It’s a common question overhead at many public star parties in reference to telescopes.
In the coming weeks as the Moon passes Full and moves out of the evening sky, we’d like to challenge you to hunt down a bright example of one of the most distant and exotic objects known: a quasar.
To carry out this feat, you’ll need a ‘scope with at least an aperture of 20 centimetres or greater, dark skies, and patience.
Although more than 200,000 of quasars are currently known and they’re some of the most luminous objects in the universe, they’re also tremendously distant. A very few are brighter than magnitude +14, about the brightness of Pluto. Most quasars have an absolute magnitude rivaling our Sun, though if you plopped one down 33 light years away, we’d definitely have other things to worry about. Continue reading “Peer Into the Distant Universe: How to See Quasars With Backyard Telescopes”
The combined observations from two generations of X-Ray space telescopes have now revealed a more complete picture of the nature of high-speed winds expelled from super-massive black holes. Scientist analyzing the observations discovered that the winds linked to these black holes can travel in all directions and not just a narrow beam as previously thought. The black holes reside at the center of active galaxies and quasars and are surrounded by accretion discs of matter. Such broad expansive winds have the potential to effect star formation throughout the host galaxy or quasar. The discovery will lead to revisions in the theories and models that more accurately explain the evolution of quasars and galaxies.
The observations were by the XMM-Newton and NuSTAR x-ray space telescopes of the quasar PDS 456. The observations were combined into the graphic, above. PDS 456 is a bright quasar residing in the constellation Serpens Cauda (near Ophiuchus). The data graph shows both a peak and a trough in the otherwise nominal x-ray emission profile as shown by the NuSTAR data (pink). The peak represents X-Ray emissions directed towards us (i.e.our telescopes) while the trough is X-Ray absorption that indicates that the expulsion of winds from the super-massive black hole is in many directions – effectively a spherical shell. The absorption feature caused by iron in the high speed wind is the new discovery.
X-Rays are the signature of the most energetic events in the Cosmos but also are produced from some of the most docile bodies – comets. The leading edge of a comet such as Rosetta’s P67 generates X-Ray emissions from the interaction of energetic solar ions capturing electrons from neutral particles in the comet’s coma (gas cloud). The observations of a super-massive black hole in a quasar billions of light years away involve the generation of x-rays on a far greater scale, by winds that evidently has influence on a galactic scale.
The study of star forming regions and the evolution of galaxies has focused on the effects of shock waves from supernova events that occur throughout the lifetime of a galaxy. Such shock waves trigger the collapse of gas clouds and formation of new stars. This new discovery by the combined efforts of two space telescope teams provides astrophysicists new insight into how star and galaxy formation takes place. Super-massive blackholes, at least early in the formation of a galaxy, can influence star formation everywhere.
Both the ESA built XMM-Newton and the NuSTAR X-Ray space telescope, a SMEX class NASA mission, use grazing incidence optics, not glass (refraction) or mirrors (reflection) as in conventional visible light telescopes. The incidence angle of the X-rays must be very shallow and consequently the optics are extended out on a 10 meter (33 foot) truss in the case of NuSTAR and over a rigid frame on the XMM-Newton.
The ESA built XMM-Newton was launched in 1999, an older generation design that used a rigid frame and structure. All the fairing volume and lift capability of the Ariane 5 launch vehicle was needed to put the Newton in orbit. The latest X-Ray telescope – NuSTAR – benefits from tens years of technological advances. The detectors are more efficient and faster and the rigid frame was replaced with a compact truss which required all of 30 minutes to deploy. Consequently, NuSTAR was launched on a Pegasus rocket piggybacked on a L-1011, a significantly smaller and less expensive launch system.
So now these observations are effectively delivered to the theorists and modelers. The data is like a new ingredient in the batter from which a galaxy and stars are formed. The models of galaxy and star formation will improve and will more accurately describe how quasars, with their active super-massive black-holes, transition into more quiescent galaxies such as our own Milky Way.
Gravity’s a funny thing. Not only does it tug away at you, me, planets, moons and stars, but it can even bend light itself. And once you’re bending light, well, you’ve got yourself a telescope.
