Hubble Finds Teeny Tiny Clumps of Dark Matter

Using the gravitational lensing technique, a team was able to examine how light from distant quasar was affected by intervening small clumps of dark matter. Credit: NASA/ESA/D. Player (STScI)

To put it simply, Dark Matter is not only believed to make up the bulk of the Universe’s mass but also acts as the scaffolding on which galaxies are built. But to find evidence of this mysterious, invisible mass, scientists are forced to rely on indirect methods similar to the ones used to study black holes. Essentially, they measure how the presence of Dark Matter affects stars and galaxies in its vicinity.

To date, astronomers have managed to find evidence of dark matter clumps around medium and large galaxies. Using data from the Hubble Space Telescope and a new observing technique, a team of astronomers from UCLA and NASA JPL found that dark matter can form much smaller clumps than previously thought. These findings were presented this week at the 235th meeting of the American Astronomical Society (AAS).

Continue reading “Hubble Finds Teeny Tiny Clumps of Dark Matter”

Black Holes Were Already Feasting Just 1.5 Billion Years After the Big Bang

This illustration depicts a gas halo surrounding a quasar in the early Universe. The quasar, in orange, has two powerful jets and a supermassive black hole at its centre, which is surrounded by a dusty disc. The gas halo of glowing hydrogen gas is represented in blue. A team of astronomers surveyed 31 distant quasars, seeing them as they were more than 12.5 billion years ago, at a time when the Universe was still an infant, only about 870 million years old. They found that 12 quasars were surrounded by enormous gas reservoirs: halos of cool, dense hydrogen gas extending 100 000 light years from the central black holes and with billions of times the mass of the Sun. These gas stashes provide the perfect food source to sustain the growth of supermassive black holes in the early Universe.

Thanks to the vastly improved capabilities of today’s telescopes, astronomers have been probing deeper into the cosmos and further back in time. In so doing, they have been able to address some long-standing mysteries about how the Universe evolved since the Big Bang. One of these mysteries is how supermassive black holes (SMBHs), which play a crucial role in the evolution of galaxies, formed during the early Universe.

Using the ESO’s Very Large Telescope (VLT) in Chile, an international team of astronomers observed galaxies as they appeared about 1.5 billion years after the Big Bang (ca. 12.5 billion years ago). Surprisingly, they observed large reservoirs of cool hydrogen gas that could have provided a sufficient “food source” for SMBHs. These results could explain how SMBHs grew so fast during the period known as the Cosmic Dawn.

Continue reading “Black Holes Were Already Feasting Just 1.5 Billion Years After the Big Bang”

Some Quasars Shine With the Light of Over a Trillion Stars

This artist's concept shows the most distant supermassive black hole ever discovered. It is part of a quasar from just 690 million years after the Big Bang. Credit: Robin Dienel/Carnegie Institution for Science

Quasars are some of the brightest objects in the Universe. The brightest ones are so luminous they outshine a trillion stars. But why? And what does their brightness tell us about the galaxies that host them?

To try to answer that question, a group of astronomers took another look at 28 of the brightest and nearest quasars. But to understand their work, we have to back track a little, starting with supermassive black holes.

Continue reading “Some Quasars Shine With the Light of Over a Trillion Stars”

Uh oh, a Recent Study Suggests that Dark Energy’s Strength is Increasing

The concept of accelerating expansion does get you wondering just how much it can accelerate. Theorists think there still might be a chance of a big crunch, a steady-as-she-goes expansion or a big rip. Or maybe just a little rip?

Staring into the Darkness

The expansion of our universe is accelerating. Every single day, the distances between galaxies grows ever greater. And what’s more, that expansion rate is getting faster and faster – that’s what it means to live in a universe with accelerated expansion. This strange phenomenon is called dark energy, and was first spotted in surveys of distant supernova explosions about twenty years ago. Since then, multiple independent lines of evidence have all come to the same morose conclusion: the universe is getting fatter and fatter faster and faster.

