It is a foregone conclusion that if humanity intends to survive the so-called “Anthropocene” we need to make the transition away from fossil fuels and other methods that are unsustainable and amplify our impact on the planet. In this respect, a great deal of research and development is being directed towards “renewable energy.” Of the many methods that are being developed, the biggest contender is and always has been solar power.
Unfortunately, solar power suffers from a number of drawbacks, like the fact that it is only available during the day and favorable weather conditions. However, a new study by researchers from the Institute for Research in Electronics and Applied Physics (IREAP) shows how a special kind of photovoltaic cell could generate power at night. These “anti-solar” cells could revolutionize renewable energy and make it far more proficient.
Perhaps you’ve seen them while driving through the countryside. Or maybe you saw them just off the coast, looming large on the horizon with their spinning blades. Then again, you may have seen them on someone’s roof, or as part of a small-scale urban operation. Regardless of the location, wind turbines and wind power are becoming an increasingly common feature in the modern world.
Much of this has to do with the threat of Climate Change, air pollution, and the desire to wean humanity off its dependence on fossil fuels. And when it comes to alternative and renewable energy, wind power is expected to occupy the second-largest share of the market in the future (after solar). But just how exactly do wind turbines work?
Description:
Air turbines are devices that turn the kinetic energy of wind and changes in air flow into electrical energy. In general, they consist of the following components: a rotor, a generator, and a structural support component (which can take the form of either a tower, a rotor yaw mechanism, or both).
A rotor consists of the blades that capture the wind’s energy and a shaft, which converts the wind energy to low-speed rotational energy. The generator – which is connected to the shaft – converts the slow rotation to high into electrical energy using a series of magnets and a conductor (which usually consists of coiled copper wire).
When the magnets rotate around with the copper wire, its produces a difference in electrical potential, creating voltage and an electric current. Lastly, there is the structural support component, which ensures that the turbine either stands at a high enough altitudes to optimally capture changes in wind pressure, and/or face in the direction of wind flow.
Types of Wind Turbines:
At present, there are two main types of wind turbines – Horizontal Axis Wind Turbines (HAWT) and Vertical Axis Wind Turbines (VAWT). As the name would imply, horizontal wind turbines have a main rotor shaft and electrical generator at the top of a tower, with the blades pointed into the wind. The turbine is usually positioned upwind of its supporting tower, since the tower is likely to produce turbulence behind it.
Vertical axis turbines (once again, as the name implies) have the main rotor shaft arranged vertically. Typically, these are smaller in nature, and do not need to be pointed in the direction of the wind in order to rotate. They are thereby being able to take advantage of wind that is variable in terms of direction.
In general, horizontal axis wind turbines are considered more efficient and can produce more power. While the vertical model generates less electricity it can be placed at lower elevations and needs less in the way of components (particularly a yaw mechanism). Wind turbines can also be divided into three general groups based on their design, which includes the Towered,Savonius, and Darrieus models.
The towered model is the most conventional form of HAWT, consisting of a tower (as the name would suggest) and a series of long blades that sit ahead of (and parallel to) the tower. The Savonis is a VAWT model that relies on contoured blades (scoops) to capture wind and spin. They are generally low-efficiency, but have the benefit of being self-starting. These sorts of turbines are often part of rooftop wind operations or mounted on sea vessels.
The Darrieus model, also known as an “Eggbeater” turbine, is named after the French inventor who pioneered the design – Georges Darrieus. This VAWT model employs a series of vertical blades that sit parallel to the vertical support. They are generally low efficiency, require an additional rotor to start turning, produce high-torque, and place high stress on the tower. Hence, they are considered unreliable as designs go.
History of Development:
Wind power has been used for thousands of years to push sails, power windmills, or to generate pressure for water pumps. The earliest known examples come from Central Asia, where windmills used in ancient Persia (Iran) have been dated to between 500 – 900 CE. The technology began to appear in Europe during the Middle Ages, and became a common feature by the 16th century.
By the 19th century, with the development of electrical power, the first wind turbines capable of generating electricity were built. The first was installed in 1887 by Scottish academic James Blyth to light his holiday home in Marykirk, Scotland. In 1888, American inventor Charles F. Brush built the first automated wind turbine to power his home in Cleveland, Ohio.
