The Closest Supernova Since 1604 Is Hissing At Us

Artist’s impression of the supernova flare seen in the Large Magellanic Cloud on February 23rd, 1987. Credit: CAASTRO / Mats Björklund (Magipics).

Thirty years ago, a star that went by the designation of SN 1987A collapsed spectacularly, creating a supernova that was visible from Earth. This was the largest supernova to be visible to the naked eye since Kepler’s Supernova in 1604. Today, this supernova remnant (which is located approximately 168,000 light-years away) is being used by astronomers in the Australian Outback to help refine our understanding of stellar explosions.

Led by a student from the University of Sydney, this international research team is observing the remnant at the lowest-ever radio frequencies. Previously, astronomers knew much about the star’s immediate past by studying the effect the star’s collapse had on the neighboring Large Magellanic Cloud. But by detecting the star’s faintest hisses of radio static, the team was able to observe a great deal more of its history.

The team’s findings, which were published yesterday in the journal Monthly Notices of the Royal Astronomical Society, detail how the astronomers were able to look millions of years farther back in time. Prior to this, astronomers could only observe a tiny fraction of the star’s life cycle before it exploded – 20,000 years (or 0.1%) of its multi-million year life span.

Artist’s impression of the star in its multi-million year long and previously unobservable phase as a large, red supergiant. Credit: CAASTRO / Mats Björklund (Magipics)
Artist’s impression of the star in its multi-million year long and previously unobservable phase as a large, red supergiant. Credit: CAASTRO / Mats Björklund (Magipics)

As such, they were only able to see the star when it was in its final, blue supergiant phase. But with the help of the Murchison Widefield Array (MWA) – a low-frequency radio telescope located at the Murchison Radio-astronomy Observatory (MRO) in the West Australian desert – the radio astronomers were able to see all the way back to when the star was still in its long-lasting red supergiant phase.

In so doing, they were able to observe some interesting things about how this star behaved leading up to the final phase in its life. For instance, they found that SN 1987A lost its matter at a slower rate during its red supergiant phase than was previously assumed. They also observed that it generated slower than expected winds during this period, which pushed into its surrounding environment.

Joseph Callingham, a PhD candidate with the University of Sydney and the ARC Center of Excellence for All-Sky Astrophysics (CAASTRO), is the leader of this research effort. As he stated in a recent RAS press release:

“Just like excavating and studying ancient ruins that teach us about the life of a past civilization, my colleagues and I have used low-frequency radio observations as a window into the star’s life. Our new data improves our knowledge of the composition of space in the region of SN 1987A; we can now go back to our simulations and tweak them, to better reconstruct the physics of supernova explosions.”

Aerial photograph of the core region of the MWA telescope. Credit: mwatelescope.org
Aerial photograph of the core region of the MWA telescope. Credit: mwatelescope.org

The key to finding this new information was the quiet and (some would say) temperamental conditions that the MWA requires to do its thing. Like all radio telescopes, the MWA is located in a remote area to avoid interference from local radio sources, not to mention a dry and elevated area to avoid interference from atmospheric water vapor.

As Professor Gaensler – the former CAASTRO Director and the supervisor of the project – explained, such methods allow for impressive new views of the Universe. “Nobody knew what was happening at low radio frequencies,” he said, “because the signals from our own earthbound FM radio drown out the faint signals from space. Now, by studying the strength of the radio signal, astronomers for the first time can calculate how dense the surrounding gas is, and thus understand the environment of the star before it died.”

These findings will likely help astronomers to understand the life cycle of stars better, which will come in handy when trying to determine what our Sun has in store for us down the road. Further applications will include the hunt for extra-terrestrial life, with astronomers being able to make more accurate estimates on how stellar evolution could effect the odds of life forming in different star systems.

In addition to being home to the MWA, the Murchison Radio-astronomy Observatory (MRO) is also the planned site of the future Square Kilometer Array (SKA). The MWA is one of three telescopes – along with the South African MeerKAT array and the Australian SKA Pathfinder (ASKAP) array – that are designated as a Precursor for the SKA.

Further Reading: Royal Astronomical Society

The Dutch Are Going To The Moon With The Chinese

Radio image of the night sky. Credit: Max Planck Institute for Radio Astronomy, generated by Glyn Haslam.

One of the defining characteristics of the New Space era is partnerships. Whether it is between the private and public sector, different space agencies, or different institutions across the world, collaboration has become the cornerstone to success. Consider the recent agreement between the Netherlands Space Office (NSO) and the Chinese National Space Agency (CNSA) that was announced earlier this week.

In an agreement made possible by the Memorandum of Understanding (MoU) signed in 2015 between the Netherlands and China, a Dutch-built radio antenna will travel to the Moon aboard the Chinese Chang’e 4 satellite, which is scheduled to launch in 2018. Once the lunar exploration mission reaches the Moon, it will deposit the radio antenna on the far side, where it will begin to provide scientists with fascinating new views of the Universe.

The radio antenna itself is also the result of collaboration, between scientists from Radboud University, the Netherlands Institute for Radio Astronomy (ASTRON) and the small satellite company Innovative Solutions in Space (ISIS). After years of research and development, these three organizations have produced an instrument which they hope will usher in a new era of radio astronomy.