Everyone here is familiar with the practical applications of gravity. If not just from exposure to Loony Tunes, with an abundance of scenes with an anthropomorphized coyote being hurled at the ground from gravitational acceleration, giant rocks plummeting to a spot inevitably marked with an X, previously occupied by a member of the “accelerati incredibilus” family and soon to be a big squish mark containing the bodily remains of the previously mentioned Wile E. Coyote.
Despite having a very limited understanding of it, Gravity is a pretty amazing force, not just for decimating a infinitely resurrecting coyote, but for keeping our feet on the ground and our planet in just the right spot around our Sun. The force due to gravity has got a whole bag of tricks, and reaches across Universal distances. But one of its best tricks is how it acts like a lens, magnifying distant objects for astronomy.
Last week, astronomers at Yale University reported seeing something unusual: a seemingly stedfast beacon from the far reaches of the Universe went quiet. This relic light source, a quasar located in the region of our sky known as the celestial equator, unexpectedly became 6-7 times dimmer over the first decade of the 21st century. Thanks to this dramatic change in luminosity, astronomers now have an unprecedented opportunity to study both the life cycle of quasars and the galaxies that they once called home.
A quasar arises from a distant (and therefore, very old) galaxy that once contained a central, rotating supermassive black hole – what astronomers call an active galactic nucleus. This spinning beast ravenously swallowed up large amounts of ambient gas and dust, kicking up surrounding material and sending it streaming out of the galaxy at blistering speeds. Quasars shine because these ancient jets achieved tremendous energies, thereby giving rise to a torrent of light so powerful that astronomers are still able to detect it here on Earth, billions of years later.
In their hey-day, some active galactic nuclei were also energetic enough to excite electrons farther away from the central black hole. But even in the very early Universe, electrons couldn’t withstand that kind of excitement forever; the laws of physics don’t allow it. Eventually, each electron would drop back down to its rest state, releasing a photon of corresponding energy. This cycle of excitation happened over and over and over again, in regular and predictable patterns. Modern astronomers can visualize those transitions – and the energies that caused them – by examining a quasar’s optical spectrum for characteristic emission lines at certain wavelengths.
Not all quasars are created equal, however. While the spectra of some quasars reveal many bright, broad emission lines at different energies, other quasars’ spectra consist of only the dim, narrow variety. Until now, some astronomers thought that these variations in emission lines among quasars were simply due to differences in their orientation as seen from Earth; that is, the more face-on a quasar was relative to us, the broader the emission lines astronomers would be able to see.
But all of that has now been thrown into question, thanks to our friend J015957.64+003310.5, the quasar revealed by the team of astronomers at Yale. Indeed, it is now plausible that a quasar’s pattern of emission lines simply changes over its lifetime. After gathering ten years of spectral observations from the quasar, the researchers observed its original change in brightness in 2010. In July 2014, they confirmed that it was still just as dim, disproving hypotheses that suggested the effect was simply due to intervening gas or dust. “We’ve looked at hundreds of thousands of quasars at this point, and now we’ve found one that has switched off,” explained C. Megan Urry, the study’s co-author.
How would that happen, you ask? After observing the comparable dearth of broad emission lines in its spectrum, Urry and her colleagues believe that long ago, the black hole at the heart of the quasar simply went on a diet. After all, an active galactic nucleus that consumed less material would generate less energy, giving rise to fainter particle jets and fewer excited atoms. “The power source just went dim,” said Stephanie LaMassa, the study’s principal investigator.
LaMassa continued, “Because the life cycle of a quasar is one of the big unknowns, catching one as it changes, within a human lifetime, is amazing.” And since the life cycle of quasars is dependent on the life cycle of supermassive black holes, this discovery may help astronomers to explain how those that lie at the center of most galaxies evolve over time – including Sagittarius A*, the supermassive black hole at the center of our own Milky Way.
“Even though astronomers have been studying quasars for more than 50 years, it’s exciting that someone like me, who has studied black holes for almost a decade, can find something completely new,” added LaMassa.
The team’s research will be published in an upcoming issue of The Astrophysical Journal. A pre-print of the paper is available here.
Most large galaxies harbor central supermassive black holes with masses equivalent to millions, or even billions, of Suns. Some, like the one in the center of the Milky Way Galaxy, lie quiet. Others, known as quasars, chow down on so much gas they outshine their host galaxies and are even visible across the Universe.
