See Historic Comet BA14 Up Close In These New Radar Images

These radar images of comet P/2016 BA14 were taken on March 23, 2016, by scientists using an antenna of NASA's Deep Space Network at Goldstone, California. At the time, the comet was about 2.2 million miles (3.5 million kilometers) from Earth. Credit: NASA/JPL-Caltech/GSSR
These radar images of comet P/2016 BA14 were taken on March 23, 2016, by scientists using an antenna of NASA's Deep Space Network at Goldstone, California. At the time, the comet was about 2.2 million miles (3.5 million kilometers) from Earth. Credit: NASA/JPL-Caltech/GSSR
These radar images of comet P/2016 BA14 were taken on March 23, 2016, by scientists using an antenna of NASA’s Deep Space Network at Goldstone, California. At the time, the comet was about 2.2 million miles (3.5 million kilometers) from Earth. Credit: NASA/JPL-Caltech/GSSR

On March 22, Comet P/2016 BA14 (Pan-STARRS) flew just 2.2 million miles (3.5 million kilometers) from Earth, making it the third closest comet ever recorded. The last time a comet appeared on our doorstep was in 1770, when Lexell’s Comet breezed by at about half that distance. Through a telescope, comet BA14 looked (and still looks) like a faint star, though time exposures reveal a short, weak tail. With an excellent map and large amateur telescope you might still find it making a bead across the Big Dipper and constellation Bootes tonight through the weekend.


Flyby Comet Imaged by Radar

While normal telescopes show few details, NASA’s Goldstone Solar System Radar in California’s Mojave Desert pinged P/2016 BA14 with radar over three nights during closest approach and created a series of crisp, detailed images from the returning echoes. They show a bigger comet than expected — about 3,000 feet (one kilometer) across —  and resolve features as small as 26 feet (8 meters) across.

“The radar images show that the comet has an irregular shape: looks like a brick on one side and a pear on the other,” said Shantanu Naidu, a researcher at NASA’s Jet Propulsion Laboratory. “We can see quite a few signatures related to topographic features such as large flat regions, small concavities and ridges on the surface of the nucleus.”

I honestly thought we’d see a more irregular shape assuming that astronomers were correct in thinking that BA14 broke off from its parent 252P/LINEAR though it’s possible it happened so long ago that the “damage” has been repaired by vaporizing ice softening its contours.

Comets are as dark as charcoal but appear light only because the sun illuminates them against the blackness of outer space. I shone a flashlight on a charcoal briquette (left) to simulate comet lighting. The same charcoal when viewed in normal light appears black. Credit: Bob King
Comets are as dark as charcoal but appear light only because the sun illuminates them against the blackness of outer space. I shone a flashlight on a charcoal briquette (left) to simulate comet lighting. The same charcoal when viewed in normal light appears black. Credit: Bob King

Radar also shows that the comet is rotating on its axis once every 35 to 40 hours. While radar eyes focused on BA14, Vishnu Reddy, of the Planetary Science Institute, Tucson, Arizona, used the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii to examine the comet in infrared light. He discovered its dark surface reflects less than 3% of the sunlight that falls on it. The infrared data is expected to yield clues of the comet’s composition as well.

Illustration of Comet 67P/C-G brought down to Earth in the city of Los Angeles, Calif. Compare to the same image (below) as viewed in space. Credit: ESA and anosmicovni
Illustration of Comet 67P/Churyumov-Gerasimenko brought down to Earth in the city of Los Angeles, Calif. Not only can we appreciate its size but also its truly dark surface.  Credit: ESA and anosmicovni

Comets are exceptionally dark objects often compared to the appearance of a fresh asphalt road or parking lot. They appear bright in photos because seen against the blackness of space, they’re still reflective enough to stand out. Comet 67P/Churyumov-Gerasimenko, still the apple of the orbiter Rosetta’s eye, is similarly dark, reflecting about 4% of sunlight.

What makes comets so dark even though they composed primarily of ice? Astronomers believe a comet grows a dark ‘skin’ both from accumulated dust and irradiation of its pristine ices by cosmic rays. Cosmic rays loosen oxygen atoms from water ice, freeing them to combine with simple carbon molecules present on comets to form larger, more complex and darker compounds resembling tars and crude oil. Dust settles on a comet’s surface after it’s set free from ice that vaporizes in sunlight.