The satellite rotates around a fixed point behind the moon – the second Lagrange, or L2, point in the Earth-moon system. This point is located 65,000 kilometres from the moon.. Credit: ru.nl
Diagram showing how the Chang’e 4 satellite will rotate around a fixed point behind the moon – the second Lagrange, or L2, point in the Earth-moon system. Credit: ru.nl

Essentially, radio astronomy involves the study of celestial objects – ranging from stars and galaxies to pulsars, quasars, masers and the Cosmic Microwave Background (CMB) – at radio frequencies. Using radio antennas, radio telescopes, and radio interferometers, this method allows for the study of objects that might otherwise be invisible or hidden in other parts of the electromagnetic spectrum.

One drawback of radio astronomy is the potential for interference. Since only certain wavelengths can pass through the Earth’s atmosphere, and local radio wave sources can throw off readings, radio antennas are usually located in remote areas of the world. A good example of this is the Very-Long Baseline Array (VLBA) located across the US, and the Square Kilometer Array (SKA) under construction in Australia and South Africa.

One other solution is to place radio antennas in space, where they will not be subject to interference or local radio sources. The antenna being produced by Radbound, ASTRON and ISIS is being delivered to the far side of the Moon for just this reason. As the latest space-based radio antenna to be deployed, it will be able to search the cosmos in ways Earth-based arrays cannot, looking for vital clues to the origins of the universe.

As Heino Falke – a professor of Astroparticle Physics and Radio Astronomy at Radboud – explained in a University press release, the deployment of this radio antenna on the far side of the Moon will be an historic achievement:

“Radio astronomers study the universe using radio waves, light coming from stars and planets, for example, which is not visible with the naked eye. We can receive almost all celestial radio wave frequencies here on Earth. We cannot detect radio waves below 30 MHz, however, as these are blocked by our atmosphere. It is these frequencies in particular that contain information about the early universe, which is why we want to measure them.”

The planned Square Kilometer Array will be the world's largest radio telescope when it begins operations in 2018  Swinburne Astronomy Productions for SKA Project Development Office
The planned Square Kilometer Array will be the world’s largest radio telescope when it begins operations in 2018. Credit: SKA Project Development Office/SAP

As it stands, very little is known about this part of the electromagnetic spectrum. As a result, the Dutch radio antenna could be the first to provide information on the development of the earliest structures in the Universe. It is also the first instrument to be sent into space as part of a Chinese space mission.

Alongside Heino Falcke, Marc Klein Wolt – the director of the Radboud Radio Lab – is one of the scientific advisors for the project. For years, he and Falcke have been working towards the deployment of this radio antenna, and have high hopes for the project. As Professor Wolt said about the scientific package he is helping to create:

“The instrument we are developing will be a precursor to a future radio telescope in space. We will ultimately need such a facility to map the early universe and to provide information on the development of the earliest structures in it, like stars and galaxies.”

Together with engineers from ASTRON and ISIS, the Dutch team has accumulated a great deal of expertise from their years working on other radio astronomy projects, which includes experience working on the Low Frequency Array (LOFAR) and the development of the Square Kilometre Array, all of which is being put to work on this new project.

A radio antenna on the far side of the Moon will enable deep space surveys that were never before possible. Credit: NASA Goddard
A radio antenna on the far side of the Moon will enable deep space surveys that were never before possible. Credit: NASA Goddard

Other tasks that this antenna will perform include monitoring space for solar storms, which are known to have a significant impact on telecommunications here on Earth. With a radio antenna on the far side of the Moon, astronomers will be able to better predict such events and prepare for them in advance.

Another benefit will be the ability to measure strong radio pulses from gas giants like Jupiter and Saturn, which will help us to learn more about their rotational speed. Combined with the recent ESO efforts to map Jupiter at IR frequencies, and the data that is already arriving from the Juno mission, this data is likely to lead to some major breakthroughs in our understanding of this mysterious planet.

Last, but certainly not least, the Dutch team wants to create the first map of the early Universe using low-frequency radio data. This map is expected to take shape after two years, once the Moon has completed a few full rotations around the Earth and computer analysis can be completed.

It is also expected that such a map will provide scientists with additional evidence that confirms the Standard Model of Big Bang cosmology (aka. the Lambda CDM model). As with other projects currently in the works, the results are likely to be exciting and groundbreaking!

Further Reading: Radbound University

Supermassive Black Holes In Distant Galaxies Are Mysteriously Aligned

A supermassive black hole has been found in an unusual spot: an isolated region of space where only small, dim galaxies reside. Image credit: NASA/JPL-Caltech
A team of astronomers from South Africa have noticed a series of supermassive black holes in distant galaxies that are all spinning in the same direction. Credit: NASA/JPL-Caltech

In 1974, astronomers detected a massive source of radio wave emissions coming from the center of our galaxy. Within a few decades time, it was concluded that the radio wave source corresponded to a particularly large, spinning black hole. Known as Sagittarius A, this particular black hole is so large that only the designation “supermassive” would do. Since its discovery, astronomers have come to conclude that supermassive black holes (SMBHs) lie at the center of almost all of the known massive galaxies.

But thanks to a recent radio imaging by a team of researchers from the University of Cape Town and University of the Western Cape, in South Africa, it has been further determined that in a region of the distant universe, the SMBHs are all spinning out radio jets in the same direction. This finding, which shows an alignment of the jets of galaxies over a large volume of space, is the first of its kind, and could tell us much about the early Universe.

