New Horizons Snaps Amazing 3-D View of Pluto’s Mysterious ‘Bladed’ Terrain

The amazing stereo view of a broad area informally named Tartarus Dorsa combines two images from the Ralph/Multispectral Visible Imaging Camera (MVIC) taken about 14 minutes apart on July 14, 2015. The first was taken when New Horizons was 16,000 miles (25,000 kilometers) away from Pluto, the second when the spacecraft was 10,000 miles (about 17,000 kilometers) away. Credits: NASA/JHUAPL/SwRI
The amazing stereo view of a broad area informally named Tartarus Dorsa combines two images from the Ralph/Multispectral Visible Imaging Camera (MVIC) taken about 14 minutes apart on July 14, 2015. The first was taken when New Horizons was 16,000 miles (25,000 kilometers) away from Pluto, the second when the spacecraft was 10,000 miles (about 17,000 kilometers) away.   Credits: NASA/JHUAPL/SwRI
The amazing stereo view of a broad area informally named Tartarus Dorsa combines two images from the Ralph/Multispectral Visible Imaging Camera (MVIC) taken about 14 minutes apart on July 14, 2015. The first was taken when New Horizons was 16,000 miles (25,000 kilometers) away from Pluto, the second when the spacecraft was 10,000 miles (about 17,000 kilometers) away. Credits: NASA/JHUAPL/SwRI

It’s time to whip out your 3-D glasses to enjoy and scrutinize the remarkable detail of spectacular terrain revealed in a new high resolution stereo image of Pluto – King of the Kuiper Belt! – taken by NASA’s New Horizons spacecraft.

The amazing new stereo Plutonian image focuses on an area dominated by a mysterious feature that geologists call ‘bladed’ terrain – seen above – and its unlike anything seen elsewhere in our solar system.

Its located in a broad region of rough highlands informally known as Tartarus Dorsa – situated to the east of the Pluto’s huge heart shaped feature called Tombaugh Regio. The best resolution is approximately 1,000 feet (310 meters).

The stereo view combines a pair of images captured by New Horizons Ralph/Multispectral Visible Imaging Camera (MVIC) science instruments. They were taken about 14 minutes apart on during history making first ever flyby of the Pluto planetary system on July 14, 2015.

The first was taken when New Horizons was 16,000 miles (25,000 kilometers) away from Pluto, the second when the spacecraft was 10,000 miles (about 17,000 kilometers) away.

The blades align from north to south, typically reach up to about 550 yards (500 meters) high and are spaced about 2-4 miles (3-5 kilometers). Thus they are among the planets steepest features. They are “perched on a much broader set of rounded ridges that are separated by flat valley floors,” according to descriptions from the New Horizons science team.

This color image of Pluto taken by NASA’s New Horizons spacecraft shows rounded and bizarrely textured mountains, informally named the Tartarus Dorsa, rise up along Pluto’s terminator and show intricate but puzzling patterns of blue-gray ridges and reddish material in between. This view, roughly 330 miles (530 kilometers) across, combines blue, red and infrared images taken by the Ralph/Multispectral Visual Imaging Camera (MVIC) on July 14, 2015, and resolves details and colors on scales as small as 0.8 miles (1.3 kilometers).   Credits: NASA/JHUAPL/SWRI
This color image of Pluto taken by NASA’s New Horizons spacecraft shows rounded and bizarrely textured mountains, informally named the Tartarus Dorsa, rise up along Pluto’s terminator and show intricate but puzzling patterns of blue-gray ridges and reddish material in between. This view, roughly 330 miles (530 kilometers) across, combines blue, red and infrared images taken by the Ralph/Multispectral Visual Imaging Camera (MVIC) on July 14, 2015, and resolves details and colors on scales as small as 0.8 miles (1.3 kilometers). Credits: NASA/JHUAPL/SWRI

Mission scientists have also noted that the bladed terrain has the texture of “snakeskin” owing to their “scaly raised relief.”

In the companion global image from NASA (below), the bladed terrain is outlined in red and shown to extend quite far to the east of Tombaugh Regio.