Comet 67P/C-G photographed from a distance of just 7.5 miles (12 kilometers) on March 19, 2016 by Rosetta's Navcam. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0.
What a view! Comet 67P/C-G photographed from a distance of just 7.5 miles (12 kilometers) on March 19, 2016 by Rosetta’s Navcam. The largest boulder to the right is Cheops, which stands about 82 feet (25 meters) high. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

I live in Minnesota, where our annual State Fair features every kind of deep-fried food you can imagine: deep-fried Twinkies, deep-fried fruit, deep-fried bacon and even deep-fried Smores. Just now, I can’t shake the thought that comets are just another deep-fried confection made of pristine, 4.5-billion-year-old ice toasted by eons of sunlight and cosmic bombardment.

Awesome New Radar Images of Asteroid 2004 BL86

Individual radar images of 2004 BL86 and its moon. The asteroid appears very lumpy, possibly from unresolved crater rims. The moon appears elongated but that may be an artifact and not its true shape. Credit: NASA


New video of 2004 BL86 and its moon

Newly processed images of asteroid 2004 BL86 made during its brush with Earth Monday night reveal fresh details of its lumpy surface and orbiting moon. We’ve learned from both optical and radar data that Alpha, the main body, spins once every 2.6 hours. Beta (the moon) spins more slowly.

The images were made by bouncing radio waves off the surface of the bodies using NASA’s 230-foot-wide (70-meter) Deep Space Network antenna at Goldstone, Calif.  Radar “pinging” reveals information about the shape, velocity, rotation rate and surface features of close-approaching asteroids. But the resulting images can be confusing to interpret. Why? Because they’re not really photos as we know it.

For one, the moon appears to be revolving perpendicular to the main body which would be very unusual. Most moons orbit their primary approximately in the plane of its equator like Earth’s moon and Jupiter’s four Galilean moons. That’s almost certainly the case with Beta. Radar imagery is assembled from echoes or radio signals returned from the asteroid after bouncing off its surface. Unlike an optical image, we see the asteroid by reflected pulses of radio energy beamed from the antenna. To interpret them, we’ll need to put on our radar glasses.

Bright areas don’t necessarily appear bright to the eye because radar sees the world differently. Metallic asteroids appear much brighter than stony types; rougher surfaces also look brighter than smooth ones.  In a sense these aren’t pictures at all but graphs of the radar pulse’s time delay, Doppler shift and intensity that have been converted into an image.

Another set of images of 2004 BL86 and its moon. Credit: NAIC Observatory / Arecibo Observatory
Another set of images of 2004 BL86 and its moon. Credit: NAIC Observatory / Arecibo Observatory

In the images above, the left to right direction or x-axis in the photo plots the toward and away motion or Doppler shift of the asteroid. You’ll recall that light from an object approaching Earth gets bunched up into shorter wavelengths or blue-shifted compared to red-shifted light given off by an object moving away from Earth. A more rapidly rotating object will appear larger than one spinning slowly. The moon appears elongated probably because it’s rotating more slowly than the Alpha primary.

Meanwhile, the up and down direction or y-axis in the images shows the time delay in the reflected radar pulse on its return trip to the transmitter. Movement up and down indicates a change in 2004 BL86’s distance from the transmitter, and movement left to right indicates rotation. Brightness variations depend on the strength of the returned signal with more radar-reflective areas appearing brighter. The moon appears quite bright because – assuming it’s rotating more slowly – the total signal strength is concentrated in one small area compared to being spread out by the faster-spinning main body.

If that’s not enough to wrap your brain around, consider that any particular point in the image maps to multiple points on the real asteroid. That means no matter how oddly shaped 2004 BL86 is in real life, it appears round or oval in radar images. Only multiple observations over time can help us learn the true shape of the asteroid.

You’ll often notice that radar images of asteroids appear to be lighted from directly above or below. The brighter edge indicates the radar pulse is returning from the leading edge of the object, the region closest to the dish. The further down you go in the image, the farther away that part of the asteroid is from the radar and the darker it appears.