Continue reading “Supermassive Black Holes In Distant Galaxies Are Mysteriously Aligned”

Fast Radio Bursts On Repeat – Aliens, Or A Rotating Neutron Star?

A team of astronomers from UCLA searched for "technosignatures" in the Kepler field data. Credit and Copyright: Danielle Futselaar

Very recently, a team of scientists from the Commonwealth Scientific and Industrial Research Organization (CSIRO) achieved an historic first by being able to pinpoint the source of fast radio bursts (FRBs). With the help of observatories around the world, they determined that these radio signals originated in an elliptical galaxy 6 billion light years from Earth. But as it turns out, this feat has been followed by yet another historic first.

In all previous cases where FRBs were detected, they appeared to be one-off events, lasting for mere milliseconds. However, after running the data from a recent FRB through a supercomputer, a team of scientists at McGill University in Montreal have determined that in this instance, the signal was repeating in nature. This finding has some serious implications for the astronomical community, and is also considered by some to be proof of extra-terrestrial intelligence.

FRBs have puzzled astronomers since they were first detected in 2007. This event, known as the Lorimer Burst, lasted a mere five milliseconds and appeared to be coming from a location near the Large Magellanic Cloud, billions of light years away. Since that time, a total of 16 FRBs have been detected. And in all but this one case, the duration was extremely short and was not followed up by any additional bursts.

The NSF's Arecibo Observatory, which is located in Puerto Rico, is the world largest radio telescope. Credit: NAIC
The NSF’s Arecibo Observatory, which is located in Puerto Rico, is the world largest radio telescope. Credit: NAIC

Because of their short duration and one-off nature, many scientists have reasoned that FRBs must be the result of cataclysmic events – such as a star going supernova or a neutron star collapsing into a black hole. However, after sifting through data obtained by the Arecibo radio telescope in Puerto Rico, a team of students from McGill University – led by PhD student Paul Scholz – determined that an FRB detected in 2012 did not conform to this pattern.

In an article published in Nature, Scholz and his associates describe how this particular signal – FRB 121102 – was followed by several bursts with properties that were consistent with the original signal. Running the data which was gathered in May and June through a supercomputer at the McGill High Performance Computing Center, they determined that FRB 121102 had emitted a total of 10 new bursts after its initial detection.

This would seem to indicate that FRBs have more than just one cause, which presents some rather interesting possibilities. As Paul Scholz told Universe Today via email:

“All previous Fast Radio Bursts have only been one-time events, so a lot of explanations for them have involved a cataclysmic event that destroys the source of the bursts, such as a neutron star collapsing into a black hole. Our discovery of repeating bursts from FRB 121102 shows that the source cannot have been destroyed and it must have been due to a phenomenon that can repeat, such as bright pulses from a rotating neutron star.”

The Parkes Telescope in New South Wales, Australia. Credit: Roger Ressmeyer/Corbis
The Parkes Telescope in New South Wales, Australia. Credit: Roger Ressmeyer/Corbis

Another possibility which is making the rounds is that this signal is not natural in origin. Since their discovery, FRBs and other “transient signals” – i.e. seemingly random and temporary signals – from the Universe have been the subject of speculation. As would be expected, there have been some who have suggested that they might be the long sought-after proof that extra-terrestrial civilizations exist.

For example, in 1967, after receiving a strange reading from a radio array in a Cambridge field, astrophysicist Jocelyn Bell Burnell and her team considered the possibility that what they were seeing was an alien message. This would later be shown to be incorrect – it was, in fact, the first discovery of a pulsar. However, the possibility these signals are alien in origin has remained fixed in the public (and scientific) imagination.

This has certainly been the case since the discovery of FRBs. In an article published by New Scientists in April of 2015 – titled “Cosmic Radio Plays An Alien Tune” – writer and astrophysicist Sarah Scoles explores the possibility of whether or not the strange regularity of some FRBs that appeared to be coming from within the Milky Way could be seen as evidence of alien intelligence.

However, the likelihood that these signals are being sent by extra-terrestrials is quite low. For one, FRBs are not an effective way to send a message. As Dr. Maura McLaughlin of West Virginia University – who was part of the first FRB discovery –  has explained, it takes a lot of energy to make a signal that spreads across lots of frequencies (which is a distinguishing feature of FRBs).

Scientists have been exploring the possibility that radio bursts
For decades, scientists have been exploring the possibility that radio bursts are signals from alien civilizations. Credit: AdamBurn/DeviantArt

And if these bursts came from outside of our galaxy, which certainly seems to be the case, they would have to be incredibly energetic to get this far. As Dr. McLaughlin explained to Universe Today via email:

“The total amount of power required to produce just one FRB pulse is as much as the Sun produces in a month! Although we might expect extraterrestrial civilizations to send short-duration signals, sending a signal over the very wide radio bandwidths over which FRBs are detected would require an improbably immense amount of energy. We expect that extraterrestrial civilizations would transmit over a very narrow range of radio frequencies, much like a radio station on Earth. 

But regardless of whether these signals are natural or extra-terrestrial in origin, they do present some rather exciting possibilities for astronomical research and our knowledge of the Universe. Moving forward, Scholz and his team hope to identify the galaxy where the radio bursts originated, and plans to use test out some recently-developed techniques in the process.

