Astronomers are Losing the Night Sky (and Radio Sky) to Satellite Megaconstellations

How constellation satellites can create light pollution for radio telescopes. Credit: IAU CPS/NOIRLab/SKAO

When was the last time you looked up into the night sky and saw the Milky Way? If you happen to live in one of the truly remote areas of the world, your answer might be “last night.” If you live in one of the generally “rural” areas of your country, you might remember how you used to see the Milky Way regularly, but the rise of LEDs, particularly the blue/white ones, has gradually erased the Milky Way from your nights. For the large majority of humans on our small world, the answer is “never.”

Continue reading “Astronomers are Losing the Night Sky (and Radio Sky) to Satellite Megaconstellations”

Scientists Develop Technique to Create 3D Models of Cosmic Structures

Milky Way centre by the MeerKAT array of 65 radio dishes in South Africa. Credit: SAROA

For decades, astronomers have used powerful instruments to capture images of the cosmos in various wavelengths. This includes optical images, where visible light is observed, and images that capture non-visible radiation, ranging from the radio and infrared to the X-ray and Gamma-ray wavelengths. However, these two-dimensional images do not allow scientists to infer what the objects look like in three dimensions. Transforming these images into a 3D space could lead to a better understanding of the physics that drives our Universe.

In a recent study, an international team of researchers led by the Minnesota Institute for Astrophysics (MIfA) at the University of Minnesota announced the development of a new technique for radio astronomy. This first-ever technique reconstructs radio images into three-dimensional “Pseudo3D cubes” that allow astronomers to get a better idea of what cosmic structures look like. This technique could lead to an improved understanding of how galaxies, massive black holes, jet structures, and the Universe work.

Continue reading “Scientists Develop Technique to Create 3D Models of Cosmic Structures”

New Report Details What Happened to the Arecibo Observatory

The Arecibo Radio Telescope. Though it's decommissioned now, Arecibo Data may explain 1977's mysterious Wow! Signal. Image Credit: UCF

In 1963, the Arecibo Observatory became operational on the island of Puerto Rico. Measuring 305 meters (~1000 ft) in diameter, Arecibo’s spherical reflector dish was the largest radio telescope in the world at the time – a record it maintained until 2016 with the construction of the Five-hundred-meter Aperture Spherical Telescope (FAST) in China. In December 2020, Arecibo’s reflector dish collapsed after some of its support cables snapped, leading the National Science Foundation (NSF) to decommission the Observatory.

Shortly thereafter, the NSF and the University of Central Florida launched investigations to determine what caused the collapse. After nearly four years, the Committee on Analysis of Causes of Failure and Collapse of the 305-Meter Telescope at the Arecibo Observatory released an official report that details their findings. According to the report, the collapse was due to weakened infrastructure caused by long-term zinc creep-induced failure in the telescope’s cable sockets and previous damage caused by Hurricane Maria.

Continue reading “New Report Details What Happened to the Arecibo Observatory”

Second Generation Starlinks are 32 Times Brighter in Radio Wavelengths

Illustration Starlink satellites over LOFAR. Credit: Daniëlle Futselaar

Global internet access does seem like a worthy enterprise yet the rise of satellite megaconstellations there is a danger of the night sky becoming ruined. Astronomers the world over are keeping an eye on the impact these satellites are having on the night sky. Until recently the concerns have been relating to the reflection of visible light against the sky hindering night time observations. A recent study shows that the second-generation Starlink satellites leak 32 times the radio signal than the previous models. Are their presence putting at risk the radio sky now too?

Continue reading “Second Generation Starlinks are 32 Times Brighter in Radio Wavelengths”

Astronomers Have a New Way to Bypass Earth's Atmosphere

Left shows an image of a piece of sky observed with the hitherto best calibration technique. Right shows the same piece of sky with the new technique. More detail is visible, and what were once large, blurry patches now appear as single points. (c) LOFAR/Groeneveld et al.

Radio telescopes have an advantage over optical telescopes, in that radio telescope can be used even in cloudy conditions here on Earth. That’s because the longer wavelengths of radio waves can pass through clouds unhindered. However, some wavelengths are still partially obscured by portions of Earth’s atmosphere, especially by the ionosphere which traps human-made Radio Frequency Interference (RFI).  

Astronomers have developed a new calibration technique that allows them to take sharp images in low radio frequencies — between 16 and 30 MHz — for the first time, bypassing the influence of the ionosphere. The astronomers say this will allow them to study things like plasmas emanating from ancient black holes and perhaps even detect exoplanets that orbit small stars.