Imagine for a moment an asteroid that’s either not rotating or rotating with one of its poles pointed exactly toward Earth. In radar images it would appear as a vertical line!

If you’re curious to learn more about the nature of radar images, here are two great resources:

How Radio Telescopes Get “Images” of Asteroids by Emily Lakdawalla
* Goldstone Solar System Radar Observatory: Earth-Based Planetary Mission Support and Unique Science Results

Cassini Sees a “Zen Garden” on Titan

Radar image of rows of dunes on Titan. Credit: NASA/JPL-Caltech

Looking like the flowing designs carved by a Zen gardener’s rake, long parallel dunes of hydrocarbon sand stretch across the surface of Saturn’s moon Titan. The image above, acquired by Cassini in July 2013, reveals these intriguing and remarkably Earthlike landforms in unprecedented detail via radar, which can easily pierce through Titan’s thick clouds.

I’m feeling a little more enlightened already.

Although it piles into dunes like sand does here, Titan’s sand is not the same as what you’d find on a beach here on Earth. According to an ESA “Space in Images” article:

While our sand is composed of silicates, the ‘sand’ of these alien dunes is formed from grains of organic materials about the same size as particles of our beach sand. The small size and smoothness of these grains means that the flowing lines carved into the dunes show up as dark to the human eye.

Titan's surface is almost completely hidden from view by its thick orange "smog" (NASA/JPL-Caltech/SSI. Composite by J. Major)
Titan’s surface is almost completely hidden from view by its thick orange “smog” (NASA/JPL-Caltech/SSI. Composite by J. Major)

Radar imaging, although capable of seeing through Titan’s opaque orange atmosphere, doesn’t capture visible-light images. Instead it’s sensitive to the varying textures of a landscape as they reflect microwaves; the smoother an object or an area is the darker it appears to radar, while irregular, rugged terrain shows up radar-bright.

The pixelated “seam” cutting horizontally across the center is the result of image artifacting.

Learn more about Cassini’s RADAR instrument here, and read more about this image on the ESA site here.

Evidence Of Giant, Growing Louisiana Sinkhole Showed Up In Radar Before Collapse: NASA

A 25-acre sinkhole near Bayou Corne, Louisiana that formed in Aug. 2012. In 2014, a new analysis of NASA radar data found that the sinkhole was evident in that information before its collapse. Credit: On Wings of Care, New Orleans, La.

A Louisiana sinkhole the size of 19 American football fields shifted sideways in radar measurements before its collapse and resulting evacuations in 2012, a study reveals.

The implication is that if certain types of radar measurements are collected regularly from above, it is possible to see some sinkholes before they collapse. The researchers added, however, that their discovery was “serendipitous” and there are no plans to immediately use a NASA robotic Gulfstream plane used for the study to fly over spots that could be vulnerable to sinkholes.

Data showed the ground near Bayou Corne moving horizontally up to 10.2 inches (26 centimeters) toward where the sinkhole appeared suddenly in August 2012. The hole started out at about 2 acres of size (1 hectare) — an area smaller than the initial ground movements — and now measures about 25 acres (10 hectares).

The research was published in the journal Geology in February, and was first made available online in December. NASA highlighted the information in a press release published in early March.

“While horizontal surface deformations had not previously been considered a signature of sinkholes, the new study shows they can precede sinkhole formation well in advance,” stated Cathleen Jones, leader of the research and a part of NASA’s Jet Propulsion Laboratory in California.

Regions and rock types of the United States that could be vulnerable to sinkholes. Credit: U.S. Geological Survey
Regions and rock types of the United States that could be vulnerable to sinkholes. Credit: U.S. Geological Survey

“This kind of movement may be more common than previously thought, particularly in areas with loose soil near the surface.”

Jones and her NASA JPL colleague, Blom, found the information in NASA’s interferometric synthetic aperture radar (inSAR), which flew over the region in June 2011 and July 2012 on the agency’s Uninhabitated Aerial Vehicle Synthetic Aperture Radar. The radar can see shifts in the Earth’s surface.