“Next we would like to localize the source of the bursts to identify the galaxy that they are coming from,” he said. “This will let us know about the environment around the source. To do this, we need to use radio interferometry to get a precise enough sky location. But, to do this we need to detect a burst while we are looking at the source with such a radio telescope array. Since the source is not always bursting we will have to wait until we get a detection of a burst while we are looking with radio interferometry. So, if we’re patient, eventually we should be able to pinpoint the galaxy that the bursts are coming from.”

In the end, we may find that rapid burst radio waves are a more common occurrence than we thought. In all likelihood, they are being regularly emitted by rare and powerful stellar objects, ones which we’ve only begun to notice. As for the other possibility? Well, we’re not saying it’s aliens, but we’re quite sure others will be!

Credit: History.com/memegenerator.com
Credit: History.com/memegenerator.com

Further Reading: McGill University

Watch SETI-Seeking Radio Dishes Dance Across the Universe

A radio dish at Owens Valley Observatory in Owens Valley California. Credit and copyright: Credit and copyright: Harun Mehmedinovic and Gavin Heffernan.

Radio dishes always evoke wonder, as these giants search for invisible (to our eyes, anyway) radio signals from objects like distant quasars, pulsars, masers and more, including potential signals from extraterrestrials. This new timelapse from Harun Mehmedinovic and Gavin Heffernan of Sunchaser Pictures was shot at several different radio astronomy facilities — the Very Large Array (VLA) Observatory in New Mexico, Owens Valley Observatory in Owens Valley California, and Green Bank Observatory in West Virginia. All three of these facilities have been or are still being partly used by the SETI (Search for the Extraterrestrial Intelligence) program.

Watch the dishes dance in their search across the Universe!

The huge meteorite streaking across the sky above Very Large Array (2:40) is from the Aquarids meteor shower. The large radio telescope at Green Bank is where scientists first attempted to “listen” to presence of extraterrestrials in the galaxy. The Very Large Array was featured in the movie CONTACT (1997) while Owens Observatory was featured in THE ARRIVAL (1996).

This video was created for SkyGlowProject.com, a crowdfunded educational project that explores the effects and dangers of urban light pollution in contrast with some of the most incredible Dark Sky Preserves in North America.

The music is by Tom Boddy, and titled “Thoughtful Reflections.”

Thanks to Gavin Heffernan for sharing this video.

Screenshot from the DishDance timelapse. Credit and copyright: Harun Mehmedinovic and Gavin Heffernan.
Screenshot from the DishDance timelapse. Credit and copyright: Harun Mehmedinovic and Gavin Heffernan.

SKYGLOW: DISHDANCE from Sunchaser Pictures on Vimeo.

Returning the “Silent Sentinel” to Active Duty

Situated on the south shore of New Jersey’s Shark River lies 37 acres of land known as Camp Evans. On April 1, 2015, I was privileged to attend the dedication ceremony celebrating Camp Evans’ becoming one of only 2532 locations in the United States designated as a National Historic Landmark.

Plaque Commemorating the Designation of Camp Evans as a National Historic Landmark. April 2, 2015. [photo: Robert Raia Photography]
Plaque Commemorating the Designation of Camp Evans as a National Historic Landmark. April 1, 2015. [photo: Robert Raia Photography]
Camp Evans, originally known as the Belmar Receiving Station, is rich in history:

  • In 1912, Gugliemlo Marconi and his company, the American Marconi Company, constructed the Belmar Receiving Station which became part of the wireless girdle of the earth.
  • In 1917, the site was acquired as part of the Navy’s World War I “Trans-Atlantic Communication System.”
  • In 1941, the Army Signal Corps purchased the property to construct a top-secret research facility, and it was renamed Evans Signal Laboratory which later became Camp Evans Signal Laboratory.
  • Following a visit in late October, 1953, Senator Joseph McCarthy described Camp Evans as a “house of spies.” Following an investigation that spanned 1953-1954, not one single employee was prosecuted.

But perhaps Camp Evans’ most interesting – and surprising – place in history begins with a small, informal research project taking place on a parcel of land in the Camp’s northeast corner. The ramifications of this project would ultimately give birth the to Space Age, lead to the development of the US Space Program, and start the Cold War.

Following the end of WWII, American scientists at Camp Evans continued their investigation into whether the earth’s ionosphere could be penetrated using radio waves – a feat that had been studied prior to the end of the War but had long been believed impossible. Project Diana, led by Lt. Col. John H. DeWitt, Jr., aimed to prove that it could indeed be penetrated. A group of radar scientists awaiting their discharge from the Army modified a radar antenna – including significantly boosting its output power – and placed it in the northeast corner of Camp Evans.

RADAR Dish at Camp Evans Circa 1946
Location of the Radar Antenna on the Northeast Corner of Camp Evans Circa 1946. [photo: InfoAge website]
 

On the morning of January 10, 1946, with the dish pointed at the rising moon, a series of radar signals was broadcast. Exactly 2.5 seconds after each signal’s broadcast, its corresponding echo was detected. This was significant because 2.5 seconds is precisely the time required for light to travel the round trip distance between the earth and the moon. Project Diana – and her scientists – had successfully demonstrated that the ionosphere was, in fact, penetrable, and communication beyond our planet was possible. And thus was born the Space Age – as well as the field of Radar Astronomy.

SCR-271 Bedspring RADAR Antenna Pointing at the Moon [photo: David Mofenson; InfoAge website]
SCR-271 Bedspring RADAR Antenna Pointing at the Moon [photo: David Mofenson; InfoAge website]
By mid-1958 the United States had launched the Television InfraRed Observation Satellite (TIROS) program designed to study the viability of using satellite imagery and observations as a means of studying the Earth and improving weather forecasting. As part of this effort, the original “Moonbounce” antenna was replaced with a 60-foot parabolic radio antenna dish which would serve as the project’s downlink Ground Communication Station.