Continue reading “Uh oh, a Recent Study Suggests that Dark Energy’s Strength is Increasing”

Quasars with a Double-Image Gravitational Lens Could Help Finally Figure out how Fast the Universe is Expanding

A Hubble Space Telescope image of a doubly-imaged quasar. Image Credit: NASA Hubble Space Telescope, Tommaso Treu/UCLA, and Birrer et al
A Hubble Space Telescope image of a doubly-imaged quasar. Image Credit: NASA Hubble Space Telescope, Tommaso Treu/UCLA, and Birrer et al

How fast is the Universe expanding? That’s a question that astronomers haven’t been able to answer accurately. They have a name for the expansion rate of the Universe: The Hubble Constant, or Hubble’s Law. But measurements keep coming up with different values, and astronomers have been debating back and forth on this issue for decades.

The basic idea behind measuring the Hubble Constant is to look at distant light sources, usually a type of supernovae or variable stars referred to as ‘standard candles,’ and to measure the red-shift of their light. But no matter how astronomers do it, they can’t come up with an agreed upon value, only a range of values. A new study involving quasars and gravitational lensing might help settle the issue.

Continue reading “Quasars with a Double-Image Gravitational Lens Could Help Finally Figure out how Fast the Universe is Expanding”

The Universe’s Missing Matter. Found!

A simulation of the cosmic web, diffuse tendrils of gas that connect galaxies across the universe. Credit: Illustris Collaboration

In the 1960s, astronomers began to notice that the Universe appeared to be missing some mass. Between ongoing observations of the cosmos and the the Theory of General Relativity, they determined that a great deal of the mass in the Universe had to be invisible. But even after the inclusion of this “dark matter”, astronomers could still only account for about two-thirds of all the visible (aka. baryonic) matter.

This gave rise to what astrophysicists dubbed the “missing baryon problem”. But at long last, scientists have found what may very well be the last missing normal matter in the Universe. According to a recent study by a team of international scientists, this missing matter consists of filaments of highly-ionized oxygen gas that lies in the space between galaxies.

The study, titled “Observations of the missing baryons in the warm–hot intergalactic medium“, recently appeared in the scientific journal Nature. The study was led by Fabrizio Nicastro, a researcher from the Istituto Nazionale di Astrofisica (INAF) in Rome, and included members from the SRON Netherlands Institute for Space Research, the Harvard–Smithsonian Center for Astrophysics (CfA), the Instituto de Astronomia Universidad Nacional Autonoma de Mexico, the Instituto Nacional de Astrofísica, Óptica y Electrónica, the Instituto de Astrofísica de La Plata (IALP-UNLP) and multiple universities.

Artist’s impression of ULAS J1120+0641, a very distant quasar powered by a black hole with a mass two billion times that of the Sun. Credit: ESO/M. Kornmesser

For the sake of their study, the team consulted data from a series of instruments to examine the space near a quasar called 1ES 1553. Quasars are extremely massive galaxies with Active Galactic Nuclei (AGN) that emit tremendous amounts of energy. This energy is the result of gas and dust being accreted onto supermassive black holes (SMBHs) at the center of their galaxies, which results in the black holes emitting radiation and jets of superheated particles.

In the past, researchers believed that of the normal matter in the Universe, roughly 10% was bound up in galaxies while 60% existed in diffuse clouds of gas that fill the vast spaces between galaxies. However, this still left 30% of normal matter unaccounted for. This study, which was the culmination of a 20-year search, sought to determine if the last baryons could also be found in intergalactic space.

This theory was suggested by Charles Danforth, a research associate at CU Boulder and a co-author on this study, in a 2012 paper that appeared in The Astrophysical Journal – titled “The Baryon Census in a Multiphase Intergalactic Medium: 30% of the Baryons May Still be Missing“. In it, Danforth suggested that the missing baryons were likely to be found in the warm-hot intergalactic medium (WHIM), a web-like pattern in space that exists between galaxies.

As Michael Shull – a professor of Astrophysical and Planetary Sciences at the University of Colorado Boulder and one of the co-authors on the study – indicated, this wild terrain seemed like the perfect place to look.“This is where nature has become very perverse,” he said. “This intergalactic medium contains filaments of gas at temperatures from a few thousand degrees to a few million degrees.”