By the early 20th century, wind turbines began to become a common means of powering homes in remote areas (such as farmsteads). In 1941, the first megawatt-class wind turbine was installed in Vermont and attached to the local utility grid. In 1951, the UK installed its first utility-grid connected wind turbine in the Orkney Islands.
By the 1970s, research and development into wind turbine technology advanced considerably thanks to the OPEC crisis and protests against nuclear power. In the ensuing decades, associations and lobbyists dedicated to alternative energy began to emerge in western European nations and the United States. By the final decade of the 20th century, similar efforts emerged in India and China due to growing air pollution and rising demand for clean energy.
Wind Power:
Compared to other forms of renewable energy, wind power is considered very reliable and steady, as wind is consistent from year to year and does not diminish during peak hours of demand. Initially, the construction of wind farms was a costly venture. But thanks to recent improvements, wind power has begun to set peak prices in wholesale energy markets worldwide and cut into the revenues and profits of the fossil fuel industry.
According to a report issued by the Department of Energy in March of 2015, the growth of wind power in the United States could lead to even more highly skilled jobs in many categories. Titled “Wind Vision: A New Era for Wind Power in the United States”, the document indicates that by 2050, the industry could account for as much as 35% of the US’ electrical production.
In addition, in 2014, the Global Wind Energy Council and Greenpeace International came together to publish a report titled “Global Wind Energy Outlook 2014”. This report stated that worldwide, wind power could provide as much as 25 to 30% of global electricity by 2050. At the time of the report’s writing, commercial installations in more than 90 countries had a total capacity of 318 gigawatts (GW), providing about 3.1% of global supply.
This represents a nearly sixteen-fold increase in the rate of adoption since the year 2000, when wind power accounted for less than 0.2%. Another way to look at it would be to say that the market share of wind power has doubled four times in less than 15 years. This places it second only to solar power, which doubled seven times over in the same period, but still trails wind in terms of its overall market share (at about 1% by 2014).
In terms of its disadvantages, one consistently raised issue is the effect wind turbines have on local wildlife, and the disturbance their presence has on the local landscape. However, these concerns have often been shown to be inflated by special interest groups and lobbyists seeking to discredit wind power and other renewable energy sources.
For instance, a 2009 study released by the National Renewable Energy Laboratory determined that less than 1 acre per megawatt is disturbed permanently by the construction of large-scale wind farms, and less than 3.5 acres per megawatt are disturbed temporarily. The same study concluded that the impacts are relatively low on bird and bat wildlife, and that the same conclusions hold true for offshore platforms.
All over the world, governments and local communities are looking to wind power in order to meet their energy needs. In an age of rising fuel prices, growing concerns over Climate Change, and improving technology, this is hardly surprising. At its current rate of adoption, it is likely to be one of the largest sources of energy by mid-century.
And be sure to enjoy this video about wind turbines, courtesy of NASA’s Lewis Research Center:
In recent years, alternative energy has been the subject of intense interest and debate. Thanks to the threat of Climate Change, and the fact that average global temperatures continue to rise year after year, the drive to find forms of energy that will reduce humanity’s reliance on fossil fuels, coal, and other polluting methods has naturally intensified.
While most concepts for alternative energy are not new, it has only been in the past few decades that the issue has become pressing. And thanks to improvements in technology and production, the costs of most forms of alternative energy has been dropping while efficiency has been increasing. But just what is alternative energy, and what is the likelihood of it becoming mainstream?
Definition:
Naturally, there is some debate as to what “alternative energy” means and what it can be applied to. On the one hand, the term can refer to forms of energy that do not increase humanity’s carbon footprint. In this respect, it can include things as nuclear facilities, hydroelectric power, and even things like natural gas and “clean coal”.
On the other hand, the term is also used to refer to what are currently considered to be non-traditional methods of energy – such as solar, wind, geothermal, biomass, and other recent additions. This sort of classification rules out methods like hydroelectric, which have been around for over a century and are therefore quite common to certain regions of the world.
Another factor is that alternative energy sources are considered to be “clean”, meaning that they don’t produce harmful pollutants. As already noted, this can refer to carbon dioxide but also other emissions like carbon monoxide, sulfur dioxide, nitrogen oxide, and others. Within these parameters, nuclear energy is not considered an alternative energy source because it produces radioactive waste that is highly toxic and must be stored.
In all cases, however, the term is used to refer to forms of energy that will come to replace fossil fuels and coal as the predominant form of energy production in the coming decades.