Although their brilliant light varies across all wavelengths, it does so randomly — there’s no regularity in the peaks and dips of brightness. Now Matthew Graham from Caltech and his colleagues have found an exception to the rule.
Quasar PG 1302-102 shows an unusual repeating light signature that looks like a sinusoidal curve. Astronomers think hidden behind the light are two supermassive black holes in the final phases of a merger — something theoretically predicted but never before seen. If the theory holds, astronomers might be able to witness two black holes en route to a collision of incredible scale.
Graham and his colleagues discovered the unusual quasar on a whim. They were aiming to study quasar variability using the Catalina Real-Time Transient Survey (CRTS), which uses three ground-based telescopes to monitor some 500 million objects strewn across 80 percent of the sky, when 20 or so periodic sources popped up.
Of those 20 periodic quasars, PG 1302-102 was the most promising. It had a strong signal that appeared to repeat every five years or so. But what causes the repeating signal?
The black holes that power quasars do not emit light. Instead the light originates from the hot accretion disk that feeds the black hole. Orbiting clouds of gas, which are heated and ionized by the disk, also contribute in the form of visible emission lines.
“When you look at the emission lines in a spectrum from an object, what you’re really seeing is information about speed — whether something is moving toward you or away from you and how fast. It’s the Doppler effect,” said study coauthor Eilat Glikman from Middlebury College in Vermont, in a news release. “With quasars, you typically have one emission line, and that line is a symmetric curve. But with this quasar, it was necessary to add a second emission line with a slightly different speed than the first one in order to fit the data. That suggests something else, such as a second black hole, is perturbing this system.”
So a tight supermassive black hole binary is the most likely explanation for this oddly periodic quasar.
“Until now, the only known examples of supermassive black holes on their way to a merger have been separated by tens or hundreds of thousands of light years,” said study coauthor Daniel Stern from NASA’s Jet Propulsion Laboratory. “At such vast distances, it would take many millions, or even billions, of years for a collision and merger to occur. In contrast, the black holes in PG 1302-102 are, at most, a few hundredths of a light year apart and could merge in about a million years or less.”
But astronomers remain unsure about what physical mechanism is responsible for the quasar’s repeating light signal. It’s possible that one quasar is funneling material from its accretion disk into jets, which are rotating like beams from a lighthouse. Or perhaps a portion of the accretion disk itself is thicker than the rest, causing light to be blocked at certain spots in its orbit. Or maybe the accretion disk is dumping material onto the black hole in a regular fashion, causing periodic bursts of energy.
“Even though there are a number of viable physical mechanisms behind the periodicity we’re seeing — either the precessing jet, warped accretion disk or periodic dumping — these are all still fundamentally caused by a close binary system,” said Graham.
Astronomers still don’t have a good handle on what happens in the final few light-years of a black hole merger. And of course these two black holes still won’t collide for thousands to millions of years. Even watching for the period to shorten as they spiral inward would dwarf human timescales. But the discovery of a system so late in the game proves promising for future work.
On the largest scales, networks of gaseous filaments span hundreds of millions of light-years, connecting massive galaxy clusters. But this gas is so rarified, it’s impossible to see directly.
For years, astronomers have used quasars — brilliant galactic centers fueled by supermassive black holes rapidly accreting material — to map the otherwise invisible matter.
But now, for the first time, a team of astronomers led by Khee-Gan Lee, a post-doc at the Max Planck Institute for Astronomy, has managed to create a three-dimensional map of the large-scale structure of the Universe using distant galaxies. And the advantages are numerous.
The science has always gone a little something like this: as the bright light from a distant quasar travels toward Earth, it encounters the intervening clouds of hydrogen gas and is partially absorbed. This leaves dark absorption lines in the quasar’s spectrum.
If the Universe were static, the dark absorption lines would always be located at the same spot (121 nanometers for the so-called Lyman-alpha line) in the quasar’s spectrum. But because the Universe is expanding, the distant quasar is flying away from the Earth at a rapid speed. This stretches the quasar’s light, such that each intervening hydrogen gas cloud imprints its absorption signature on a different region of the quasar’s spectrum, leaving a forest of lines.
Therefore detailed measurements of multiple quasars’ spectra close together can actually reveal the three-dimensional nature of the intervening hydrogen clouds. But galaxies are nearly 100 times more numerous than quasars. So in theory they should provide a much more detailed map.