Close-up of star near a supermassive black hole (artist’s impression). Credit: ESA/Hubble, ESO, M. Kornmesser

To test this theory, the team used data from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope to examine the WHIM near the quasar 1ES 1553. They then used the European Space Agency’s (ESA) X-ray Multi-Mirror Mission (XMM-Newton) to look closer for signs of the baryons, which appeared in the form of highly-ionized jets of oxygen gas heated to temperatures of about 1 million °C (1.8 million °F).

First, the researchers used the COS on the Hubble Space Telescope to get an idea of where they might find the missing baryons in the WHIM. Next, they homed in on those baryons using the XMM-Newton satellite. At the densities they recorded, the team concluded that when extrapolated to the entire Universe, this super-ionized oxygen gas could account for the last 30% of ordinary matter.

As Prof. Shull indicated, these results not only solve the mystery of the missing baryons but could also shed light on how the Universe began. “This is one of the key pillars of testing the Big Bang theory: figuring out the baryon census of hydrogen and helium and everything else in the periodic table,” he said.

Looking ahead, Shull indicated that the researchers hope to confirm their findings by studying more bright quasars. Shull and Danforth will also explore how the oxygen gas got to these regions of intergalactic space, though they suspect that it was blown there over the course of billions of years from galaxies and quasars. In the meantime, however, how the “missing matter” became part of the WHIM remains an open question. As Danforth asked:

“How does it get from the stars and the galaxies all the way out here into intergalactic space?. There’s some sort of ecology going on between the two regions, and the details of that are poorly understood.”

Assuming these results are correct, scientists can now move forward with models of cosmology where all the necessary “normal matter” is accounted for, which will put us a step closer to understanding how the Universe formed and evolved. Now if we could just find that elusive dark matter and dark energy, we’d have a complete picture of the Universe! Ah well, one mystery at a time…

Further Reading: UCB, Nature

Weekly Space Hangout – Jan 17, 2018: Dr. Bram Venemans and Distant Quasars

Hosts:
Fraser Cain (universetoday.com / @fcain)
Dr. Paul M. Sutter (pmsutter.com / @PaulMattSutter)
Dr. Kimberly Cartier (KimberlyCartier.org / @AstroKimCartier )
Dr. Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg & ChartYourWorld.org)

Special Guest:
Dr. Venemans is a research staff scientist working at the Max Planck Institute for Astronomy (MPIA) in Heidelberg, Germany. His research topics include the discovery of black holes in the early Universe, the characterisation of the galaxies hosting these distant black holes, the Epoch of Reionisation and the galaxy environment of active galaxies.

Bram is a member of the team that recently discovered the most distant quasar currently known and its host galaxy. You can read about this discovery here: http://www.mpia.de/news/science/2017-14-distant-quasar

Announcements:

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

We record the Weekly Space Hangout every Wednesday at 5:00 pm Pacific / 8:00 pm Eastern. You can watch us live on Universe Today, or the Weekly Space Hangout YouTube page – Please subscribe!

Supermassive Black Holes or Their Galaxies? Which Came First?

Which Came First, Supermassive Black Holes of their Galaxies?
Which Came First, Supermassive Black Holes of their Galaxies?

There’s a supermassive black hole at the center of almost every galaxy in the Universe. How did they get there? What’s the relationship between these monster black holes and the galaxies that surround them?

Every time astronomers look farther out in the Universe, they discover new mysteries. These mysteries require all new tools and techniques to understand. These mysteries lead to more mysteries. What I’m saying is that it’s mystery turtles all the way down.

One of the most fascinating is the discovery of quasars, understanding what they are, and the unveiling of an even deeper mystery, where do they come from?

As always, I’m getting ahead of myself, so first, let’s go back and talk about the discovery of quasars.

Molecular clouds scattered by an intermediate black hole show very wide velocity dispersion in this artist’s impression. This scenario well explains the observational features of a peculiar molecular cloud CO-0.40-0.22. Credit: Keio University

Back in the 1950s, astronomers scanned the skies using radio telescopes, and found a class of bizarre objects in the distant Universe. They were very bright, and incredibly far away; hundreds of millions or even billion of light-years away. The first ones were discovered in the radio spectrum, but over time, astronomers found even more blazing in the visible spectrum.

The astronomer Hong-Yee Chiu coined the term “quasar”, which stood for quasi-stellar object. They were like stars, shining from a single point source, but they clearly weren’t stars, blazing with more radiation than an entire galaxy.

