2019 has been shaping up to be an interesting year for SpaceX and its founder, Elon Musk. After completing work on the miniaturized version of the Starship (Starship Alpha or “Starship hopper”) over the holidays, SpaceX moved ahead with the test-firing of its new Raptor engine in late January/early February. In accordance with Musk’s vision, these engines will give the Starship the necessary thrust to reach the Moon and Mars.
The test-firing took place at SpaceX’s Rocket Development and Test Facility, located just outside of McGregor, Texas. As Musk recently tweeted, the tests went very well, achieving the thrust necessary for both the Starship and its first-stage booster, the Super-Heavy. Musk also claimed that the engine broke the previous record for combustion chamber pressure, which was established by the Russian RD-180.
CAPE CANAVERAL AIR FORCE STATION, FL — A clandestine black ops satellite supporting US national defense launched into the black skies over Florida’s spaceport in the dead of night Sunday, Oct. 15, on a mission for the U.S. governments National Reconnaissance Office (NRO) that lit up the night skies offering a spectacular vista on its journey to orbit.
A United Launch Alliance (ULA) Atlas V launch carrying the covert NROL-52 mission in support of U.S. national security blasted off early Sunday, Oct. 15 at 3:28 a.m. EDT (0728 GMT) from seaside Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida.
“Congratulations to the team who helped make #NROL52 a success! United Launch Alliance, 45th Space Wing at Patrick Air Force Base, Fla., Air Force Space Command, and the Space and Missile Systems Center,” the NRO announced post launch on social media.
“Thanks. It was our privilege to serve your mission,” tweeted ULA CEO Tory Bruno in reply.
“Today’s launch is a testament to the tireless dedication of the ULA team, demonstrating why ULA continues to serve as our nation’s most dependable and successful launch provider,” said Laura Maginnis, ULA vice president of Government Satellite Launch, in a statement.
The Atlas V hauling NROL-52 soon arced over eastwards as it accelerate skywards to deliver the covert satellite to geosynchronous transfer orbit.
As the goals of the secret satellite mission were completely clouded from view perhaps it’s somewhat fitting that overhead clouds furtively rolled in as launch time approached and partially obscured our view – which nevertheless was magnificent!
The Atlas V thundered off pad 41 right at the opening of the middle of the night launch window providing absolutely stunning views to spectators ringing the space coast region as it steaked to orbit – darting in and out of the surprisingly thick cloud layer and affording witnesses who wisely woke up a spectacle they won’t forget.
The top secret payload literally launched into the black. Several minutes after liftoff ULA’s live launch webcast coverage entered a communications blackout.
“At the request of our [NRO] customer, we will wrap up our live #AtlasV #NROL52 [coverage],” said ULA.
“Never before has innovation been more important for keeping us ahead of the game. As the eagle soars, so will the advanced capabilities this payload provides to our national security,” said Colonel Matthew Skeen, USAF, Director, NRO Office of Space Launch, in a statement. “Kudos to the entire team for a job well done.”
“It’s always a good day when our nation launches an NRO payload that provides vital information to help keep our nation strong and protect us from enemies who wish to do us harm.
The fifth time was finally the charm for the oft postponed launch that initially was delayed from late September into early October by the impact of Hurricane Irma on the Florida Space Coast that caused over $100 million in damage to homes, businesses, marinas, parks and more in Brevard county.
The NROL-52 launch attempt was then scrubbed 4 more times due to lingering awful bouts of rains squalls and threating high winds and even a technical glitch with the S-band transmitter on the second stage of the ULA Atlas V rocket.
Fixing the transmitter required that the Atlas rocket be rolled back off the launch pad and into the Vertical Integration Facility (VIF) at pad 41 to replace the faulty equipment and verify its reliable operation.
“After recovering from Hurricane Irma that came through the area last month, and the last week’s weather challenges, the team found the right opportunity today to deliver this critical national asset to orbit,” Maginnis stated.
The ULA Atlas V launch of NROL-52 for the U.S. governments National Reconnaissance Office (NRO) concluded a launch double header this week on the Florida Space Coast that began with the sunset launch of a SpaceX Falcon 9 of the SES-11 commercial satellite on Wednesday, Oct 11. The Falcon 9 first stage soft landed minutes later on an ocean going platform.