60-Meter Parabolic Dish Being Constructed on Project Diana Site [photo: Frank Vosk; InfoAge website]
60-Meter Parabolic Dish Being Constructed on Project Diana Site [photo: Frank Vosk; InfoAge website]
On April 1, 1960, NASA successfully launched its TIROS I satellite and the “Silent Sentinel Radio Dish” at Camp Evans began receiving its data being sent down to earth.

TIROS I Satellite
TIROS I Satellite [photo: NASA; National Space Science Data Center]
The resulting images were so astonishing and groundbreaking that the first photos received from TIROS I were immediately printed and flown to Washington where they were presented to President Eisenhower by NASA Administrator T. Keith Glennan.

President Eisenhower and NASA Administrator Glennan Viewing the First Satellite Images from TIROS I. [photo: wikimedia commons]
President Eisenhower and NASA Administrator Glennan Viewing the First Satellite Images from TIROS I. [photo: wikimedia commons]
The TIROS program would go on to be instrumental in meteorological applications not only because it provided the first accurate weather forecasts and hurricane tracking based on satellite information, but also because it began providing continuous coverage of the earth’s weather in 1962, and ultimately lead to the development of more sophisticated observational satellites. [1]

In addition to serving as the downlink Ground Communications Center for the TIROS I and TIROS II satellites, this same dish has also tracked:

Sadly, by the mid-1970s, the technology within the TIROS dish (officially named the TLM-18 Space Telemetry Antenna) had become obsolete, and it was retired. Camp Evans was decommissioned and closed in 1993 and its land was transferred to the National Park Service. But in 2012, Camp Evans was designated a National Historic Landmark, and thus began a new, revitalized era for this immensely significant site. In addition to the TIROS Dish and the InfoAge Science History Learning Center and Museum, Camp Evans is also home to:

  • The Military History Museum;
  • The Radio Technology Museum;
  • The National Broadcasters’ Hall of Fame.

Apollo Guidance Computer
The Apollo Guidance Computer, Just One of the Many Historical Exhibits on Display at the InfoAge Science History Learning Center and Museum at Historic Camp Evans [photo: Robert Raia Photography]

DISH RESTORATION

In 2001, InfoAge stepped in and began preserving and restoring the mechanical systems of the TIROS dish. In 2006, a donation from Harris Corporation allowed the dish to be completely repainted and preserved.

Norman Jarosik, Senior Research Physicist at Princeton University and Daniel Marlow, PhD. and Evans Crawford 1911 Professor of Physics at Princeton, as well as countless volunteers from the University, InfoAge, Wall Township (NJ), and the Ocean-Monmouth Amateur Radio Club, Inc. (OMARC) have provided the engineering/scientific knowledge and sweat-equity required to refurbish and update the inoperative radio dish. The original vacuum-tube technology has been replaced with smaller electronic counterparts. Rusty equipment has been replaced. Seized/inoperative motors have been reconditioned and rebuilt. And system-level software controls have been added. The TIROS dish has been transformed into a truly modern, state-of-the-art Radio Astronomy Satellite Dish and Control Center.

The TIROS Dish as it Appears Today [photo: Nancy J. Graziano]
The TIROS Dish as it Appears Today [photo: Nancy J. Graziano]
On January 19, 2015, scientists from Princeton University pointed the dish skyward toward the center of our galaxy and detected a clear peak at 1420.4 MHz, the well-known 21 cm emission line originating from the deepest recesses of the Milky Way – the dish was working!

The Control Console Today. [photo: Nancy J. Graziano]
The Control Console Today. [photo: Nancy J. Graziano]

FUTURE PLANS

After almost 15 years of restoration and nearly 40 years since it last listened to the sky, the TIROS dish is once again operational, is detecting radio signals from the universe, and is well on its way to be used for science education.

Work continues on renovating Building 9162, the original TIROS Control Building, to convert it into the InfoAge Visitor Center. Plans include a NASA-style control room with theater seating for 20-30 students, a full-scale model of the original TIROS I satellite, and other exhibits dedicated to the history of Project Diana, the TIROS program, and the scientific impact these projects have had on our daily lives.

Visitor Center Floorplan [credit: InfoAge]
Artist’s Conception: Visitor Center Floorplan [credit: InfoAge]
Future activities being planned using the dish include a Moonbounce experiment, communicating with NOAA weather satellites, performing real-time satellite imaging, viewing the Milky Way in the radio spectrum, and tracking deep space pulsars.

If you are interested in visiting the InfoAge Science History Learning Center and Museum at Historic Camp Evans, they are open to the public on Wednesdays, Saturdays, and Sundays, from 1-5pm.

To learn more about Camp Evans, Project Diana, the TIROS Satellite project, and InfoAge, tune into this week’s Weekly Space Hangout. This week’s special guest is Stephen Fowler, the Creative Director at InfoAge. He will be chatting with Fraser about the history and plans for Camp Evans and the TIROS dish.

Still want to learn more? Click on any of the links provided in this article, or visit the following sites:

If You Could See in Radio These Are the Crazy Shapes You’d See in the Sky

"Color" radio image of galactic cluster Abell 2256. Credit: Owen et al., NRAO/AUI/NSF.