Types of Alternative Energy:
Strictly speaking, there are many types of alternative energy. Once again, definitions become a bit of a sticking point, and the term has been used in the past to refer to any method that was considered non-mainstream at the time. But applying the term broadly to mean alternatives to coal and fossil fuels, it can include any or all of the following:
Hydroelectricity: This refers to energy generated by hydroelectric dams, where falling water (i.e. rivers or canals) are channeled through an apparatus to spin turbines and generate electricity.
Nuclear Power: Energy that is produced through slow-fission reactions. Rods of uranium or other radioactive elements heat water to generate steam, which in turn spins turbines to generate electricity.
Solar Power: Energy harnessed directly from the Sun, where photovoltaic cells (usually composed of silicon substrate, and arranged in large arrays) convert the Sun’s rays directly into electrical energy. In some cases, the heat produced by sunshine is harnessed to produce electricity as well, which is known as solar-thermal power.
Wind Power: Energy generated by air flow, where large wind-turbines are spun by wind to generate electricity.
Geothermal Power: Energy generated by heat and steam produced by geological activity in the Earth’s crust. In most cases, this consists of pipes being placed in the ground above geologically active zones to channel steam through turbines, thus generating electricity.
Tidal Power: Energy generated by tidal harnesses located around shorelines. Here, the daily changes in tides causes water to flow back and forth through turbines, generating electricity that is then transferred to power stations along the shore.
Biomass: This refers to fuels that are derived from plants and biological sources – i.e. ethanol, glucose, algae, fungi, bacteria – that could replace gasoline as a fuel source.
Hydrogen: Energy derived from processes involving hydrogen gas. This can include catalytic converters, where water molecules are broken apart and reunited by electrolysis; hydrogen fuel cells, where the gas is used to power internal combustion engines or heated and used to spin turbines; or nuclear fusion, where atoms of hydrogen fuse under controlled conditions to release incredible amounts of energy.
Alternative and Renewable Energy:
In many cases, alternative sources of energy are also renewable. However, the terms are not entirely interchangeable, owing to the fact that many forms of alternative energy rely on a finite resource. For instance, nuclear power relies on uranium or other heavy elements that must be mined.
Meanwhile, wind, solar, tidal, geothermal and hydroelectric power all rely on sources that are entirely renewable. The Sun’s rays are the most abundant energy source of all and, while limited by weather and diurnal patters, are perennial – and therefore inexhaustible from an industry standpoint. Wind is also a constant, thanks to the Earth’s rotation and pressure changes in our atmosphere.
Development:
Currently, alternative energy is still very much in its infancy. However, this picture is rapidly changing, owing to a combination of political pressure, worldwide ecological disasters (drought, famine, flooding, storm activity), and improvements in renewable energy technology.
For instance, as of 2015, the world’s energy needs were still predominantly provided for by sources like coal (41.3%) and natural gas (21.7%). Hydroelectric and nuclear power constituted 16.3% and 10.6%, respectively, while “renewables” (i.e. solar, wind, biomass etc.) made up just 5.7%.
This represented a significant change from 2013, when the global consumption of oil, coal and natural gas was 31.1%, 28.9%, and 21.4%, respectively. Nuclear and hydroelectric power made up 4.8% and 2.45, while renewable sources made up just 1.2%.
In addition, there has been an increase in the number of international agreements regarding the curbing of fossil fuel use and the development of alternative energy sources. These include the Renewable Energy Directive signed by the European Union in 2009, which established goals for renewable energy usage for all member states for the year of 2020.
Basically, the agreement stated that the EU fulfill at least 20% of its total energy needs with renewables by 2020, and that at least 10% of their transport fuels come from renewable sources by 2020. In November of 2016, the European Commission revised these targets, establishing that a minimum of 27% of the EUs energy needs come from renewables by 2030.
In 2015, the United Nations Framework Convention on Climate Change (UNFCCC) met in Paris to come up with a framework for greenhouse gas mitigation and the financing of alternative energy that would go into effect by 2020. This led to The Paris Agreement, which was adopted on December 12th, 2015 and opened for signatures on April 22nd (Earth Day), 2016, at the UN Headquarters in New York.
Several countries and states have also been noted fore their leadership in the field of alternative energy development. For instance, in Denmark, wind power provides up to 140% of the country’s demand for electricity, with the surplus being provided to neighboring countries like Germany and Sweden.