The venerable two stage Atlas V stands 194 feet tall and sports a 100% success record. The first stage generates approx. 1.6 million pounds of liftoff thrust.
This Atlas Evolved Expendable Launch Vehicle (EELV) mission launched in the 421 configuration vehicle, which includes a 4-meter payload fairing (PLF) and two strap on solid rocket first stage boosters.
The Atlas booster for this mission was powered by the Russian-built RD AMROSS RD-180 engine, and the Centaur upper stage was powered by the Aerojet Rocketdyne RL10C-1 engine.
The National Reconnaissance Office (NRO) is a joint Department of Defense–Intelligence Community organization responsible for developing, launching, and operating America’s intelligence satellites to meet the national security needs of our nation.
The NRO runs a vast fleet of powerful orbital assets hosting a multitude of the most advanced, wide ranging and top secret capabilities.
NROL-52 was launched for the NRO on an intelligence gathering mission in support of US national defense.
The possible roles for the reconnaissance payload include signals intelligence, eavesdropping, imaging and spectroscopic observations, early missile warnings and much more.
This marks the 6th and final Atlas V launch of the year.
The NROL-52 mission marks ULA’s seventh launch of 2017 and 26th for the National Reconnaissance Office.
NROL-52 is the 74th flight of the Atlas V rocket and the seventh in the 421 configuration.
“I want to thank the entire ULA team and our mission partners at the NRO and U.S. Air Force who made this, our 26th NRO launch, successful,” said Maginnis.
NROL-52 is the fourth of five launches slated for the NRO in 2017 by both ULA and SpaceX.
The next NRO launch is scheduled on a ULA Delta IV in December from Vandenberg Air Force Base, California.
Watch for Ken’s continuing onsite NROL-52, SpaceX SES-11 and NASA and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
KENNEDY SPACE CENTER, FL – This week’s Atlas V rocket launch of a Cygnus cargo ship to the International Space Station (ISS) apparently experienced a first stage engine anomaly during the climb to space that required a longer firing of the boosters upper stage engine so the payload could successfully achieve the required orbit.
The stunningly beautiful nighttime blastoff of the United Launch Alliance (ULA) Atlas V from the Florida space coast on Tuesday, March 22, was not quite as flawless as initially thought and marred by the early engine shutdown which has now forced a postponement of the next planned Atlas V launch as company engineers painstakingly evaluate the data.
“The Centaur [upper stage] burned for longer than planned,” Lyn Chassagne, spokesperson for rocket maker ULA, told Universe Today.
“The ULA engineering team is reviewing the data to determine the root cause of the occurrence.”
The Centaur RL10C-1 powerplant had to make up for a thrust and velocity deficiency resulting from a 6 second shorter than planned firing of the Atlas V’s first stage RD-180 engines.
Indeed the Centaur had to fire for a minute longer than planned to inject Cygnus into its target orbit.
“The first stage cut-off occurred approximately 6 seconds early, however the Centaur was able to burn an additional approximately 60 seconds longer and achieve mission success, delivering Cygnus to its required orbit.”
“The team is evaluating the occurrence as part of the standard post-flight data analysis. Following successful spacecraft separation, Centaur performed a disposal burn,” Chessagne elaborated.
The two stage ULA Atlas V lifted off on time at 11:05 p.m. EDT on Tuesday, March 22, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fl, under a picturesque moonlit sky carrying an Orbital ATK Cygnus spacecraft on a resupply mission for NASA to the ISS.
Following a 21-minute ascent, the S.S. Rick Husband Cygnus spacecraft was successfully deployed into its intended orbit approximately 144 miles above the Earth, inclined at 51.6 degrees to the equator, Orbital ATK confirmed in a statement.
The Russian-made RD AMROSS RD-180 engines power the Atlas V first stage and the dual nozzle powerplants have been completely reliable in 62 Atlas launches to date.