Even though it’s said that the average human eye can discern from seven to ten million different values and hues of colors, in reality our eyes are sensitive to only a very small section of the entire electromagnetic spectrum, corresponding to wavelengths in the range of 400 to 700 nanometers. Above and below those ranges lie enormously diverse segments of the EM spectrum, from minuscule yet powerful gamma rays to incredibly long, low-frequency radio waves.

Astronomers observe the Universe in all wavelengths because many objects and phenomena can only be detected in EM ranges other than visible light (which itself can easily be blocked by clouds of dense gas and dust.) But if we could see in radio waves the same way we do in visible light waves – that is with longer wavelengths being perceived as “red” and shorter wavelengths seen as “violet,” with all the blues, greens, and yellows in between – our world would look quite different… especially the night sky, which would be filled with fantastic shapes like those seen above!

View of the VLA in New Mexico. Image courtesy of NRAO/AUI.
View of the VLA in New Mexico. Image courtesy of NRAO/AUI.

Created from observations made at the Very Large Array in New Mexico, the image above shows a cluster of over 500 colliding galaxies located 800 million light-years away called Abell 2256. An intriguing target of study across the entire electromagnetic spectrum, here Abell 2256 (A2256 for short) has had its radio emissions mapped to the corresponding colors our eyes can see.

Within an area about the same width as the full Moon a space battle between magical cosmic creatures seems to be taking place! (In reality A2256 spans about 4 million light-years.)

See a visible-light image of A2256 by amateur astronomer Rick Johnson here.

The VLA radio observations will help researchers determine what’s happening within A2256, where multiple groups of galaxy clusters are interacting.

“The image reveals details of the interactions between the two merging clusters and suggests that previously unexpected physical processes are at work in such encounters,” said Frazer Owen of the National Radio Astronomy Observatory (NRAO).

Radio image of the night sky. (Credit: Max Planck Institute for Radio Astronomy, generated by Glyn Haslam.)
Radio image of the night sky. (Credit: Max Planck Institute for Radio Astronomy, generated by Glyn Haslam.)

Learn more about NRAO and radio astronomy here, and you can get an idea of what our view of the Milky Way would look like in radio wavelengths on the Square Kilometer Array’s website.

Source: NRAO

Who Speaks for Earth? The Controversy over Interstellar Messaging

War of the Worlds
The prospect of alien invasion has sent shivers down the spines of science fiction fans ever since H. G. Wells published his classic “The War of the Worlds” in 1897. Drawing on the science of his times, Wells envisioned Mars as an arid dying world, whose inhabitants coveted the lush blue Earth. Wells’ portrayal of Martian imperialism had a political message. As an opponent of British colonialism, he wanted his countrymen to imagine what colonialism would be like from the other side. Although opponents of METI seldom explicitly invoke the spectre of alien invasion, some do view the human history of colonialism as a possible model for how aliens might treat us. The eminent physicist Stephen Hawking warned that “If aliens visit us, the outcome would be much as when Columbus landed in America, which didn’t turn our well for the Native Americans”. The illustration from Well’s novel shows a Martian fighting machine attacking the British warship HMS Thunderchild. (credit: Henrique Alvim Correa, 1906, for the novel “The War of the Worlds”)

Should we beam messages into deep space, announcing our presence to any extraterrestrial civilizations that might be out there? Or, should we just listen? Since the beginnings of the modern Search for Extraterrestrial Intelligence (SETI), radio astronomers have, for the most part, followed the listening strategy.

In 1999, that consensus was shattered. Without consulting with other members of the community of scientists involved in SETI, a team of radio astronomers at the Evpatoria Radar Telescope in Crimea, led by Alexander Zaitsev, beamed an interstellar message called ‘Cosmic Call’ to four nearby sun-like stars. The project was funded by an American company called Team Encounter and used proceeds obtained by allowing members of the general public to submit text and images for the message in exchange for a fee.

Similar additional transmissions were made from Evpatoria in 2001, 2003, and 2008. In all, transmissions were sent towards twenty stars within less than 100 light years of the sun. The new strategy was called Messaging to Extraterrestrial Intelligence (METI). Although Zaitsev was not the first to transmit an interstellar message, he and his associates where the first to systematically broadcast to nearby stars. The 70 meter radar telescope at Evpatoria is the second largest radar telescope in the world.

In the wake of the Evpatoria transmissions a number of smaller former NASA tracking and research stations collected revenue by making METI transmissions as commercially funded publicity stunts. These included a transmission in the fictional Klingon language from Star Trek to promote the premier of an opera, a Dorito’s commercial, and the entirety of the 2008 remake of the classic science fiction movie “The Day the Earth Stood Still”. The specifications of these commercial signals have not been made public, but they were most likely much too faint to be detectable at interstellar distances with instruments comparable to those possessed by humans.

Zaitsev’s actions stirred divisive controversy among the community of scientists and scholars concerned with the field. The two sides of the debate faced off in a recent special issue of the Journal of the British Interplanetary Society, resulting from a live debate sponsored in 2010 by the Royal Society at Buckinghamshire, north of London, England.