The only problem is that galaxies are also about 15 times fainter than quasars. So astronomers thought they were simply not bright enough to see well in the distant universe. But Lee carried out calculations that suggested otherwise.
“I was surprised to find that existing large telescopes should already be able to collect sufficient light from these faint galaxies to map the foreground absorption, albeit at a lower resolution than would be feasible with future telescopes,” said Lee in a news release. “Still, this would provide an unprecedented view of the cosmic web which has never been mapped at such vast distances.”
Lee and his colleagues used the 10-meter Keck I telescope on Mauna Kea, Hawaii to take a look a closer look at the distant galaxies and the forest of hydrogen absorption embedded in their spectra. But even the weather in Hawaii can turn ugly.
“We were pretty disappointed as the weather was terrible and we only managed to collect a few hours of good data,” said coauthor Joseph Hennawi, also from the Max Planck Institute for Astronomy. “But judging by the data quality as it came off the telescope, it was already clear to me that the experiment was going to work.”
The team was only able to collect data for four hours. But it was still unprecedented. They looked at 24 distant galaxies, which provided sufficient coverage of a small patch of the sky and allowed them to combine the information into a three-dimensional map.
The map reveals the large-scale structure of the Universe when it was only a quarter of its current age. But the team hopes to soon parse the map for more information about the structure’s function — following the flows of cosmic gas as it funneled away from voids and onto distant galaxies. It will provide a unique historical record on how the galaxy clusters and voids grew from inhomogeneities in the Big Bang.
The results have been published in the Astrophysical Journal and are available online.
Most scientists can see, hear, smell, touch or even taste their research. But astronomers can only study light — photons traveling billions of light-years across the cosmos before getting scooped up by an array of radio dishes or a single parabolic mirror orbiting the Earth.
Luckily the universe is overflowing with photons across a spectrum of energies and wavelengths. But astronomers don’t fully understand where most of the light, especially in the early universe, originates.
Now, new simulations hope to uncover the origin of the ultraviolet light that bathes — and shapes — the early cosmos.
“Which produces more light? A country’s biggest cities or its many tiny towns?” asked lead author Andrew Pontzen in a press release. “Cities are brighter, but towns are far more numerous. Understanding the balance would tell you something about the organization of the country. We’re posing a similar question about the universe: does ultraviolet light come from numerous but faint galaxies, or from a smaller number of quasars?”
Answering this question will give us a valuable insight into the way the universe built its galaxies over time. It will also help astronomers calibrate their measurements of dark energy, the mysterious agent that is somehow accelerating the universe’s expansion.
The problem is that most of intergalactic space is impossible to see directly. But quasars — brilliant galactic centers fueled by black holes rapidly accreting material — shine brightly and illuminate otherwise invisible matter. Any intervening gas will absorb the quasar’s light and leave dark lines in the arriving spectrum.
“Because they can be seen at such great distances, quasars are a useful probe for finding out the properties of the universe,” said Pontzen. “Distant quasars can be used as a backlight, and the properties of the gas between them and us are imprinted on the light.
Multiple clouds of intervening hydrogen gas leave a “forest” of hydrogen absorption lines in the quasar’s spectrum. But, crucially, not all gas in the universe contributes to these dark lines. When hydrogen is bombarded by ultraviolet light, it becomes ionized — the electron separates from the proton — which renders it transparent.
So the pattern of absorption lines visible in a quasar’s spectrum map out the location of neutral and ionized regions in between the quasar and the Earth.
This pattern will tell astronomers the main contributing light source in the early universe. Quasars are fairly limited in number but individually extremely bright. If they caused most of the radiation, the pattern will be far from uniform, with some areas nearly transparent and others strongly opaque. But if galaxies, which are far more numerous but much dimmer, caused most of the radiation, the pattern will be very uniform, with evenly spaced absorption lines.
Current samples of quasars aren’t quite big enough for a robust analysis of the subtle differences between the two scenarios. But Pontzen and colleagues show that a number of new surveys should shed light on the question.
The team is hopeful the DESI (Dark Energy Spectroscopic Instrument) survey, which will look at about a million distant quasars in order to better understand dark energy, will also show the distribution of intervening gas.