The sinkhole — which is full of water and ground-up solids and is still getting bigger — collapsed after several small earthquakes and after the community became aware of “bubbling natural gas” in the area, NASA stated.

A sinkhole threatens the nearby community of Bayou Corne, Louisiana in this image released on NASA's website in March 2014. Credit: NASA/JPL-Caltech
A sinkhole threatens the nearby community of Bayou Corne, Louisiana in this image released on NASA’s website in March 2014. Credit: NASA/JPL-Caltech

“It was caused by the collapse of a sidewall of an underground storage cavity connected to a nearby well operated by Texas Brine Company and owned by Occidental Petroleum,” the agency added.

“On-site investigation revealed the storage cavity, located more than 3,000 feet (914 meters) underground, had been mined closer to the edge of the subterranean Napoleonville salt dome than thought.” (A salt dome is a location in sedimentary rocks where salt is pushed up beneath the surface.)

Measurements of the area were taken as recently as October 2013, as the growing sinkhole is threatening the nearby community as well as a highway in the region.

Source: NASA

Tonight’s Harvest Moon Is For The Birds … Really!

The moon provides the perfect backdrop for watching birds migrate at night. Observers with spotting scopes and small telescopes can watch the show anytime the moon is at or near full. Photo illustration: Bob King

Tonight’s the Harvest Moon, the full Moon closest to the fall equinox. A perfect time to catch a big orange Moon on the horizon AND the annual fall bird migration. Every September and October anyone with a small telescope or spotting scope magnifying 30x can enjoy the sight of one bird after another flying over the cratered lunar landscape. It’s so easy.

Point your telescope at the Moon and watch for dark silhouettes to flutter across its face. Because the angle of the full Moon’s path to the horizon is very shallow in September and October, the time difference between successive moonrises is only about 20-30 minutes instead of the usual 50-60. That means you’ll catch both moonlight and bird flight on successive nights without having to stay up late.

The Harvest Moon rises over Lake Superior in Duluth, Minn. When you’re out enjoying this year’s full moon on Wednesday and Thursday nights, watch for the dark band you see in the photo. That’s the Earth’s shadow. It’s visible for about 15-20 after sunset and topped by the pink-tinged Belt of Venus, where the atmosphere is still reflecting reddened sunlight. Credit: Bob King
The Harvest Moon rises over Lake Superior in Duluth, Minn last September. When you’re out moon and birdwatching, look for the dark band below the rising moon. That’s the Earth’s shadow. It’s visible for about 15-20 after sunset and topped by the pink-tinged “Belt of Venus”, where the atmosphere is still reflecting reddened sunlight. Credit: Bob King

Many birds migrate at night both because it’s cooler and to avoid predators that could otherwise pick them off in a daylight run. Identifying the many warblers, blackbirds, sparrows, vireos, orioles and other species that fly across the moon while we sleep may be next to impossible for anyone but an expert, but seeing them is easy.  Two night ago for fun, I counted a dozen birds in the five-minute interval around 10 o’clock through my 10-inch telescope at low power (76x). Assuming they continued to fly by at a steady rate, I could potentially have spotted 144 birds in just an hour’s time.

Two of my favorite migrating birds: the winter wren (left) and chestnut-sided warbler. Credit: Bob King
Two of my favorite migrating birds: the winter wren (left) and chestnut-sided warbler. Credit: Bob King

As you might suspect, most of those birds crossed the Moon from north to south (about two-thirds) with the other third traveling either east to west or northeast to southwest. Only one little silhouette flapped back up north in the ‘wrong’ direction.

According to the Chipper Woods Bird Observatory, located in Indianapolis, most nighttime migrators begin their flight right after sunset and continue until about 2 a.m. Peak time is between 11 p.m. and 1 a.m. Bird typically migrate at altitudes ranging from 1,500 to 5,000 feet, but on some nights, altitudes may range from 6,000 and 9,000 feet. I could tell the high ones from the low ones by their size and sharpness. Nearby birds flew by out of focus, while distant ones were sharply defined and took longer to cross the moon.