The RD-180s were supposed to fire for 255.5 seconds, or just over 4 minutes. But instead they shut down prematurely resulting in decreased velocity that had to be supplemented by the Centaur RL10C-1 to get to the intended orbit need to reach the orbiting outpost.
The liquid oxygen/liquid hydrogen fueled Aerojet Rocketdyne RL10C-1 engine was planned to fire for 818 seconds or about 13.6 minutes. The single engine produces 22,900 lbf of thrust.
The cause of the first stage engine shortfall has not been announced. ULA has launched a thorough investigation to determine root cause as to whether for example it’s the RD-180 engine itself, a faulty sensor, fuel related, ground support equipment or a myriad of some other rocket components or issues.
Although the Atlas V did successfully launch and deploy the commercial Cygnus CRS-6/OA-6 spacecraft into the required orbit, the Centaur was pressed into extra duty in real time to propel the payload.
The Atlas V first and second stages are preprogrammed to swiftly react to a wide range of anomalous situations to account for the unexpected. The rocket and launch teams conduct countless simulations to react to off nominal situations.
“The Atlas V’s robust system design, software and vehicle margins enabled the successful outcome for this mission,” Chassagne said.
“As with all launches, we will continue to focus on mission success and work to meet our customer’s needs.”
At the post launch media briefing, ULA program manager for NASA missions Vern Thorp, said that “ in a little over 20 minutes we went from liftoff to delivering Cygnus into exactly the orbit that it wanted to be in. This was our second successful cargo mission [for Orbital ATK] since December.”
“We were targeting a 230 kilometer circular orbit and we came very close to that as we normally do, just a fraction of a kilometer off. Well within the normal dispersions.”
“We nailed it. We got Cygnus where it wants to go.”
Asked about the Centaur he said that the prelaunch predictions are based on preliminary trajectories and can vary depending on the actual conditions at launch.
“What I do know is that Centaur nailed the orbit. Like every mission, we’re going to do a very, very detailed post-flight review. We always do and we always have done that. That’s to make sure that everything performed properly. From everything we’ve seen so far, the mission was pretty nominal.”
Now as a result of the post-flight review into the engine anomaly and velocity shortfall, the next launch of the “Atlas V carrying the MUOS-5 mission for the U.S. Navy and the U.S. Air Force has been delayed to no earlier than May 12,” Chassagne added.
ULA needs to “further review the data anomaly experienced during the OA-6 mission.”
“The delay will allow additional time to review the data and to confirm readiness for the MUOS-5 mission.”
The Atlas V/MUOS-5 mission will lift off from the same pad at Space Launch Complex 41 on Cape Canaveral Air Force Station, Fl, whenever a launch target date is announced by ULA.
Meanwhile the Cygnus CRS-6/OA-6 spacecraft continues chasing down the ISS for a planned arrival early Saturday morning, March 26.
The spacecraft will arrive at the station on Saturday, March 26. At that time Expedition 47 Commander Tim Kopra of NASA and Flight Engineer Tim Peake of ESA (European Space Agency) will grapple Cygnus, using the space station’s robotic arm, at approximately 6:40 a.m.
NASA TV coverage of rendezvous and grapple will begin at 5:30 a.m.
The Cygnus CRS-6/OA-6 payload of more than 16,000 pounds (7200 kg) weighed in as the heaviest payload to launch on an Atlas V to date.
The Cygnus has been named the S.S. Rick Husband in honor of Col. Rick Husband, the late commander of Space Shuttle Columbia, which was tragically lost with its crew of seven NASA astronauts during re-entry on its final flight on Feb. 1, 2003.
Watch for Ken’s ongoing Cygnus launch reports.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
America’s premier rocket launch services providerUnited Launch Alliance, or ULA, may be up for sale according to media reports, including Reuters and the Wall Street Journal. Any such sale would result in a major shakeup of the American rocket launching business with far reaching implications.
Aerojet-Rocketdyne has apparently made a bid to buy ULA for approximately $2 Billion in cash, based on behind the scenes information gathered from unnamed sources.
ULA was formed in 2006 as a 50:50 joint venture between aerospace giants Lockheed Martin and Boeing that combined their existing expendable rocket fleet families – the Atlas V and Delta IV – under one roof.