Iceland, thanks to its location in the North Atlantic and its active volcanoes, achieved 100% reliance on renewable energy by 2012 through a combination of hydroelectricity and geothermal power. In 2016, Germany’s policy of phasing out reliance on oil and nuclear power resulted in the country reaching a milestone on May 15th, 2016 – where nearly 100% of its demand for electricity came from renewable sources.
The state of California has also made impressive strides in terms of its reliance on renewable energy in recent years. In 2009, 11.6 percent of all electricity in the state came from renewable resources such as wind, solar, geothermal, biomass and small hydroelectric facilities. Thanks to multiple programs that encourage switching to renewable energy sources, this reliance increased to 25% by 2015.
Based on the current rates of adoption, the long-term prospects for alternative energy are extremely positive. According to a 2014 report by the International Energy Agency (IEA), photovoltaic solar power and solar thermal power will account for 27% of global demand by 2050 – making it the single largest source of energy. Similarly, a 2013 report on wind power indicated that by 2050, wind could account for up to 18% of global demand.
The IEA’s World Energy Outlook 2016 also claims that by 2040, natural gas, wind and solar will eclipse coal and oil as the predominant sources of energy. And some even go as far to say that – thanks to developments in solar, wind, and fusion power technology – fossil fuels will become obsolete by 2050.
As with all things, the adoption of alternative energy has been gradual. But thank to the growing problem of Climate Change and rising demand for electricity worldwide, the rate at which clean and alternative methods are being adopted has become exponential in recent years. Sometime during this century, humanity may reach the point of becoming carbon neutral, and not a moment too soon!
Renewable energy is becoming an increasingly important issue in today’s world. In addition to the rising cost of fossil fuels and the threat of Climate Change, there has also been positive developments in this field which include improvements in efficiency as well as diminishing prices.
All of this has increased the demand for alternative energy and accelerated the transition towards cleaner, more sustainable methods of electrical power. However, it is important to note that are many kinds – biomass, solar, wind, tidal, and geothermal power – and that each has its own share of advantages and drawbacks.
Biomass:
The most widely used form of renewable energy is biomass. Biomass simply refers to the use of organic materials and converting them into other forms of energy that can be used. Although some forms of biomass have been used for centuries – such as burning wood – other, newer methods, are focused on methods that don’t produce carbon dioxide.
For example, there are clean burning biofuels that are alternatives to oil and gas. Unlike fossil fuels, which are produced by geological processes, a biofuel is produced through biological processes – such as agriculture and anaerobic digestion. Common fuels associated with this process are bioethanol, which is created by fermenting carbohydrates derived from sugar or starch crops (such as corn, sugarcane, or sweet sorghum) to create alcohol.
Another common biofuel is known as biodiesel, which is produced from oils or fats using a process known as transesterification – where acid molecules are exchanged for alcohol with the help of a catalyst. These types of fuels are popular alternatives to gasoline, and can be burned in vehicles that have been converted to run on them.
Solar Power:
Solar power (aka. photovoltaics) is one of the most popular, and fastest-growing, sources of alternative energy. Here, the process involves solar cells (usually made from slices of crystalline silicon) that rely on the photovoltaic (PV) effect to absorb photons and convert them into electrons. Meanwhile, solar-thermal power (another form of solar power) relies on mirrors or lenses to concentrate a large area of sunlight, or solar thermal energy (STE), onto a small area (i.e. a solar cell).
Initially, photovoltaic power was only used for small to medium-sized operations, ranging from solar powered devices (like calculators) to household arrays. However, ever since the 1980s, commercial concentrated solar power plants have become much more common. Not only are they a relatively inexpensive source of energy where grid power is inconvenient, too expensive, or just plain unavailable; increases in solar cell efficiency and dropping prices are making solar power competitive with conventional sources of power (i.e. fossil fuels and coal).
Today, solar power is also being increasingly used in grid-connected situations as a way to feed low-carbon energy into the grid. By 2050, the International Energy Agency anticipates that solar power – including STE and PV operations – will constitute over 25% of the market, making it the world’s largest source of electricity (with most installations being deployed in China and India).
Wind Power:
Wind power has been used for thousands of years to push sails, power windmills, or to generate pressure for water pumps. Harnessing the wind to generate electricity has been the subject of research since the late 19th century. However, it was only with major efforts to find alternative sources of power in the 20th century that wind power has become the focal point of considerable research and development.