Check out this animated wave of bird migration after sunset on Aug. 27, 2013 made with NEXRAD. Birds are visible funneling down both shores of Lake Superior and moving south of Duluth, Minn (city at center). Credit: NWS
Check out this animation showing a wave of bird migration after sunset on Aug. 27 made with NEXRAD. Birds are visible funneling down both shores of Lake Superior and moving south of Duluth, Minn (city at center). Credit: NWS

While birders may continue to use the moon night birding, they now have a new tool – NEXRAD or NEXt-generation of Weather RADar. About 150 NEXRAD sites were set up in the 1990s to track weather and storm systems across the U.S. When precipitation gets pinged by the radar’s pulse it reflects back a signal that identifies it as rain, snow or whatever. Included in the information is the material’s speed and direction of travel. NEXRAD works equally well on meteorite falls, birds and even insects. While storm activity typically shows up as familiar blotches of yellow, orange and red, birds appear as fine stipplings.  By compiling NEXRAD loops, during particularly heavy migration times, you can actually watch swarms of birds wing their way south. Click HERE for a map of all U.S. NEXRAD locations, each of which links to current radar maps.

On the less technological side, watching birds pass across the Moon in a small telescope is a very pleasant activity reminiscent of meteor shower watching. At first you see nothing, then blip! a bird (meteor) flies by. You wait another minute and then suddenly two more appear in tandem.  Both activities give you that delicious sense of anticipation of what the next moment might hold.

The best time to watch the nighttime avian exodus is around full Moon, when the big, round disk offers an ideal spotlight on the birds’ behavior, but anytime between waxing and waning gibbous phase will work. It’s an enchanting sight to see Earth’s creatures streak across an alien landscape, and another instance of how a distant celestial body “touches” Earth in unexpected ways.

Earth-Passing Asteroid is “An Entirely New Beast”

Radar images of asteroid 1998 QE2 and its satellite on June 7. Each frame in the animation is a sum of 4 images, spaced apart by about 10 minutes. (Arecibo Observatory/NASA/Ellen Howell)

On the last day of May 2013 asteroid 1998 QE2 passed relatively closely by our planet, coming within 6 million kilometers… about 15 times the distance to the Moon. While there was never any chance of an impact by the 3 km-wide asteroid and its surprise 750 meter satellite, astronomers didn’t miss out on the chance to observe the visiting duo as they soared past as it was a prime opportunity to learn more about two unfamiliar members of the Solar System.

By bouncing radar waves off 1998 QE2 from the giant dish at the Arecibo Observatory in Puerto Rico, researchers were able to construct visible images of the asteroid and its ocean-liner-sized moon, as well as obtain spectrum data from NASA’s infrared telescope in Hawaii. What they discovered was quite surprising: QE2 is nothing like any asteroid ever seen near Earth.

The Arecibo radar observatory in Puerto Rico (Image courtesy of the NAIC - Arecibo Observatory, a facility of the NSF)
The 305-meter dish at Arecibo Observatory in Puerto Rico (Image courtesy of the NAIC – Arecibo Observatory, a facility of the NSF)

Both Arecibo Observatory and NASA’s Goldstone Deep Space Communications Complex in California are unique among telescopes on Earth for their ability to resolve features on asteroids when optical telescopes on the ground merely see them as simple points of light. Sensitive radio receivers collect radio signals reflected from the asteroids, and computers turn the radio echoes into images that show features such as craters and, in 1998 QE2’s case, a small orbiting moon.

QE2’s moon appears brighter than the asteroid as it is rotating more slowly; thus its Doppler echoes compress along the Doppler axis of the image and appear stronger.

Of the asteroids that come close to Earth approximately one out of six have moons. Dr. Patrick Taylor, a USRA research astronomer at Arecibo, remarked that “QE2’s moon is roughly one-quarter the size of the main asteroid,” which itself is a lumpy, battered world.

Dr. Taylor also noted that our own Moon is a quarter the size of Earth.

QE2’s moon will help scientists determine the mass of the main asteroid and what minerals make up the asteroid-moon system. “Being able to determine its mass from the moon helps us understand better the asteroid’s material,” said Dr. Ellen Howell, a USRA research astronomer at Arecibo Observatory who took both radar images of the asteroid at Arecibo and optical and infrared images using the Infrared Telescope Facility in Hawaii. While the optical images do not show detail of the asteroid’s surface, like the radar images do, instead they allow for measurements of what it is made of.

