Fast Radio Bursts can now be Tracked in Real-Time

The CHIME cylindrical parabolic radio telescope near Penticton, BC. Credit: CHIME/DRAO/NRC

Located in the Okanagan Valley outside of Penticton, British Columbia, there is a massive radio observatory dedicated to observing cosmic radio phenomena. It’s called the Canadian Hydrogen Intensity Mapping Experiment (CHIME), a cylindrical parabolic radio telescope that looks like what snowboarders would call a “half-pipe.” This array is part of the Dominion Radio Astrophysical Observatory (DRAO), overseen by the National Research Council (NRC).

Originally, the observatory was meant to detect radio waves from neutral hydrogen gas in the early Universe. Today, it is used for other objectives, such as detecting and studying Fast Radio Bursts (FRBs). Since it became operational, CHIME scientists have been busy sorting through terabytes of data to pinpoint signals, often finding several in a single day. To assist with all this data-mining and coordinate CHIMEs efforts with other facilities worldwide, scientists from McGill University have developed a new system for sharing the enormous amount of data CHIME generates.

Continue reading “Fast Radio Bursts can now be Tracked in Real-Time”

Twin Stars Prove Einstein at Least 99.99% Right

Artistic impression of the Double Pulsar system, where two active pulsars orbit each other in just 147 min. The orbital motion of these extremely dense neutrons star causes a number of relativistic effects, including the creation of ripples in spacetime known as gravitational waves. The gravitational waves carry away energy from the systems which shrinks by about 7mm per days as a result. The corresponding measurement agrees with the prediction of general relativity within 0.013%. The picture at high resolution and two alternative versions (1b, 1c) are accessible in the left column. [less] © Michael Kramer/MPIfR

More than a hundred years have passed since Einstein formalized his theory of General Relativity (GR), the geometric theory of gravitation that revolutionized our understanding of the Universe. And yet, astronomers are still subjecting it to rigorous tests, hoping to find deviations from this established theory. The reason is simple: any indication of physics beyond GR would open new windows onto the Universe and help resolve some of the deepest mysteries about the cosmos.

One of the most rigorous tests ever was recently conducted by an international team of astronomers led by Michael Kramer of the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn, Germany. Using seven radio telescopes from across the world, Kramer and his colleagues observed a unique pair of pulsars for 16 years. In the process, they observed effects predicted by GR for the first time, and with an accuracy of at least 99.99%!

Continue reading “Twin Stars Prove Einstein at Least 99.99% Right”

M87’s Supermassive Black Hole is Spewing out a Spiraling jet of Material

Patterns in nature often occur in more than one place.  Spirals, symmetry, and chaos all impact natural phenomena, from the shape of a shell to the course of a river.  So it shouldn’t come as a surprise that one of the most famous and fundamental shapes from biology also appears in astrophysics. Yes, scientists have found a double-helix structure in the magnetic field of M87.  And it looks just like a super enlarged DNA strand.

Continue reading “M87’s Supermassive Black Hole is Spewing out a Spiraling jet of Material”

LOFAR Sees Strange Radio Signals Hinting at Hidden Exoplanets

LOFAR

LOFAR sees ‘exoplanet aurorae’ near distant red dwarf suns.

A powerful new method may help to detect exoplanets, via the aurorae they induce on their host star. The finding was announced recently from ASTRON’s Low Frequency Array radio telescope (LOFAR), based out of Exloo in the Netherlands, and sprawled across sites in Europe.

Continue reading “LOFAR Sees Strange Radio Signals Hinting at Hidden Exoplanets”

ALMA’s new Receivers Will let it see Longer Wavelengths, Peering Closer to the Beginning of the Universe

ALMA is an array of dishes located at the Atacama Desert in Chile. Image: ALMA (ESO/NAOJ/NRAO), O. Dessibourg

The ALMA telescope is getting a new set of receivers, enabling it to detect wavelengths down to 8.5 mm. These wavelengths are crucial for observations of the transformative epoch of reionization, when the first stars to appear in the universe unleashed a fury of radiation.

Continue reading “ALMA’s new Receivers Will let it see Longer Wavelengths, Peering Closer to the Beginning of the Universe”

If the First Black Holes Collapsed Directly, Could we Detect Radio Signals From Those Moments?