Over the decades, astronomers puzzled out the nature of quasars, learning that they were actually black holes, actively feeding and blasting out radiation, visible billions of light-years away.

But they weren’t the stellar mass black holes, which were known to be from the death of giant stars. These were supermassive black holes, with millions or even billions of times the mass of the Sun.

As far back as the 1970s, astronomers considered the possibility that there might be these supermassive black holes at the heart of many other galaxies, even the Milky Way.

The Whirlpool Galaxy (Spiral Galaxy M51, NGC 5194), a classic spiral galaxy located in the Canes Venatici constellation, and its companion NGC 5195. Credit: NASA/ESA

In 1974, astronomers discovered a radio source at the center of the Milky Way emitting radiation. It was titled Sagittarius A*, with an asterisk that stands for “exciting”, well, in the “excited atoms” perspective.

This would match the emissions of a supermassive black hole that wasn’t actively feeding on material. Our own galaxy could have been a quasar in the past, or in the future, but right now, the black hole was mostly silent, apart from this subtle radiation.

Astronomers needed to be certain, so they performed a detailed survey of the very center of the Milky Way in the infrared spectrum, which allowed them to see through the gas and dust that obscures the core in visible light.

They discovered a group of stars orbiting Sagittarius A-star, like comets orbiting the Sun. Only a black hole with millions of times the mass of the Sun could provide the kind of gravitational anchor to whip these stars around in such bizarre orbits.

Further surveys found a supermassive black hole at the heart of the Andromeda Galaxy, in fact, it appears as if these monsters are at the center of almost every galaxy in the Universe.

But how did they form? Where did they come from? Did the galaxy form first, and cause the black hole to form at the middle, or did the black hole form, and build up a galaxy around them?

Until recently, this was actually still one of the big unsolved mysteries in astronomy. That said, astronomers have done plenty of research, using more and more sensitive observatories, worked out their theories, and now they’re gathering evidence to help get to the bottom of this mystery.

Astronomers have developed two models for how the large scale structure of the Universe came together: top down and bottom up.

In the top down model, an entire galactic supercluster formed all at once out of a huge cloud of primordial hydrogen left over from the Big Bang. A supercluster’s worth of stars.

As the cloud came together it, it spun up, kicking out smaller spirals and dwarf galaxies. These could have combined later on to form the more complex structure we see today. The supermassive black holes would have formed as the dense cores of these galaxies as they came together.

Hubble image of Messier 54, a globular cluster located in the Sagittarius Dwarf Galaxy. Credit: ESA/Hubble & NASA

If you want to wrap your mind around this, think of the stellar nursery that formed our Sun and a bunch of other stars. Imagine a single cloud of gas and dust forming multiple stars systems within it. Over time, the stars matured and drifted away from each other.

That’s top down. One big event that leads to the structure we see today.

In the bottom up model, pockets of gas and dust collected together into larger and larger masses, eventually forming dwarf galaxies, and even the clusters and superclusters we see today. The supermassive black holes at the heart of galaxies were grown from collisions and mergers between black holes over eons.

In fact, this is actually how astronomers think the planets in the Solar System formed. By pieces of dust attracting one another into larger and larger grains until the planet-sized objects formed over millions of years.

Bottom up, small parts coming together.

Shortly after the Big Bang, the entire Universe was incredibly dense. But it wasn’t the same density everywhere. Tiny quantum fluctuations in density at the beginning evolved over billions of years of expansion into the galactic superclusters we see today.

Colliding galaxies can force the supermassive black holes in their cores together (NCSA)

I want to stop and let this sink into your brain for a second. There were microscopic variations in density in the early Universe. And these variations became the structures hundreds of millions of light-years across we see today.

Imagine the two forces at play as the expansion of the Universe happened. On the one hand, you’ve got the mutual gravity of the particles pulling one another together. And on the other hand, you’ve got the expansion of the Universe separating the particles from one another. The size of the galaxies, clusters and superclusters were decided by the balance point of those opposing forces.

If small pieces came together, then you’d get that bottom up formation. If large pieces came together, you’d get that top down formation.

When astronomers look out into the Universe at the largest scales, they observe clusters and superclusters as far as they can see – which supports the top down model.