“What makes this asteroid so interesting, aside from being an excellent target for radar imaging,” Howell said, “is the color and small moon.”

Radar images of asteroid 1998 QE2 (bottom) and its satellite (top) on June 6.
Radar images of asteroid 1998 QE2 and its satellite (top) on June 6. (Arecibo Observatory/NASA/Ellen Howell)

“Asteroid QE2 is dark, red, and primitive – that is, it hasn’t been heated or melted as much as other asteroids,” continued Howell. “QE2 is nothing like any asteroid we’ve visited with a spacecraft, or plan to, or that we have meteorites from. It’s an entirely new beast in the menagerie of asteroids near Earth.”

Spectrum of 1998 QE2 taken May 30 at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea was “red sloped and linear,” indicating a primitive composition not matching any meteorites currently in their collection.

For more radar images of 1998 QE2, visit the Arecibo planetary radar page here.

Source: Universities Space Research Association press release.

Close Passing Asteroid 2013 ET Gets Its Picture Taken

These radar images of asteroid 2013 ET were obtained when the asteroid was about 693,000 miles from Earth. The images span 1.3 hours or about 1/3 or the asteroid's rotation rate. Click to enlarge. Credit: NASA/JPL-Caltech/GSSR

Another space rock sat pretty for NASA’s big dish photographer. The 70-meter (230-feet) Goldstone antenna zinged radio waves at 2013 ET on March 10 when the asteroid flew by Earth at 2.9 lunar distances or about 693,000 miles (1.1 million km).

By studying the returned echoes, astronomers pieced together 18 images of a rugged, irregular-shaped object about 130 feet (40 m) across. Radar measurements of an asteroid’s distance and speed nail down its orbit with great accuracy, enabling scientists to predict whether or not  it might become a danger to the planet at a future date.

The Goldstone dish dish, based in the Mojave Desert near Barstow, Cal. is used for radar mapping of planets, comets, asteroids and the moon. Credit: NASA
The Goldstone dish dish, based in the Mojave Desert near Barstow, Cal. is used for radar mapping of planets, comets, asteroids and the moon. Credit: NASA

It’s also the only way outside of a sending a spacecraft to the object of seeing a small asteroid’s shape and surface features. Most optical telescopes cannot resolve asteroids as anything more than points of light.

By convention, radar images appear “lit” from above. That’s the side closest to the antenna. As you examine a radar image from top to bottom, distance from the antenna increases and the asteroid fades. If the equator of the asteroid faces the antenna, it will appear brightly illuminated at the top of the image. If the antenna faces one of the poles, the pole will be on top and lit up. It takes a bit of getting used to.

Nine radar images of near-Earth asteroid 2007 PA8 obtained between by NASA's 230-foot-wide (70-meter) Deep Space Network antenna. The part of the asteroid closest to the antenna is at top. Credit: NASA/JPL-Caltech
Nine radar images of near-Earth asteroid 2007 PA8 obtained between by NASA’s 230-foot-wide (70-meter) Deep Space Network antenna. The part of the asteroid closest to the antenna is at top. Credit: NASA/JPL-Caltech

The asteroid’s width in the images depends on the asteroid’s rotation rate and the antenna’s perspective. If the antenna stares directly down over the equator and the asteroid rotates rapidly, the images will be stretched from Doppler-shifting of the returned radar echo.

Radio waves are a form of light just like the familiar colors of the rainbow. If radio light is moving toward you, its waves bunch together more tightly and appear slightly bluer than if they were at rest. Astronomers call this a Doppler shift or blueshift.  If they’re moving away, the light waves get stretched and become “redshifted”.