According to Reuters, Aerojet Rocketdyne recently proffered a $2 billion cash offer to buy ULA from Lockheed Martin and Boeing.
“Aerojet Rocketdyne board member Warren Lichtenstein, the chairman and chief executive of Steel Partners LLC, approached ULA President Tory Bruno and senior Lockheed and Boeing executives about the bid in early August,” sources told Reuters.
ULA’s Bruno declined to comment on the story via twitter.
“Wish I could, but as a matter of policy, we don’t comment on this type of story,” Bruno tweeted in response to inquiries.
Since 2006 ULA has enjoyed phenomenal launch success with its venerable fleet of Atlas V and Delta IV rockets and also enjoyed a virtual launch monopoly with the US Government and for the nations most critical national security military payloads.
And just last week, ULA conducted its 99th launch with the successful blastoff of an Atlas V with the MUOS-4 military communications satellite from Cape Canaveral Air Force Station for the U.S. Navy.
Furthermore a Congressional ban on importing the Russian-made RD-180 first stage engines that power the Atlas V rocket, that takes effect in a few years, has threatened the rockets future viability. The Atlas V dependence on Russia’s RD-180’s landed at the center of controversy after Russia invaded Crimea in the spring of 2014.
To date the Atlas V enjoys a 100 percent success rate after over 50 launches.
In response to the Congressional RD-180 engine ban and relentless cost pressures from SpaceX, ULA CEO Tory Bruno and ULA Vice President for Advanced Concepts and Technology George Sowers announced ULA will develop a cost effective new rocket named Vulcan using American made engines.
“To be successful and survive ULA needs to transform to be more of a competitive company in a competitive environment,” Dr. Sowers told Universe Today in a wide ranging interview regarding the rationale and goals of the Vulcan rocket.
Vulcan is ULA’s next generation rocket to space and slated for an inaugural liftoff in 2019.
However, Lockheed Martin and Boeing are only providing funds to ULA on a quarterly basis to continue development of the Vulcan.
Vulcan’s first stage will most likely be powered by the BE-4 engine being developed by the secretive Blue Origin aerospace firm owned by billionaire Jeff Bezos.
Interestingly, ULA is also evaluating the AR-1 liquid fueled engine being developed by Aerojet-Rocketdyne.
The final decision on which engine to use is expected sometime in 2016.
The engine choice could clearly be impacted if Aerojet-Rocketdyne buys ULA.
Aerojet-Rocketdyne has also sought to buy the rights to manufacture the Atlas V from ULA, which is currently planned to be retired several years after Vulcan is introduced.
To this writer, ULA would seem to be worth far more than $2 Billion. They own manufacturing and rocket launch facilities on both coasts and in several states.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
SpaceX Falcon 9 is now certified for USAF launches. SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
Story updated[/caption]
The U.S. Air Force announced Tuesday that they have certified SpaceX to launch the nations critical and highly valuable national security satellites on the firms Falcon 9 rocket, thereby breaking the decade old launch monopoly held by launch competitor United Launch Alliance (ULA). ULA is a joint venture owned by aerospace giants Boeing and Lockheed Martin.
The Air Force’s goal in approving the SpaceX Falcon 9 booster is aimed at drastically cutting the high cost of access to space by introducing competition in the awarding of military mission launch contacts. The prior contract involved a sole source $11 Billion “block buy” bid for 36 rocket cores from ULA in December 2013 which was legally challenged by SpaceX in April 2014, but eventually settled by SpaceX in an agreement with the USAF earlier this year.
Lieutenant General Samuel Greaves, Commander of the Air Force Space and Missile Systems Center (SMC), announced the long awaited decision on Tuesday, May 26.
The certification milestone came after a grueling two year review process in which the Air Force invested more than $60 million and 150 people to thoroughly review all aspects of the Falcon 9 booster. The review was based on three successful flights by the Falcon 9 v1.1 which first launched in late 2013.
The purpose of certification is to assure that qualified launch providers could meet the challenge of safely, securely and reliably lofting expensive U.S. national security military missions to space and into their intended orbits with full mission capability that are critical for maintaining national defense.