Alexander L. Zaitsev- Chief scientist of the Russian Academy of Science’s Institute of Radio Engineering and Electronics, and head of the group that transmitted interstellar messages using the Evpatoria Planetary Radar telescope. (credit: Rumin)
Alexander L. Zaitsev- Chief scientist of the Russian Academy of Science’s Institute of Radio Engineering and Electronics, and head of the group that transmitted interstellar messages using the Evpatoria Planetary Radar telescope. (credit: Rumin)

Modern SETI got its start in 1959, when astrophysicists Giuseppe Cocconi and Phillip Morrison published a paper in the prestigious scientific journal Nature, in which they showed that the radio telescopes of the time were capable of receiving signals transmitted by similar counterparts at the distances of nearby stars. Just months later, radio astronomer Frank Drake turned an 85 foot radio telescope dish towards two nearby sun-like stars and conducted Project Ozma, the first SETI listening experiment. Morrison, Drake, and the young Carl Sagan supposed that extraterrestrial civilizations would “do the heavy lifting” of establishing powerful and expensive radio beacons announcing their presence. Humans, as cosmic newcomers that had just invented radio telescopes, should search and listen. There was no need to take the risk, however small, of revealing our presence to potentially hostile aliens.

Drake and Sagan did indulge in one seeming exception to their own moratorium. In 1974, the pair devised a brief 1679 bit message that was transmitted from the giant Arecibo Radar Telescope in Puerto Rico. But the transmission was not a serious attempt at interstellar messaging. By intent, it was aimed at a vastly distant star cluster 25,000 light years away. It merely served to demonstrate the new capabilities of the telescope at a rededication ceremony after a major upgrade.

In the 1980’s and 90’s SETI researchers and scholars sought to formulate a set of informal rules for the conduct of their research. The First SETI Protocol specified that any reply to a confirmed alien message must be preceded by international consultations, and an agreement on the content of the reply. It was silent on the issue of transmissions sent prior to the discovery of an extraterrestrial signal.

David Brin- Space scientist, futurist consultant, and science fiction writer (credit: Glogger)
David Brin- Space scientist, futurist consultant, and science fiction writer (credit: Glogger)
A Second SETI Protocol was to have addressed the issue, but, somewhere along the way, critics charge, something went wrong. David Brin, a space scientist, futurist consultant, and science fiction writer was a participant in the protocol discussion. He charged that “collegial discussion started falling apart” and “drastic alterations of earlier consensus agreements were rubber-stamped, with the blatant goal of removing all obstacles from the path of those pursuing METI”.

Brin accuses “the core community that clusters around the SETI Institute in Silicon Valley, California”, including astronomers Jill Tartar and Seth Shostak of “running interference for and enabling others around the world- such as Russian radio astronomer Dr. Alexander Zaitsev” to engage in METI efforts. Shostak denies this, and claims he simply sees no clear criteria for regulating such transmissions.

Brin, along with Michael A. G. Michaud, a former U.S. Foreign Service Officer and diplomat who chaired the committee that formulated the first and second protocol, and John Billingham, the former head of NASA’s short lived SETI effort, resigned their memberships in SETI related committees to protest the alterations to the second protocol.

The founders of SETI felt that extraterrestrial intelligence was likely to be benign. Carl Sagan speculated that extraterrestrial civilizations (ETCs) older than ours would, under the pressure of necessity, become peaceful and environmentally responsible, because those that didn’t would self-destruct. Extraterrestrials, they supposed, would engage in interstellar messaging because of a wish to share their knowledge and learn from others. They supposed that ETCs would establish powerful omnidirectional beacons in order to assist others in finding them and joining a communications network that might span the galaxy. Most SETI searches have been optimized for detecting such steady constantly transmitting beacons.

Over the fifty years since the beginnings of SETI, searches have been sporadic and plagued with constant funding problems. The space of possible directions, frequencies, and coding strategies has only barely been sampled so far. Still, David Brin contends that whole swaths of possibilities have been eliminated “including gaudy tutorial beacons that advanced ETCs would supposedly erect, blaring helpful insights to aid all newcomers along the rocky paths”. The absence of obvious, easily detectable evidence of extraterrestrial intelligence has led some to speak of the “Great Silence”. Something, Brin notes, “has kept the prevalence and visibility of ETCs below our threshold of observation”. If alien civilizations are being quiet, could it be that they know something that we don’t know about some danger?

Alexander Zaitsev thinks that such fears are unfounded, but that other civilizations might suffer from the same reluctance to transmit that he sees as plaguing humanity. Humanity, he thinks, should break the silence by beaming messages to its possible neighbors. He compares the current state of humanity to that of a man trapped in a one-man prison cell. “We”, he writes “do not want to live in a cocoon, in a ‘one –man cell’, without any rights to send a message outside, because such a life is not INTERESTING! Civilizations forced to hide and tremble because of farfetched fears are doomed to extinction”. He notes that in the ‘60’s astronomer Sebastian von Hoerner speculated that civilizations that don’t engage in interstellar communication eventually decline through “loss of interest”.

METI critics maintain that questions of whether or not to send powerful, targeted, narrowly beamed interstellar transmissions, and of what the content of those transmissions should be needs to be the subject of broad international and public discussion. Until such discussion has taken place, they want a temporary moratorium on such transmissions.