“It’s amazing how little is known about the objects that bathed the universe in ultraviolet radiation while galaxies assembled into their present form,” said coauthor Hiranya Peiris. “This technique gives us a novel handle on the intergalactic environment during this critical time in the Universe’s history.”
The paper was published Aug. 27 in the Astrophysical Journal Letters and is available online.
Black holes one billion times the Sun’s mass or more lie at the heart of many galaxies, driving their evolution. Although common today, evidence of supermassive black holes existing since the infancy of the Universe, one billion years or so after the Big Bang, has puzzled astronomers for years.
How could these giants have grown so massive in the relatively short amount of time they had to form? A new study led by Tal Alexander from the Weizmann Institute of Science and Priyamvada Natarajn from Yale University, may provide a solution.
Black holes are often mistaken to be monstrous creatures that suck in dust and gas at an enormous rate. But this couldn’t be further from the truth (in fact the words “suck” and “black hole” in the same sentence makes me cringe). Although they typically accumulate bright accretion disks — swirling disks of gas and dust that make them visible across the observable Universe — these very disks actually limit the speed of growth.
First, as matter in an accretion disk gets close to the black hole, traffic jams occur that slow down any other infalling material. Second, as matter collides within these traffic jams, it heats up, generating energy radiation that actually drives gas and dust away from the black hole.
A star or a gas stream can actually be on a stable orbit around the black hole, much as a planet orbits around a star. So it is quite a challenge for astronomers to think of ways that would make a black hole grow to supermassive proportions.
Luckily, Alexander and Natarajan may have found a way to do this: by placing the black hole within a cluster of thousands of stars, they’re able to operate without the restrictions of an accretion disk.
Black holes are generally thought to form when massive stars, weighing tens of solar masses, explode after their nuclear fuel is spent. Without the nuclear furnace at its core pushing against gravity, the star collapses. While the inner layers fall inward to form a black hole of only about 10 solar masses, the outer layers fall faster, hitting the inner layers, and rebounding in a huge supernova explosion. At least that’s the simple version.
The team began with a model of a black hole, created from this stellar blast, embedded within a cluster of thousands of stars. A continuous flow of dense, cold, opaque gas fell into the black hole. But here’s the trick: the gravitational pull of many nearby stars caused it to zigzag randomly, preventing it from forming an accretion disk.
Without an accretion disk, not only is matter more able to fall into the black hole from all sides, but it isn’t slowed down in the accretion disk itself.
All in all, the model suggests that a black hole 10 times the mass of the Sun could grow to more than 10 billion times the mass of the Sun by one billion years after the Big Bang.
The supermassive black holes in the cores of most massive galaxies wreak havoc on their immediate surroundings. During their most active phases — when they ignite as luminous quasars — they launch extremely powerful and high-velocity outflows of gas.
These outflows can sweep up and heat material, playing a pivotal role in the formation and evolution of massive galaxies. Not only have astronomers observed them across the visible Universe, they also play a key ingredient in theoretical models.
But the physical nature of the outflows themselves has been a longstanding mystery. What physical mechanism causes gas to reach such high speeds, and in some cases be expelled from the galaxy?
A new study provides the first direct evidence that these outflows are accelerated by energetic jets produced by the supermassive black hole.
Using the Very Large Telescope in Chile, a team of astronomers led by Clive Tadhunter from Sheffield University, observed the nearby active galaxy IC 5063. At locations in the galaxy where its jets are impacting regions of dense gas, the gas is moving at extraordinary speeds of over 600,000 miles per hour.
“Much of the gas in the outflows is in the form of molecular hydrogen, which is fragile in the sense that it is destroyed at relatively low energies,” said Tadhunter in a press release. “I find it extraordinary that the molecular gas can survive being accelerated by jets of highly energetic particles moving at close to the speed of light.
As the jets travel through the galactic matter, they disrupt the surrounding gas and generate shock waves. These shock waves not only accelerate the gas, but also heat it. The team estimates the shock waves heat the gas to temperatures high enough to ionize the gas and dissociate the molecules. Molecular hydrogen is only formed in the significantly cooler post-shock gas.
“We suspected that the molecules must have been able to reform after the gas had been completely upset by the interaction with a fast plasma jet,” said Raffaella Morganti from the Kapteyn Institute Groningen University. “Our direct observations of the phenomenon have confirmed that this extreme situation can indeed occur. Now we need to work at describing the exact physics of the interaction.”