“The SpaceX and SMC teams have worked hard to achieve certification,” said Greaves, Commander of the Air Force Space and Missile Systems Center (SMC) and Air Force Program Executive Officer for Space, in a statement.
“And we’re also maintaining our spaceflight worthiness process supporting the National Security Space missions. Our intent is to promote the viability of multiple EELV-class launch providers as soon as feasible.”
And the competitive launch races “for award of qualified national security space launch missions” between SpaceX and ULA start very soon, within the next month says the USAF.
In June, the Air Force will issue a Request for Proposal (RFP) for GPS III launch services. ULA has three GPS launches in its manifest for 2015.
Of course SpaceX was overjoyed on hearing the certification news.
“This is an important step toward bringing competition to National Security Space launch, said Elon Musk, SpaceX CEO and Lead Designer.
‘We thank the Air Force for its confidence in us and look forward to serving it well.”
Until today, ULA has held a launch monopoly over military missions since the company was founded in 2006. ULA also launches many NASA science missions, but very few commercial satellites.
Thus the U.S. military and NASA provide the core of ULA’s business and the source of much of its income and profits.
“This is a very important milestone for the Air Force and the Department of Defense,” said Secretary of the Air Force Deborah Lee James, in a statement.
“SpaceX’s emergence as a viable commercial launch provider provides the opportunity to compete launch services for the first time in almost a decade. Ultimately, leveraging of the commercial space market drives down cost to the American taxpayer and improves our military’s resiliency.”
Other military spacecraft in the future could involve vehicles such as the X-37B space plane which recently launched on an Atlas V, as well as weather satellites, signals intelligence and missile warning satellites and a range of top secret missions for the National Reconnaissance Office (NRO) that have been routinely launched by ULA with a 100% success rate to date.
ULA’s stable of launchers includes the Atlas V and Delta IV families of vehicles. ULA is phasing out the Delta IV due to its high costs. Only the Delta IV Heavy will remain in service as required to launch the very heaviest satellites that cannot be accommodated by less powerful rockets.
ULA is also replacing the Atlas V with the partly reusable new Vulcan rocket, that will be phased in starting in 2019 using American-made engines from either Blue Origin or Aerojet Rocketdyne.
The Atlas V uses Russian made RD-180 engines, who’s use has become highly contentious since the deadly crisis in Ukraine erupted in 2014.
The ensuing threats of RD-180 engine embargoes and imposition of sanctions and counter sanctions imposed by the US and Russia have thus placed US national security at risk by being dependent on a rocket with foreign made engines whose future supply chain was uncertain.
U.S. Senator John McCain (R-AZ), Chairman of the Senate Armed Services Committee, has been highly critical of the ULA dependence on the Russian RD-180 engines and issued this statement in response to the Air Force announcement.
“The certification of SpaceX as a provider for defense space launch contracts is a win for competition, said McCain.
“Over the last 15 years, as sole-source contracts were awarded, the cost of EELV was quickly becoming unjustifiably high. I am hopeful that this and other new competition will help to bring down launch costs and end our reliance on Russian rocket engines that subsidizes Vladimir Putin and his cronies.”
Overall the Air Force “invested more than $60 million and 150 people in the certification effort which encompassed 125 certification criteria, including more than 2,800 discreet tasks, 3 certification flight demonstrations, verifying 160 payload interface requirements, 21 major subsystem reviews and 700 audits in order to establish the technical baseline from which the Air Force will make future flight worthiness determinations for launch.”
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Blastoff of ULA Atlas V rocket lofting MUOS-3 to orbit for the US Navy from Space Launch Complex-41 at 8:04 p.m. EST on Jan. 20, 2015. Credit: Alan Walters/AmericaSpace See launch gallery below![/caption]
Launching on its milestone 200th mission, the most powerful version of the venerable Atlas-Centaur rocket put on a most spectacular nighttime sky show on Tuesday evening, (Jan. 20) that mesmerized spectators along the Florida Space Coast on a mission to deliver a powerful new next-generation communications satellite to orbit for the US Navy.