Compared to other forms of renewable energy, wind power is considered very reliable and steady, as wind is consistent from year to year and does not diminish during peak hours of demand. Initially, the construction of wind farms was a costly venture. But thanks to recent improvements, wind power has begun to set peak prices in wholesale energy markets worldwide and cut into the revenues and profits of the fossil fuel industry.
According to a report issued this past March by the Department of Energy, the growth of wind power in the United States could lead to even more highly skilled jobs in many categories. Titled “Wind Vision: A New Era for Wind Power in the United States”, the document indicates that by 2050, the industry could account for as much as 35% of the US’ electrical production.
In addition, last year, the Global Wind Energy Council and Greenpeace International came together to publish a report titled “Global Wind Energy Outlook 2014”. This report stated that worldwide, wind power could provide as much as 25 to 30% of global electricity by 2050. At the time of the report’s writing, commercial installations in more than 90 countries had a total capacity of 318 gigawatts (GW), providing about 3% of global supply.
Tidal Power:
Similar to wind power, tidal power is considered to be a potential source of renewable energy because tides are steady and predictable. Much like windmills, tide mills have been used since the days of Ancient Rome and the Middle Ages. Incoming water was stored in large ponds, and as the tides went out, they turned waterwheels that generated mechanical power to mill grain.
It was only in the 19th century that the process of using falling water and spinning turbines to create electricity was introduced in the U.S. and Europe. And it has only been since the 20th that these sorts of operations have been retooled for construction along coastlines and not just rivers.
Traditionally, tidal power has suffered from relatively high cost and limited availability of sites with sufficiently high tidal ranges or flow velocities. However, many recent technological developments and improvements, both in design and turbine technology, indicate that the total availability of tidal power may be much higher than previously assumed, and that economic and environmental costs may be brought down to competitive levels.
The world’s first large-scale tidal power plant is the Rance Tidal Power Station in France, which became operational in 1966. And in Orkney, Scotland, the world’s first marine energy test facility – the European Marine Energy Center (EMEC) – was established in 2003 to start the development of the wave and tidal energy industry in the UK.
In 2015, the world’s first grid-connected wave-power station (CETO, named after the Greek goddess of the sea) went online off the coast of Western Australia. Developed by Carnegie Wave Energy, this power station operates under water and uses undersea buoys to pump a series of seabed -anchored pumps, which in turn generates electricity.
Geothermal:
Geothermal electricity is another form of alternative energy that is considered to be sustainable and reliable. In this case, heat energy is derived from the Earth – usually from magma conduits, hot springs or hydrothermal circulation – to spin turbines or heat buildings. It is considered reliable because the Earth contains 1031 joules worth of heat energy, which naturally flows to the surface by conduction at a rate of 44.2 terawatts (TW) – more than double humanity’s current energy consumption.
One drawback is the fact that this energy is diffuse, and can only be cheaply harnessed in certain locations. However, in certain areas of the world, such as Iceland, Indonesia, and other regions with high levels of geothermal activity, it is an easily accessible and cost-effective way of reducing dependence on fossil fuels and coal to generate electricity. Countries generating more than 15 percent of their electricity from geothermal sources include El Salvador, Kenya, the Philippines, Iceland and Costa Rica.
As of 2015, worldwide geothermal power capacity amounts to 12.8 gigawatts (GW), which is expected to grow to 14.5 to 17.6 GW by 2020. What’s more, the Geothermal Energy Association (GEA) estimates that only 6.5 percent of total global potential has been tapped so far, while the IPCC reported geothermal power potential to be in the range of 35 GW to 2 TW.
Issues with Adoption:
One problem with many forms of renewable energy is that they depend on circumstances of nature – wind, water supply, and sufficient sunlight – which can impose limitations. Another issue has been the relative expense of many forms of alternate energy compared to traditional sources such as oil and natural gas. Until very recently, running coal-fired or oil-powered plants was cheaper than investing millions in the construction of large solar, wind, tidal or geothermal operations.
However, ongoing improvements made in the production of solar cells, wind turbines, and other equipment – not to mention improvements made in the amount of energy produced – has resulted in many forms of alternative energy becoming competitive with other methods. All over the world, nations and communities are stepping up to accelerate the transition towards cleaner, more sustainable, and more self-sufficient methods.