The composite image was taken on July 13, 2015, the day before the closest approach flyby, when the probe was farther away thus shows lower resolution. It combines a pair of images from two of the science instruments – a Ralph/Multispectral Visible Imaging Camera (MVIC) color scan and an image from the Long Range Reconnaissance Imager (LORRI).

This global view of Pluto combines a Ralph/Multispectral Visible Imaging Camera (MVIC) color scan and an image from the Long Range Reconnaissance Imager (LORRI), both obtained on July 13, 2015 – the day before New Horizons’ closest approach. The red outline marks the large area of mysterious, bladed terrain extending from the eastern section of the large feature informally named Tombaugh Regio.  Credits: NASA/JHUAPL/SwRI
This global view of Pluto combines a Ralph/Multispectral Visible Imaging Camera (MVIC) color scan and an image from the Long Range Reconnaissance Imager (LORRI), both obtained on July 13, 2015 – the day before New Horizons’ closest approach. The red outline marks the large area of mysterious, bladed terrain extending from the eastern section of the large feature informally named Tombaugh Regio.
Credits: NASA/JHUAPL/SwRI

The MVIC scan was taken from a range of 1 million miles (1.6 million kilometers), at a resolution of 20 miles (32 kilometers) per pixel. The corresponding LORRI image was obtained from roughly the same range, but has a higher spatial resolution of 5 miles (8 kilometers) per pixel, say officials.

Scientists have developed several possible theories about the origins of the bladed terrain, including erosion from evaporating ices or deposition of methane ices.

Measurements from the Linear Etalon Imaging Spectral Array (LEISA) instrument reveal that that this region “is composed of methane (CH4) ice with a smattering of water,” reports New Horizons researcher Orkan Umurhan.

He speculates that “the material making up the bladed terrain is a methane clathrate. A clathrate is a structure in which a primary molecular species (say water, or H2O) forms a crystalline ‘cage’ to contain a guest molecule (methane or CH4, for example).”

But the question of whether that methane ice is strong enough to maintain the steep walled snakeskin features, will take much more research to determine a conclusive answer.

Umurhan suggests that more research could help determine if the “methane clathrates in the icy moons of the outer solar system and also in the Kuiper Belt were formed way back before the solar system formed – i.e., within the protosolar nebula – potentially making them probably some of the oldest materials in our solar system.”

Pluto continues to amaze and surprise us as the data streams back to eagerly waiting scientists on Earth over many more months to come – followed by years and decades of painstaking analysis.

This new global mosaic view of Pluto was created from the latest high-resolution images to be downlinked from NASA’s New Horizons spacecraft and released on Sept. 11, 2015. The images were taken as New Horizons flew past Pluto on July 14, 2015, from a distance of 50,000 miles (80,000 kilometers). This new mosaic was stitched from over two dozen raw images captured by the LORRI imager and colorized. Annotated with informal place names. Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Marco Di Lorenzo/Ken Kremer/kenkremer.com
This new global mosaic view of Pluto was created from the latest high-resolution images to be downlinked from NASA’s New Horizons spacecraft and released on Sept. 11, 2015. The images were taken as New Horizons flew past Pluto on July 14, 2015, from a distance of 50,000 miles (80,000 kilometers). This new mosaic was stitched from over two dozen raw images captured by the LORRI imager and colorized. Annotated with informal place names. Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Marco Di Lorenzo/Ken Kremer/kenkremer.com

During New Horizons flyby on July 14, 2015, it discovered that Pluto is the biggest object in the outer solar system and thus the ‘King of the Kuiper Belt.”

The Kuiper Belt comprises the third and outermost region of worlds in our solar system.

Pluto is the last planet in our solar system to be visited in the initial reconnaissance of planets by spacecraft from Earth since the dawn of the Space Age.