The United Launch Alliance (ULA) Atlas V rocket carrying the third Mobile User Objective System satellite (MUOS-3) for the United States Navy successfully launched to geostationary orbit from Space Launch Complex-41 at 8:04 p.m. EST from Cape Canaveral Air Force Station, Florida on Jan. 20, 2015.
The MUOS-3 launch opened ULA’s planned 13 mission manifest for 2015 with a boisterous bang as the Atlas V booster thundered off the seaside space coast pad.
The MUOS constellation is a next-generation narrowband US Navy tactical satellite communications system designed to significantly improve ground communications to US forces on the move and around the globe.
“The ULA team is honored to deliver this critical mission into orbit for the U.S. Navy and U.S. Air Force with the support of our many mission partners,” said Jim Sponnick, ULA vice president, Atlas and Delta Programs.
This is the third satellite in the MUOS series and will provide military users 10 times more communications capability over existing systems, including simultaneous voice, video and data, leveraging 3G mobile communications technology. It was built by Lockheed Martin.
The unmanned Atlas V expendable rocket launched in its mightiest configuration known as the Atlas V 551.
The 206 foot-tall rocket features a 5-meter diameter payload fairing, five Aerojet Rocketdyne first stage strap on solid rocket motors and a single engine Centaur upper stage powered by the Aerojet Rocketdyne RL10C-1 engine.
The first stage is powered by the Russian-built dual nozzle RD AMROSS RD-180 engine. Combined with the five solid rocket motors, the Atlas V first stage generates over 2.5 million pounds of liftoff thrust.
The RD-180 burns RP-1 (Rocket Propellant-1 or highly purified kerosene) and liquid oxygen and delivers 860,200 lb of thrust at sea level.
And the rocket needed all that thrust because the huge MUOS-3 was the heftiest payload lofted by an Atlas V booster, weighing in at some 15,000 pounds.
“The MUOS-3 spacecraft is the heaviest payload to launch atop an Atlas V launch vehicle. The Atlas V generated more than two and half million pounds of thrust at liftoff to meet the demands of lifting this nearly 7.5-ton satellite,” noted Sponnick.
The first Atlas rocket was first launched some 52 years ago.
“Today’s launch was the 200th Atlas-Centaur launch – a very sincere congratulations to the many women and men responsible for the incredible success of the Centaur upper stage over the last 5 decades!”
Overall this was the 52nd Atlas V mission and the fifth in the Atlas V 551 configuration.
The Atlas V 551 version has previously launched two prominent NASA planetary science missions including the New Horizons mission in 2006 that is about to reach Pluto and the Juno orbiter in 2011 that will arrive at Jupiter in July 2016. It was also used to launch MUOS-1 and MUOS-2.
ULA’s second launch in 2015 thunders aloft from the US West Coast with NASA’s Soil Moisture Active Passive mission (SMAP) next week.
SMAP is the first US Earth-observing satellite designed to collect global observations of surface soil moisture.
SMAP will blastoff from Space Launch Complex 2 at Vandenberg AFB at 9:20 a.m. EST (6:20 a.m. PST) on ULA’s Delta II rocket.
In another major milestone coming soon, the Atlas V is right now being man rated since it was chosen to launch the Boeing CST-100 space taxi, which NASA selected as one of two new commercial crew vehicles to launch US astronauts to the ISS as soon as 2017.
The next Atlas launch involves NASA’s Magnetospheric Multiscale Mission (MMS) to study Earth’s magnetic reconnection. It is scheduled for launch on an Atlas V 421 booster on March 12 from Cape Canaveral. See my up close visit with MMS and NASA Administrator Charles Bolden at NASA Goddard Space Flight Center detailed in my story – here.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
United Launch Alliance Atlas V rocket – powered by Russian made RD-180 engines – and Super Secret NROL-67 intelligence gathering payload poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station, FL, in March 2014.
Credit: Ken Kremer – kenkremer.com
Story updated[/caption]
Moscow delivered a double whammy of bad news to a broad range of US space efforts today by banning the use of Russian made rocket engines for US military national security launches and by declining to prolong cooperation on the International Space Station (ISS) – says Russia’s deputy prime minister, Dmitry Rogozin, who is in charge of space and defense industries.