This artist’s impression shows a possible seed for the formation of a supermassive black hole. Credit: NASA/CXC/M. Weiss

The universe is littered with supermassive black holes. There’s one a mere 30,000 light-years away in the center of the Milky Way. Most galaxies have one, and some of them are more massive than a billion stars. We know that many supermassive black holes formed early in the universe. For example, the quasar TON 618 is powered by a 66 billion solar mass black hole. Since its light travels nearly 11 billion years to reach us, TON 618 was already huge when the universe was just a few billion years old. So how did these black holes grow so massive so quickly?

Continue reading “If the First Black Holes Collapsed Directly, Could we Detect Radio Signals From Those Moments?”

CHIME Detected Over 500 Fast Radio Burst in its First Year, Providing new Clues to What’s Causing Them

CHIME consists of four metal "half-pipes", each one 100 meters long. Image Credit: CHIME/Andre Renard, Dunlap Institute.
CHIME consists of four metal "half-pipes", each one 100 meters long. Image Credit: CHIME/Andre Renard, Dunlap Institute.

Much like Dark Matter and Dark Energy, Fast Radio Burst (FRBs) are one of those crazy cosmic phenomena that continue to mystify astronomers. These incredibly bright flashes register only in the radio band of the electromagnetic spectrum, occur suddenly, and last only a few milliseconds before vanishing without a trace. As a result, observing them with a radio telescope is rather challenging and requires extremely precise timing.

Hence why the Dominion Radio Astrophysical Observatory (DRAO) in British Columbia launched the Canadian Hydrogen Intensity Mapping Experiment (CHIME) in 2017. Along with their partners at the National Radio Astronomy Observatory (NRAO), the Massachusetts Institute of Technology (MIT), the Perimeter Institute, and multiple universities, CHIME detected more than 500 FRBs in its first year of operation (and more than 1000 since it commenced operations)!

Continue reading “CHIME Detected Over 500 Fast Radio Burst in its First Year, Providing new Clues to What’s Causing Them”

60 Years Later, is it Time to Update the Drake Equation?

The Drake Equation, a mathematical formula for the probability of finding life or advanced civilizations in the universe. Credit: University of Rochester

On November 1st, 1961, a number of prominent scientists converged on the National Radio Astronomy Observatory in Green Bank, West Virginia, for a three-day conference. A year earlier, this facility had been the site of the first modern SETI experiment (Project Ozma), where famed astronomers Frank Drake and Carl Sagan used the Green Bank telescope (aka. “Big Ear”) to monitor two nearby Sun-like stars – Epsilon Eridani and Tau Ceti.

While unsuccessful, Ozma became a focal point for scientists who were interested in this burgeoning field known as the Search for Extraterrestrial Intelligence (SETI). As a result, Drake and Sagan were motivated to hold the very first SETI conference, wherein the subject of looking for possible extraterrestrial radio signals would be discussed. In preparation for the meeting, Drake prepared the following heuristic equation:

N = R* x fp x ne x fl x fi x fc x L

This would come to be known as the “Drake Equation,” which is considered by many to be one of the most renowned equations in the history of science. On the sixtieth anniversary of its creation, John Gertz – a film producer, amateur astronomer, board-member with BreakThrough Listen, and the three-term former chairman of the board for the SETI Institute – argues in a recent paper that a factor by factor reconsideration is in order.

Continue reading “60 Years Later, is it Time to Update the Drake Equation?”

NASA is Getting Serious About a Radio Telescope on the Moon

Artist's illustration of a radio telescope inside a crater on the Moon. Credit: NASA JPL

It’s widely known by now that the “dark side” of the moon, made famous by Pink Floyd, isn’t actually dark. It gets as much sunlight as the side that is tidally locked facing Earth.  However, it is dark in one very important way – it isn’t affected by radio signals emanating from Earth itself.  What’s more, it’s even able to see radio waves that don’t make it down to Earth’s surface, such as those associated with the cosmic “Dark Ages” when the universe was only a few hundred million years old.  Those two facts are the main reasons the far side of the moon has continually been touted as a potential location for a very large radio telescope.  Now, a project sponsored by NASA’s Institute for Advanced Concepts (NIAC) has received more funding to further explore this intriguing concept.

Continue reading “NASA is Getting Serious About a Radio Telescope on the Moon”

Breakthrough Listen Searched for Signals From Intelligent Civilizations Near the Center of the Milky Way

A view of the Green Bank Telescope. Credit: Jiuguang Wang/CC BY-SA 2.0

The Breakthrough Listen project has made several attempts to find evidence of alien civilizations through radio astronomy. Its latest effort focuses attention on the center of our galaxy.

Continue reading “Breakthrough Listen Searched for Signals From Intelligent Civilizations Near the Center of the Milky Way”