Earlier this month, delegates from the various states that make up the UN met in Lima, Peru, to agree on a framework for the Climate Change Conference that is scheduled to take place in Paris next year. For over two weeks, representatives debated and discussed the issue, which at times became hotly contested and divisive.
In the end, a compromise was reached between rich and developing nations, which found themselves on opposite sides for much of the proceedings.
And while few member states walked away feeling they had received all they wanted, many expressed that the meeting was an important step on the road to the 2015 Climate Change Conference. It is hoped that this conference will, after 20 years of negotiations, create the first binding and universal agreement on climate change.
The 2015 Paris Conference will be the 21st session of the Conference of the Parties who signed the 1992 United Nations Framework Convention on Climate Change (UNFCCC) and the 11th session of the Meeting of the Parties who drafted the 1997 Kyoto Protocol.
The objective of the conference is to achieve a legally binding and universal agreement on Climate Change specifically aimed at curbing greenhouse gas emissions to limit global temperature increases to an average of 2 degrees Celsius above pre-industrial levels.
This temperature increase is being driven by increased carbon emissions that have been building steadily since the late 18th century and rapidly in the 20th. According to NASA, CO² concentrations have not exceeded 300 ppm in the upper atmosphere for over 400,000 years, which accounts for the whole of human history.
However, in May of last year, the National Oceanic and Atmospheric Administration (NOAA) announced that these concentrations had reached 400 ppm, based on ongoing observations from the Mauna Loa Observatory in Hawaii.
Meanwhile, research conducted by the U.S. Global Change Research Program indicates that by the year 2100, carbon dioxide emissions could either level off at about 550 ppm or rise to as high as 800. This could mean the difference between a temperature increase of 2.5 °C, which is sustainable, and an increase of 4.5 °C (4.5 – 8 °F), which would make life untenable for many regions of the planet.
Hence the importance of reaching, for the first time in over 20 years of UN negotiations, a binding and universal agreement on the climate that will involve all the nations of the world. And with the conclusion of the Lima Conference, the delegates have what they believe will be a sufficient framework for achieving that next year.
While many environmental groups see the framework as an ineffectual compromise, it was hailed by members of the EU as a step towards the long-awaited global climate deal that began in 1992.
“The decisions adopted in Lima pave the way for the adoption of a universal and meaningful agreement in 2015,” said UN Secretary-General Ban Ki-moon in a statement issued at the conclusion of the two-week meeting. In addition, Peru’s environment minister – Manuel Pulgar-Vidal, who chaired the summit – was quoted by the BBC as saying: “As a text it’s not perfect, but it includes the positions of the parties.”
Amongst the criticisms leveled by environmental groups is the fact that many important decisions were postponed, and that the draft agreement contained watered-down language.
For instance, on national pledges, it says that countries “may” include quantifiable information showing how they intend to meet their emissions targets, rather than “shall”. By making this optional, environmentalists believe that signatories will be entering into an agreement that is not binding and therefore has no teeth.
However, on the plus side, the agreement kept the 194 members together and on track for next year. Concerns over responsibilities between developed and developing nations were alleviated by changing the language in the agreement, stating that countries have “common but differentiated responsibilities”.
Other meaningful agreements were reached as well, which included boosted commitments to a Green Climate Fund (GCF), financial aid for “vulnerable nations”, new targets to be set for carbon emission reductions, a new process of Multilateral Assessment to achieve new levels of transparency for carbon-cutting initiatives, and new calls to raise awareness by putting climate change into school curricula.
In addition, the Lima Conference also led to the creation of The 1 Gigaton Coalition, a UN-coordinated group dedicated to promoting renewable energy. As stated by the UNEP, this group was created “to boost efforts to save billions of dollars and billions of tonnes of CO² emissions each year by measuring and reporting reductions of greenhouse gas emissions resulting from projects and programs that promote renewable energy and energy efficiency in developing countries.”
Coordinated by the United Nations Environment Programme (UNEP) with the support of the Government of Norway, they will be responsible for measuring CO² reductions through the application of renewable energy projects. The coalition was formed in light of the fact that while many nations have such initiatives in place, they are not measuring or reporting the drop in greenhouse gases that result.