New Horizons remains on target to fly by a second Kuiper Belt Object (KBO) on Jan. 1, 2019 – tentatively named PT1, for Potential Target 1. It is much smaller than Pluto and was recently selected based on images taken by NASA’s Hubble Space Telescope.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, SpaceX, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:

Apr 9/10: “NASA and the Road to Mars Human Spaceflight programs” and “Curiosity explores Mars” at NEAF (NorthEast Astronomy and Space Forum), 9 AM to 5 PM, Suffern, NY, Rockland Community College and Rockland Astronomy Club – http://rocklandastronomy.com/neaf.html

Apr 12: Hosting Dr. Jim Green, NASA, Director Planetary Science, for a Planetary sciences talk about “Ceres, Pluto and Planet X” at Princeton University; 7:30 PM, Amateur Astronomers Assoc of Princeton, Peyton Hall, Princeton, NJ – http://www.princetonastronomy.org/

Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html

New Horizons Exits Safe Mode, Operating Flawlessly for Upcoming Pluto Encounter

Latest color image of Pluto taken on July 3, 2015. Best yet image of Pluto was taken by the LORRI imager on NASA’s New Horizons spacecraft on July 3, 2015 at a distance of 7.8 million mi (12.5 million km), just prior to the July 4 anomaly that sent New Horizons into safe mode. Color data taken from the Ralph instrument gathered earlier in the mission. Credit: NASA/JHUAPL/SWRI

Latest color image of Pluto taken on July 3, 2015 shows 4 mysterious dark spots.
Best yet image of Pluto was taken by the LORRI imager on NASA’s New Horizons spacecraft on July 3, 2015 at a distance of 7.8 million mi (12.5 million km), just prior to the July 4 anomaly that sent New Horizons into safe mode. Color data taken from the Ralph instrument gathered earlier in the mission. Credit: NASA/JHUAPL/SWRI
Story updated[/caption]

Despite some hair-raising and unplanned 4th of July fireworks of sorts in deep space which caused NASA’s Pluto bound New Horizons spacecraft to enter “safe mode” due to a computer glitch and temporarily halt all science operations over the weekend, the spacecraft is now fully back on track, “healthy” and working “flawlessly” and set to resume all planned research investigations on Tuesday, July 7, NASA and top mission managers announced at a media briefing held this afternoon, Monday, July 6.

It’s now just exactly one week before the once-in-a-lifetime opportunity for a fast flyby encounter of the ever intriguing binary planet, at the far flung reaches of the solar system. And the great news could not come soon enough given the proximity of the flyby.

“The spacecraft is in excellent health and back in operation. New Horizons is barreling towards the Pluto system,” stated Jim Green, director of Planetary Science, NASA Headquarters, Washington, at the start of today’s news media briefing.

The $700 million mission remains on track to conduct the complex close flyby science sequence in its entirety, as planned over the next week, including the July 14 flyby of Pluto, despite the scary safe mode episode.

“The New Horizons spacecraft and science payload are now operating flawlessly,” Alan Stern, New Horizons principal investigator, Southwest Research Institute, Boulder, Colorado, announced at the media briefing.

NASA unexpectedly lost contact with the New Horizons spacecraft on Saturday, July 4, at about 1:30 p.m. EDT after it suffered a memory related software anomaly and executed a protective operation known as “safe mode.” An anomaly investigation team was formed immediately.

“It’s really a historic time, but also fraught with many decisions and challenges on the way to the July 14 Pluto system encounter,” Green said.

The mission team quickly worked to reestablish contact with the piano shaped spacecraft about 90 minutes after the signal was lost.

“On Saturday we lost contact with the spacecraft. The New Horizons team immediately went into action. Within 90 minutes the signal was reacquired by the team, with the spacecraft in safe mode. They soon found the root cause and corrective actions were immediately taken to get the spacecraft back in business.”

The team worked tirelessly and diligently day and night over the holiday weekend to recover New Horizons back to full operation quickly and in time for the flyby encounter of Pluto on July 14, set for approximately 7:49 a.m. EDT (11:49 UTC) on July 14, said Glen Fountain, New Horizons project manager, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland.

There are no second chances.

This trio of images are the most recent high-resolution views of Pluto sent by NASA’s New Horizons spacecraft, including one showing the four mysterious dark spots on Pluto that have captured the imagination of the world. The Long Range Reconnaissance Imager (LORRI) obtained these three images between July 1 and 3 of 2015, prior to the July 4 anomaly that sent New Horizons into safe mode. Credit: NASA/JHUAPL/SWRI
This trio of images are the most recent high-resolution views of Pluto sent by NASA’s New Horizons spacecraft, including one showing the four mysterious dark spots on Pluto that have captured the imagination of the world. The Long Range Reconnaissance Imager (LORRI) obtained these three images between July 1 and 3 of 2015, prior to the July 4 anomaly that sent New Horizons into safe mode. Credit: NASA/JHUAPL/SWRI

The software glitch occurred a day after new operating software was uploaded to New Horizons last Friday.