Seth Shostak- SETI Institute radio astronomer (credit: B D Engler)
Seth Shostak- SETI Institute radio astronomer (credit: B D Engler)
On the other hand, SETI Institute radio astronomer Seth Shostak thinks that such deliberations would be pointless. Signals already leak into space from radio and television broadcasting, and from civilian and military radar. Although these signals are too faint to be detected at interstellar distances with current human technology, Shostak contends that with the rapid growth in radio telescope technology, ETCs with technology even a few centuries in advance of ours could detect this radio leakage. Billingham and Benford counter that to collect enough energy to tune in on such leakage; an antenna with a surface area of more than 20,000 square kilometers would be needed. This is larger than the city of Chicago. If humans tried to construct such a telescope with current technology it would cost 60 trillion dollars.

Shostak argues that exotic possibilities might be available to a very technologically advanced society. If a telescope were placed at a distance of 550 times the Earth’s distance from the sun, it would be in a position to use the sun’s gravitational field as a gigantic lens. This would give it an effective collecting area vastly larger than the city of Chicago, for free. If advanced extraterrestrials made use of their star’s gravitational field in this way, Shostak maintains “that would give them the capacity to observe many varieties of terrestrial transmissions, and in the optical they would have adequate sensitivity to pick up the glow of street lamps”. Even Brin conceded that this idea was “intriguing”.

Civilizations in a position to do us potential harm through interstellar travel, Shostak contends, would necessarily be technologically advanced enough to have such capabilities. “We cannot pretend that our present level of activity with respect to broadcasting or radar usage is ‘safe’. If danger exists, we’re already vulnerable” he concludes. With no clear means to say what extraterrestrials can or can’t detect, Shostak feels the SETI community has nothing concrete to contribute to the regulation of radio transmissions.

Could extraterrestrials harm us? In 1897 H. G. Wells published his science fiction classic “The War of the Worlds” in which Earth was invaded by Martians fleeing their arid, dying world. Besides being scientifically plausible in terms of its times, Wells’ novel had a political message. An opponent of British colonialism, he wanted his countrymen to imagine what imperialism was like from the other side. Tales of alien invasion have been a staple of science fiction ever since. Some still regard European colonialism as a possible model for how extraterrestrials might treat humanity. The eminent physicist Steven Hawking thinks very advanced civilizations might have mastered interstellar travel. Hawking warned that “If aliens visit us, the outcome would be much as when Columbus landed in America, which didn’t turn out well for the Native Americans”.

Though dismissing Hawking’s fears of alien invasion as an “unlikely speculation”, David Brin notes that interstellar travel by small automated probes is quite feasible, and that such a probe could potentially do harm to us in many ways. It might, for example, steer an asteroid onto a collision course with Earth. A relatively small projectile traveling at one tenth the speed of light could wreak terrible damage by simply colliding with our planet. “The list of unlikely, but physically quite possible scenarios is very long” he warns.

Diplomat Michael Michaud warns that “We can all understand the frustration of not finding any signals after fifty years of intermittent searching” but “Impatience with the search is not a sufficient justification for introducing a new level of potential risk for our entire species”.

METI critics David Brin, James Benford, and James Billingham think that the current lack of results from SETI warrants a different sort of response than METI. They call for a reassessment of the search strategy. From the outset, SETI researchers have assumed that extraterrestrials will use steady beacons transmitting constantly in all directions to attract our attention. Recent studies of interstellar radio propagation and the economics of signaling show that such a beacon, which would need to operate on a vast timescale, is not an efficient way to signal.

Instead, an alien civilization might compile a list of potentially habitable worlds in its neighborhood and train a narrowly beamed signal on each member of the list in succession. Such brief “ping” messages might be repeated, in sequence, once a year, once a decade, or once a millennium. Benford and Billingham note that most SETI searches would miss this sort of signal.

The SETI Institute’s Allen telescope array, for example, is designed to target narrow patches of sky (such as the space around a sun-like star) and search those patches in sequence, for the presence of continuously transmitting beacons. It would miss a transient “ping” signal, because it would be unlikely to be looking in the right place at the right time. Ironically, the Evpatoria messages, transmitted for less than a day, are examples of such transient signals.

Benford and Billingham propose the construction of a new radio telescope array designed to constantly monitor the galactic plane (where stars are most abundant) for transient signals. Such a telescope array, they estimate, would cost about 12 million dollars, whereas a serious, sustained METI program would cost billions.

The METI controversy continues. On February 13, the two camps debated each other at the American Association for the Advancement of Science conference in San Jose, California. At that conference David Brin commented “It’s an area where opinion rules, and everyone has a fierce opinion”. In the wake of the meeting a group of 28 scientists, scholars, and business leaders issued a statement that “We feel the decision whether or not to transmit must be based on a worldwide consensus, and not a decision based on the wishes of a few individuals with access to powerful communications equipment”.

References and Further Reading:

J. Benford, J. Billingham, D. Brin, S. Dumas, M. Michaud, S. Shostak, A. Zaitsev, (2014) Messaging to Extraterrestrial Intelligence special section, Journal of the British Interplanetary Society, 67, p. 5-43.

The SETI Institute

D. Brin, Shouting at the cosmos: How SETI has taken a worrisome turn into dangerous territory.

F. Cain (2013) How could we find aliens? The search for extraterrestrial intelligence (SETI), Universe Today.

E. Hand (2015), Researchers call for interstellar messages to alien civilizations, Science Insider, Science Magazine.

P. Patton (2014) Communicating across the cosmos, Part 1: Shouting into the darkness, Part 2: Petabytes from the Stars, Part 3: Bridging the Vast Gulf, Part 4: Quest for a Rosetta Stone, Universe Today.