They believe that, if accurately measured, these drops in emissions would equal 1 Gigaton by the year 2020. This would not only be beneficial to the environment, but would result in a reduced financial burden for governments all across the world.
As UNEP Executive Director Achim Steiner stated in a press release: “Our global economy could be $18 trillion better off by 2035 if we adopted energy efficiency as a first choice, while various estimates put the potential from energy efficient improvements anywhere between 2.5 and 6.8 gigatons of carbon per year by 2030.”
Ultimately, the 1 Gigaton Coalition hopes to provide the information that demonstrates unequivocally that energy efficiency and renewables are helping to close the gap between current emissions levels and what they will need to come down to if we hope to meet a temperature increase of just 2 °C. This, as already stated, could mean the difference between life and death for many people, and ultimately for the environment as a whole.
The location of UNFCCC talks are rotated by regions throughout United Nations countries. The 2015 conference will be held at Le Bourget from 30 November to 11 December 2015.
What is solar energy? Solar energy is the radiant energy produced by the Sun. It is both light and heat. It, along with secondary solar-powered resources such as wind and wave power, account for the majority of the renewable energy on Earth.
The Earth receives 174 petawatts(PW) of solar radiation at the upper atmosphere. 30% of that is reflected back to space and the rest is absorbed by clouds, oceans and land masses. Land surfaces, oceans, and atmosphere absorb solar radiation, which increases their temperature. Warm air containing evaporated water from the oceans rises, causing convection. When the air reaches a high altitude, where the temperature is low, water vapor condenses into clouds and causes rain. The latent heat of water condensation increases convection, producing wind. Energy absorbed by the oceans and land masses keeps the surface at an average temperature of 14°C. Green plants convert solar energy into chemical energy through photosynthesis. Our food supply is completely dependent on solar energy. After plants die, they decay in the Earth, so solar energy can be said to provide the biomass that has created the fossil fuels that we are dependent on.
Humans harness solar energy in many different ways: space heating and cooling, the production of potable water by distillation, disinfection, lighting, hot water, and cooking. The applications for solar energy are only limited by human ingenuity. Solar technologies are characterized as either passive or active depending on the way the energy is captured, converted, and distributed. Active solar techniques use photovoltaic panels and solar thermal collectors to harness the energy. Passive techniques include orienting a building to the Sun, selecting materials with thermal mass properties, and using materials with light dispersing properties.
Our current dependence on fossil fuels is slowly being replaced by alternative energies. Some are fuels that may eventually become useless, but solar energy will never be obsolete, controlled by foreign powers, or run out. Even when the Sun uses up its hydrogen, it will produce useable energy until it explodes. The challenge facing humans is to capture that energy instead of taking the easiest way out by using fossil fuels.
We have written many articles about Solar Energy for Universe Today. Here’s an article about harvesting solar power from space, and here’s an article about the energy from the sun.
Today, the total oil and natural gas production provides about 60 percent of global energy consumption. This percentage is expected to peak about 10 to 30 years from now, and then be followed by a rapid decline, due to declining oil reserves and, hopefully, sources of renewable energy that technologies that will become more economically viable. But will there be the technology breakthroughs needed to make clean and exhaustible energy cost effective?
Nobel prize winner Walter Kohn, Ph.D., from the University of California Santa Barbara said that the continuous research and development of alternate energy could soon lead to a new era in human history in which two renewable sources — solar and wind — will become Earth’s dominant contributor of energy.
“These trends have created two unprecedented global challenges”, Kohn said, speaking at the American Chemical Society’s national meeting. “One is the threatened global shortage of acceptable energy. The other is the unacceptable, imminent danger of global warming and its consequences.”
The nations of the world need a concerted commitment to a changeover from the current era, dominated by oil plus natural gas, to a future era dominated by solar, wind, and alternative energy sources, Kohn said, and he sees that beginning to happen.
The global photovoltaic energy production increased by a factor of about 90 and wind energy by a factor of about 10 over the last decade. Kohn expects vigorous growth of these two energies to continue during the next decade and beyond, thereby leading to a new era, what he calls the SOL/WIND era, in human history, in which solar and wind energy have become the earth’s dominant alternative energies.
Kohn noted that this challenge require a variety of responses. “The most obvious is continuing scientific and technical progress providing abundant and affordable alternative energies, safe, clean and carbon-free,” he said.
One of the biggest challenges might be leveling off global population, as well as energy consumption levels.