Continue reading “Astronomers Have a New Way to Bypass Earth's Atmosphere”

Radio Astronomy: Why study it? What can it teach us about finding life beyond Earth?

Image of radio telescopes at the Karl G. Jansky Very Large Array, located in Socorro, New Mexico. (Credit: National Radio Astronomy Observatory)

Universe Today has investigated the significance of studying impact cratersplanetary surfacesexoplanetsastrobiologysolar physicscometsplanetary atmospheresplanetary geophysics, cosmochemistry, and meteorites, and how these scientific fields contribute to researchers and the public gain greater insight into our place in the universe and finding life beyond Earth. Here, will discuss the field of radio astronomy with Dr. Wael Farah, who is a research scientist at the SETI Institute, about how radio astronomy teaches us about the myriad of celestial objects that populate our universe, along with the benefits and challenges, finding life beyond Earth, and how upcoming students can pursue studying radio astronomy. But what is radio astronomy and why is it so important to study?

Continue reading “Radio Astronomy: Why study it? What can it teach us about finding life beyond Earth?”

Using Smart Materials To Deploy A Dark Age Explorer

One of the most significant constraints on the size of objects placed into orbit is the size of the fairing used to put them there. Large telescopes must be stuffed into a relatively small fairing housing and deployed to their full size, sometimes using complicated processes. But even with those processes, there is still an upper limit to how giant a telescope can be. That might be changing soon, with the advent of smart materials – particularly on a project funded by NASA’s Institute for Advanced Concepts (NIAC) that would allow for a kilometer-scale radio telescope in space.

Continue reading “Using Smart Materials To Deploy A Dark Age Explorer”

A Radio Telescope on the Moon Could Help Us Understand the First 50 Million Years of the Universe

Artist's illustration of a radio telescope inside a crater on the Moon. Credit: NASA/JPL-Caltech

In the coming decade, multiple space agencies and commercial space providers are determined to return astronauts to the Moon and build the necessary infrastructure for long-duration stays there. This includes the Lunar Gateway and the Artemis Base Camp, a collaborative effort led by NASA with support from the ESA, CSA, and JAXA, and the Russo-Chinese International Lunar Research Station (ILRS). In addition, several agencies are exploring the possibility of building a radio observatory on the far side of the Moon, where it could operate entirely free of radio interference.

For years, researchers have advocated for such an observatory because of the research that such an observatory would enable. This includes the ability to study the Universe during the early “Cosmic Dark Ages,” even before the first stars and galaxies formed (about 50 million years after the Big Bang). While there have been many predictions about what kind of science a lunar-based radio observatory could perform, a new research study from Tel Aviv University has predicted (for the first time) what groundbreaking results this observatory could actually obtain.

Continue reading “A Radio Telescope on the Moon Could Help Us Understand the First 50 Million Years of the Universe”

Now Astronomers have Discovered “Ultra-Fast Radio Bursts” Lasting Millionths of a Second

Artist rendition of a radio telescope discovering ultra-fast radio bursts that were recently discovered and the focus of this recent study. (Credit: Daniëlle Futselaar/www.artsource.nl)

A recent study published in Nature Astronomy examines the discovery of what astronomers are dubbing “ultra-fast radio bursts”, a new type of fast radio bursts (FRBs) that the team determined lasts for a mind-boggling ten millionths of a second or less. Traditionally, FRBs have been found to last only thousandths of a second, but this study builds on a 2021 study that hypothesized FRBs could possibly last for millionths of a second. This also comes after astronomers recently announced the discovery of the oldest and farthest FRB ever observed, approximately 8 billion light-years from Earth.

Continue reading “Now Astronomers have Discovered “Ultra-Fast Radio Bursts” Lasting Millionths of a Second”

A Sneak Peek at the Next Generation Very Large Array’s New Antennae

Credit: National Science Foundation/Associated Universities, Inc./National Radio Astronomy Observatory/J.Malusky

The National Radio Astronomy Observatory (NRAO) recently disclosed a prototype radio telescope antennae for its next generation Very Large Array (ngVLA) to a group of press, scientists, engineers, and government and business leaders from the United States and Germany at the end of a workshop held at the Max Planck Institute for Mathematics in the Sciences in Leipzig. While construction on the ngVLA isn’t slated to begin until 2026, this recent unveiling provided an opportunity for mtex antenna technology to present its 18-meter dish, which consists of 76 individual aluminum panels arranged in an 8-sided shape.

Continue reading “A Sneak Peek at the Next Generation Very Large Array’s New Antennae”