In interstellar space, molecular hydrogen forms on the surface of dust grains. But in this scenario, the dust is likely to have been destroyed in the intense shock waves. While it is possible for molecular hydrogen to form without the aid of dust grains (as seen in the early Universe) the exact mechanism in this case is still unknown.
The research helps answer a longstanding question — providing the first direct evidence that jets accelerate the molecular outflows seen in active galaxies — and asks new ones.
In a galaxy four billion light-years away, three supermassive black holes are locked in a whirling embrace. It’s the tightest trio of black holes known to date and even suggests that these closely packed systems are more common than previously thought.
“What remains extraordinary to me is that these black holes, which are at the very extreme of Einstein’s Theory of General Relativity, are orbiting one another at 300 times the speed of sound on Earth,” said lead author Roger Deane from the University of Cape Town in a press release.
“Not only that, but using the combined signals from radio telescopes on four continents we are able to observe this exotic system one third of the way across the Universe. It gives me great excitement as this is just scratching the surface of a long list of discoveries that will be made possible with the Square Kilometer Array.”
The system, dubbed SDSS J150243.091111557.3, was first identified as a quasar — a supermassive black hole at the center of a galaxy, which is rapidly accreting material and shining brightly — four years ago. But its spectrum was slightly wacky with its doubly ionized oxygen emission line [OIII] split into two peaks instead of one.
A favorable explanation suggested there were two active supermassive black holes hiding in the galaxy’s core.
An active galaxy typically shows single-peaked narrow emission lines, which stem from a surrounding region of ionized gas, Deane told Universe Today. The fact that this active galaxy shows double-peaked emission lines, suggests there are two surrounding regions of ionized gas and therefore two active supermassive black holes.
But one of the supermassive black holes was enshrouded in dust. So Deane and colleagues dug a little further. They used a technique called Very Long Baseline Interferometry (VLBI), which is a means of linking telescopes together, combining signals separated by up to 10,000 km to see detail 50 times greater than the Hubble Space Telescope.
Observations from the European VLBI network — an array of European, Chinese, Russian, and South American antennas — revealed that the dust-covered supermassive black hole was once again two instead of one, making the system three supermassive black holes in total.
“This is what was so surprising,” Deane told Universe Today. “Our aim was to confirm the two suspected black holes. We did not expect one of these was in fact two, which could only be revealed by the European VLBI Network due [to the] very fine detail it is able to discern.”
Deane and colleagues looked through six similar galaxies before finding their first trio. The fact that they found one so quickly suggests that they’re more common than previously thought.
Before today, only four triple black hole systems were known, with the closest pair being 2.4 kiloparsecs apart — roughly 2,000 times the distance from Earth to the nearest star, Proxima Centauri. But the closest pair in this trio is separated by only 140 parsecs — roughly 10 times that same distance.
Although Deane and colleagues relied on the phenomenal resolution of the VLBI technique in order to spatially separate the two close-in black holes, they also showed that their presence could be inferred from larger-scale features. The orbital motion of the black hole, for instance, is imprinted on its large jets, twisting them into a helical-like shape. This may provide smaller telescopes with a tool to find them with much greater efficiency.
“If the result holds up, it’ll be very cool,” binary supermassive black hole expert Jessie Runnoe from Pennsylvania State University told Universe Today. This research has multiple implications for understanding further phenomena.
The first sheds light on galaxy evolution. Two or three supermassive black holes are the smoking gun that the galaxy has merged with another. So by looking at these galaxies in detail, astronomers can understand how galaxies have evolved into their present-day shapes and sizes.
The second sheds light on a phenomenon known as gravitational radiation. Einstein’s General Theory of Relativity predicts that when one of the two or three supermassive black holes spirals inward, gravitational waves — ripples in the fabric of space-time itself — propagate out into space.
Future radio telescopes should be able to measure gravitational waves from such systems as their orbits decay.
“Further in the future, the Square Kilometer Array will allow us to find and study these systems in exquisite detail, and really allow us [to] gain a much better understanding of how black holes shape galaxies over the history of the Universe,” said coauthor Matt Jarvis from the Universities of Oxford and Western Cape.
The research was published today in the journal Nature.