Rogozin was quoted in a story prominently featured today, May 13, on the English language website of Russia Today, a Russian TV news and cultural network.
“Moscow is banning Washington from using Russian-made rocket engines, which the US has used to deliver its military satellites into orbit,” said Rogozin according to the Russia Today report.
Virtually every aspect of the manned and unmanned US space program – including NASA, other government agencies, private aerospace company’s and crucial US national security payloads – are highly dependent on Russian & Ukrainian rocketry and are clearly at risk amidst the current Ukrainian crisis as tensions continue to escalate with deadly new clashes reported today in Ukraine – with global repercussions.
The engines at issue are the Russian made RD-180 engines – which power the first stage of the venerable Atlas V rocket built by United Launch Alliance (ULA) and are used to launch a wide array of US government satellites including top secret US military spy satellites for the US National Reconnaissance Office, like NROL-67, as well as science satellites for NASA like the Curiosity Mars rover and MAVEN Mars orbiter.
The dual nozzle RD-180 engines are manufactured in Russia by NPO Energomash. Rogozin’s statement effectively blocks their export to the US.
“We proceed from the fact that without guarantees that our engines are used for non-military spacecraft launches only, we won’t be able to supply them to the US,” Rogozin said.
So although the launch of NASA science missions might preliminarily appear to be exempt, they could still be at serious risk based on a qualifier from Rogozin, pertaining to RD-180 engines already delivered.
“If such guarantees aren’t provided the Russian side will also be unable to perform routine maintenance for the engines, which have been previously delivered to the US, he added.
A ULA spokesperson told me that the company has a two year supply of RD-180 engines already stockpiled in the US.
Rogozin’s statements today are clearly in retaliation to stiffened economic sanctions imposed by the US and Western nations in response to Russia’s actions in the ongoing crisis in Ukraine and the annexation of Crimea; as I reported earlier here, here and here.
Therefore, US National Security spy satellite and NASA science launches are left lingering with uncertainty and potential disarray.
Rogozin is specifically named on the US economic sanctions target list.
He was also named by SpaceX CEO Elon Musk in his firms attempt to block the importation of the RD-180 engines by ULA for the Atlas V as a violation of US sanctions.
Federal Judge Susan Braden initially imposed a temporary injunction blocking the RD-180 imports on April 30. She rescinded that order last Thursday, May 8, after receiving written communications clarifications from the US Justice and Commerce departments that the engine import did not violate the US government imposed sanctions.
Rogozin went on to say that “Moscow also isn’t planning to agree to the US offer of prolonging operation of the International Space Station (ISS) [to 2024].
“We currently project that we’ll require the ISS until 2020,” he said. “We need to understand how much profit we’re making by using the station, calculate all the expenses and depending on the results decide what to do next.”
“A completely new concept for further space exploration is currently being developed by the relevant Russian agencies”.
NASA announced early this year the agency’s intention to extend ISS operations to at least 2024, and is seeking agreement from all the ISS partners including Russia.
Since the shutdown of the Space Shuttle program in 2011 before a replacement crew vehicle was available, American astronauts are now 100% dependent on the Russian Soyuz capsule for rides to the ISS and back.
Congress has also repeatedly slashed NASA’s commercial crew program budget, forcing at least an 18 month delay in its start up and thus continued reliance on the Soyuz for years to come at over $70 million per seat.
NASA thus has NO immediate alternatives to Russia’s Soyuz – period.
The Atlas V is also planned as the launcher for two of the three companies vying for the next round of commercial crew contracts aimed at launching US astronauts to the ISS. The commercial crew contracts will be awarded by NASA later this year.
In a previous statement regarding the US sanctions against Russia, Rogozin said that sanctions could “boomerang” against the US space program and that perhaps NASA should “deliver their astronauts to the International Space Station using a trampoline.”
Watch for Ken’s articles as the Ukraine crisis escalates with uncertain and potentially dire consequences for US National Security and NASA.
Stay tuned here for Ken’s continuing Boeing, SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.