On the other hand, observations show that the first stars formed just a few hundred million years after the Big Bang, which supports bottom up.

So the answer is both?

No, the most modern observations give the edge to the bottom up processes.

The key is that gravity moves at the speed of light, which means that the gravitational interactions between particles spreading away from each other needed to catch up, going the speed of light.

In other words, you wouldn’t get a supercluster’s worth of material coming together, only a star’s worth of material. But these first stars were made of pure hydrogen and helium, and could grow much more massive than the stars we have today. They would live fast and die in supernova explosions, creating much more massive black holes than we get today.

This illustration shows the final stages in the life of a supermassive star that fails to explode as a supernova, but instead implodes to form a black hole. Credit: NASA/ESA/P. Jeffries (STScI)

The first protogalaxies came together, collecting together these first monster black holes and the massive stars surrounding them. And then, over millions and billions of years, these black holes merged again and again, accumulating millions and even billions of times the mass of the Sun. This was how we got the modern galaxies we see today.

There was a recent observation that supports this conclusion. Earlier this year, astronomers announced the discovery of supermassive black holes at the center of relatively tiny galaxies. In our own Milky Way, the supermassive black hole is 4.1 million times the mass of the Sun, but accounts for only .01% of the galaxy’s total mass.

But astronomers from the University of Utah found two ultra compact galaxies with black holes of 4.4 million and 5.8 million times the mass of the Sun respectively. And yet, the black holes account for 13 and 18 percent of the mass of their host galaxies.

The thinking is that these galaxies were once normal, but collided with other galaxies earlier on in the history of the Universe, were stripped of their stars and then were spat out to roam the cosmos.

They’re the victims of those early merging events, evidence of the carnage that happened in the early Universe when the mergers were happening.

We always talk about the unsolved mysteries in the Universe, but this is one that astronomers are starting to puzzle out.

It seems most likely that the structure of the Universe we see today formed bottom up. The first stars came together into protogalaxies, dying as supernova to form the first black holes. The structure of the Universe we see today is the end result of billions of years of formation and destruction. With the supermassive black holes coming together over time.

Once telescopes like James Webb get to work, we should be able to see these pieces coming together, at the very edge of the observable Universe.

Weekly Space Hangout – Mar. 18, 2016: Song of the Stars

Host: Fraser Cain (@fcain)

Guests: Paul M. Sutter (pmsutter.com / @PaulMattSutter)
Paul, one of our WSH regular panelists, will be talking about Song of the Stars, a project he is leading that brings astronomy to life using modern dance.

Guests:
Dave Dickinson (www.astroguyz.com / @astroguyz)
Kimberly Cartier (@AstroKimCartier )

Their stories this week:

The Launch of ExoMars

Comet P252 LINEAR Brightens and the pass of BA14 PanSTARRS

Solving the mystery of the disappearing quasar

Fast Radio Burst afterglow most likely an AGN

We’ve had an abundance of news stories for the past few months, and not enough time to get to them all. So we’ve started a new system. Instead of adding all of the stories to the spreadsheet each week, we are now using a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Google+, Universe Today, or the Universe Today YouTube page.

You can also join in the discussion between episodes over at our Weekly Space Hangout Crew group in G+!

Peer Into the Distant Universe: How to See Quasars With Backyard Telescopes

Seen at the James and Barbara Moore Observatory in Punta Gorda, Florida: a scope worthy of a quasar hunt. Photo by author.

“How far can you see with that thing?”

It’s a common question overhead at many public star parties in reference to telescopes.

In the coming weeks as the Moon passes Full and moves out of the evening sky, we’d like to challenge you to hunt down a bright example of one of the most distant and exotic objects known: a quasar.

To carry out this feat, you’ll need a ‘scope with at least an aperture of 20 centimetres or greater, dark skies, and patience.

Although more than 200,000 of quasars are currently known and they’re some of the most luminous objects in the universe, they’re also tremendously distant. A very few are brighter than magnitude +14, about the brightness of Pluto. Most quasars have an absolute magnitude rivaling our Sun, though if you plopped one down 33 light years away, we’d definitely have other things to worry about.
Continue reading “Peer Into the Distant Universe: How to See Quasars With Backyard Telescopes”