The spacecraft was trying to do two things at once on Saturday, compressing science data and writing command sequences while using up too much flash memory, explained Fountain.

“The computer was trying to do these two things at the same time, and the two were more than the processor could handle,” Fountain said.

“So the processor said ‘I’m overloaded.’ Then the spacecraft did exactly what it was supposed to do. It then switched to the backup computer and went into safe mode. At that point, we lost the downlink from the primary computer. We realized quickly what happened and put a recovery plan in place and recovered.”

Artist view of New Horizons passing Pluto and three of its moons. The ship is about the size of a grand piano and kept warm in the cold of the outer Solar System by  heat release from the radioactive decay of plutonium within the probe's RTGs (Radioisotope  Thermoelectric Generator). Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Artist view of New Horizons passing Pluto and three of its moons. The ship is about the size of a grand piano and kept warm in the cold of the outer Solar System by heat release from the radioactive decay of plutonium within the probe’s RTGs (Radioisotope Thermoelectric Generator). Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

At this moment New Horizons is about 3 billion miles (4.9 billion km) from Earth and less than 6 million miles (9 million km) away from unmasking the secrets of tantalizing Pluto, Charon, its largest moon with which it forms a double planet system, and its four tiny and recently discovered moons. Charon is half the size of Pluto.

The round trip time for signals traveling at the speed of light is 8.5 hours. So it’s a very long time before commands from Earth can reach the spacecraft and for the team to determine their outcome. So the probe has to be able to operate on its own without direction from Earth during the intense and brief flyby period.

Pluto is the most distant and last unexplored planet in our Solar System, and therefore presents enormous complexities to those bold enough to dare the mightiest things.

“We expect a nominal flyby of Pluto from every indication now,” said Alan Stern, New Horizons principal investigator, Southwest Research Institute, Boulder, Colorado, announced at the media briefing.

“This object is unlike any other that we have observed,” Stern said. “Both Pluto and Charon are already surprising us.”

Less than 1 percent of the planned data was lost in the three days that the science instruments were shut off.

“It’s more important to focus on the later science during the flyby,” Stern elaborated.

“There is zero impact to the primary Group 1 highest-priority science objectives. And a minor impact to Group 2 and Group 3 objectives,” Stern elaborated.

“This is a speed bump in terms of the total return that we expect from this flyby.”

“I’m pleased that our mission team quickly identified the problem and assured the health of the spacecraft,” noted Green. “Now, with Pluto in our sights, we’re on the verge of returning to normal operations and going for the gold.”

Credit: NASA/JHUAPL/SWRI
New Horizons trajectory map to Pluto. Credit: NASA/JHUAPL/SWRI

The team said this type of software update will not be repeated and a similar type safe mode event should not recur.

Fountain said that during the encounter period, the probe can switch itself to exit safe mode event within about 7 minutes, depending on the situation, and minimize any science data losses.

New Horizons will swoop to within about 12,500 kilometers (nearly 7,800 miles) of Pluto’s surface.

It will zoom past Pluto at speeds of some 30,000 miles per hour (more than 48,000 kilometers per hour).

Today the team also released the best yet images of Pluto that were taken by the Long Range Reconnaissance Imager (LORRI). The trio of images were between July 1 and 3 of 2015, prior to the July 4 anomaly that sent New Horizons into safe mode.

The images show varying and enigmatic surface features on the different hemispheres of Pluto.

They also show the four mysterious dark spots on Pluto that have captured the imagination of the scientists and the world.

Their nature remains unknown at this time.

The probe was launched back in 2006 on a United Launch Alliance Atlas V rocket.

“We are on our way to Pluto!” Green exclaimed.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Animation of Pluto rotating from photos taken by New Horizons two weeks before the flyby. Credit:
Animation of Pluto rotating from photos taken by New Horizons two weeks before the flyby. Credit: