of dust and clump together. This is the beginning of a solar system.

But not all proplyds face a bright and happy future, even in these beautiful images.

Bright star that illuminates some of the proplyds is both a blessing and a curse. The disks that lie close to the brightest star in the cluster (Theta 1 Orionis C) are being zapped by the star’s powerful emissions. The radiation that lights them up and makes them visible also threatens their very existence. As the disk material begins to heat, it is very likely to dissipate and dissolve, destroying the potential for planets to form. Some of these proplyds will be torn apart; however others will survive and perhaps evolve into planetary systems.

One of 42 new proplyds discovered in the Orion Nebula, 321-602 is one of the dark proplyds that lies relatively far from the nebula’s brightest star, Theta 1 Orionis C.  Credit: NASA/ESA and L. Ricci (ESO)
One of 42 new proplyds discovered in the Orion Nebula, 321-602 is one of the dark proplyds that lies relatively far from the nebula’s brightest star, Theta 1 Orionis C. Credit: NASA/ESA and L. Ricci (ESO)

Discs that are farther away do not receive enough energetic radiation from the star to heat up the gas and so they can only be detected as dark silhouettes against the background of the bright nebula, as the dust that surrounds these discs absorbs background visible light. By studying these silhouetted discs, astronomers are better able to characterize the properties of the dust grains that are thought to bind together and possibly form planets like our own.

A montage of 30 proplyds in the Orion Nebula.  Credit: NASA/ESA and L. Ricci (ESO
A montage of 30 proplyds in the Orion Nebula. Credit: NASA/ESA and L. Ricci (ESO

The brighter discs are indicated by a glowing cusp in the excited material and facing the bright star, but which we see at a random orientation within the nebula, so some appear edge on, and others face on, for instance. Other interesting features enhance the look of these captivating objects, such as emerging jets of matter and shock waves.

It is rare to see proplyds in visible light, but the astronomers were able to use Hubble for this ambitious survey of the familiar and photogenic Orion Nebula.

Source: ESA

Protoplanets

Protoplanet by Moya

[/caption]

Protoplanets are small celestial objects that are the size of a moon or a bit bigger. They are small planets, like an even smaller version of a dwarf planet. Astronomers believe that these objects form during the creation of a solar system.

The most popular theory of how a solar system is formed says that a giant cloud of molecular dust collapsed, forming one or more stars. Then a cloud of gas forms around the new star. As a result of gravity and other forces, the dust and other particles in this cloud collide and stick together forming larger masses. While some of these objects break apart on impact, a number of them continue to grow. Once they reach a certain size – around a kilometer  – these objects are large enough to attract particles and other small objects with their gravity. They continue to get larger until they form protoplanets. Some protoplanets continue colliding and growing until they form planets while others stay that size.

As the protoplanets grew to become planets, parts of them melted due to radioactivity, gravitational influences, and collisions. Where the objects had melted, the composition of the planets changed. Heavier elements sank, forming the cores of the planets, and lighter objects rose to the surface. This process is called planetary differentiation and explains why planets have heavy cores. Astronomers have discovered that even some asteroids have differentiated, so their cores are heavier than their surfaces.  

Protoplanets used to be highly radioactive due to how they were formed. However, over thousands of years, the radioactivity of these objects has greatly decreased because of radioactive decay. Astronomers are still discovering new protoplanets, and most likely, they will discover many more. With better technology, astronomers are now able to find protoplanets in other star systems. Last year, scientists discovered a protoplanet HL Tau b that will probably turn into an actual planet one day. Astronomers say that will not happen for about a million years though because the protoplanet’s star is also very young. In its final form, HL Tau b will look like Jupiter – a gas giant around the same size as that massive planet. It is hard to believe that thousands of years ago our planets were objects about the size of a moon, which were slowly evolving and growing. Astronomers continue to study protoplanets, the same way they study planetesimals, to find out more about how the Solar System was formed.

Universe Today has articles on Earth-sized planets and planetesimals.

You will also want to check out a new protoplanet and forming gas giants.

Astronomy Cast has an episode on how old the universe is.

References:
When is an Asteroid Not an Asteroid?
From Planetesimals to Terrestrial Planets: Habitable Planet Formation in Binary Star Systems