Three views of asteroid 4179 Toutatis made in early Dec. 2012 by Goldstone. In all three, distance from the antenna increases from top to bottom and Doppler frequency increases toward the right, indicating Toutatis rotates from right to left, since that's the side of the asteroid approaching the observer. Credit: NASA/JPL-Caltech
Three views of asteroid 4179 Toutatis made in early Dec. 2012 by Goldstone. In all three, distance from the antenna increases from top to bottom and Doppler frequency increases toward the right, indicating Toutatis rotates from right to left, since that’s the side of the asteroid approaching the observer. Credit: NASA/JPL-Caltech

A slow-rotating asteroid will appear narrower to radar eyes, and if it doesn’t rotate at all, will show up as a “spike” of light. When the antenna happens to be point directly at a pole, the asteroid will appear to be rotating neither toward nor away from the observer and also look like a spike.

Most asteroids fall somewhere in between, and their radar portraits are close to their true shapes. Radar images show us surface textures, shape, size, rotation rate and surface features like craters. 2013 ET joins the ranks of numerous asteroids probed by radio waves from Earth as we try to grasp the complexity of our planetary neighborhood while hoping for we don’t stare down cosmic disaster anytime soon.

Asteroid Toutatis Tumbles in New Video from NASA

NASA has compiled the radar images taken of Asteroid Toutatis during its flyby of Earth this week to create a short movie, which shows the asteroid slowly tumbling. The 64-frame movie was generated from data gathered on December 12 and 13, 2012 by NASA’s 70-meter Goldstone Deep Space Network antenna in Goldstone, California.

NASA provides more information about the video and (4179) Toutatis:

On Dec. 12, the day of its closest approach to Earth, Toutatis was about 18 lunar distances, 4.3 million miles (6.9 million kilometers) from Earth. On Dec. 13, the asteroid was about 4.4 million miles (7 million kilometers), or about 18.2 lunar distances.

The radar data images of asteroid Toutatis indicate that it is an elongated, irregularly shaped object with ridges and perhaps craters. Along with shape detail, scientists are also seeing some interesting bright glints that could be surface boulders. Toutatis has a very slow, tumbling rotational state. The asteroid rotates about its long axis every 5.4 days and precesses (changes the orientation of its rotational axis) like a wobbling, badly thrown football, every 7.4 days.

The orbit of Toutatis is well understood. The next time Toutatis will approach at least this close to Earth is in November of 2069, when the asteroid will safely fly by at about 7.7 lunar distances, or 1.8 million miles (3 million kilometers). An analysis indicates there is zero possibility of an Earth impact over the entire interval over which its motion can be accurately computed, which is about the next four centuries.

This radar data imagery will help scientists improve their understanding of the asteroid’s spin state, which will also help them understand its interior.

The resolution in the image frames is 12 feet (3.75 meters) per pixel.

Source: NASA

Say Hello to Asteroid 2007 PA8

Radar images of asteroid 2007 PA8 acquired on October 28, 29 and 30. (NASA/JPL-Caltech/Gemini)

Take a good look at asteroid 2007 PA8 — over the past week it was making its closest pass of Earth for the next 200 years… and NASA’s 230-foot (70-meter) -wide Deep Space Network antenna at Goldstone, California snapped its picture as it went by.

All right, maybe no “pictures” were “snapped”… 2007 PA8 is a small, dark body that only came within four million miles (6.5 million kilometers) today, Nov. 5 (0.043 AU, or 17 times the distance from Earth to the Moon). But the radar capabilities of the Deep Space Network antenna in California’s Mojave Desert can bounce radar off even the darkest asteroids, obtaining data that can be used to create a detailed portrait.

In the image above, a composite of radar data acquired on October 28, 29 and 30, we can see the irregular shape of 2007 PA8 as it rotates slowly — only once every 3-4 days. The perspective is looking “down” at the 1-mile (1.6-km) -wide asteroid’s north pole, showing ridges and perhaps even some craters.

Although classified as a Potentially Hazardous Asteroid (PHA) by the IAU’s Minor Planet Center the trajectory of 2007 PA8 is well understood. It is not expected to pose any impact threat to Earth in the near or foreseeable future.

2007 PA8 was discovered by LINEAR on August 9, 2007.

Read more about asteroid radar imaging here, and find out more about asteroids at JPL’s Asteroid Watch site here.

Get more information on the known properties of 2007 PA8 here.

Source: NASA Solar System Exploration. Image credits: NASA/JPL-Caltech/Gemini