Up to a Third of Stars Ate Some of their Planets

Ultra-short period planets can be engulfed by their stars. They may be responsible for differences in metallicity between sibling stars. Image Credit: NASA, ESA and A. Schaller

In recent years, astronomers have developed techniques to measure the metal content of stars with extreme accuracy. With that capability, astronomers have examined sibling stars to see how their metallicity differs. Some of these co-natal stars have pronounced differences in their metallicity.

New research shows that stars engulfing rocky planets are responsible.

Continue reading “Up to a Third of Stars Ate Some of their Planets”

Mercury Could be Housing a Megafortune Worth of Diamonds!

Image of Mercury taken by NASA's MESSENGER mission. Credit: NASA/JHUAPL/ASU/Carnegie Institution of Washington

Mercury, the closest planet to our Sun, is also one of the least understood in the Solar System. On the one hand, it is similar in composition to Earth and the other rocky planets, consisting of silicate minerals and metals differentiated between a silicate crust and mantle and an iron-nickel core. But unlike the other rocky planets, Mercury’s core makes up a much larger part of its mass fraction. Mercury also has a mysteriously persistent magnetic field that scientists still cannot explain. In this respect, Mercury is also one of the most interesting planets in the Solar System.

But according to new research, Mercury could be much more interesting than previously thought. Based on new simulations of Mercury’s early evolution, a team of Chinese and Belgian geoscientists found evidence that Mercury may have a layer of solid diamond beneath its crust. According to their simulations, this layer is 15 km (9 mi) thick sandwiched between the core and the mantle hundreds of miles beneath the surface. While this makes the diamonds inaccessible (for now, at least), these findings could have implications for theories about the formation and evolution of rocky planets.

Continue reading “Mercury Could be Housing a Megafortune Worth of Diamonds!”

An Earth-sized Exoplanet Found Orbiting a Jupiter-Sized Star

This artist's illustration shows the exoplanet SPECULOOS-3 b orbiting its red dwarf star. The planet is as big around as Earth, while its star is slightly bigger than Jupiter – but much more massive. The planet is a prime candidate for follow-up studies with the JWST. Credit: NASA/JPL-Caltech

Red dwarf stars, also known as M-dwarfs, dominate the Milky Way’s stellar population. They can last for 100 billion years or longer. Since these long-lived stars make up the bulk of the stars in our galaxy, it stands to reason that they host the most planets.

Astronomers examined one red dwarf star named SPECULOOS-3, a Jupiter-sized star about 55 light-years away, and found an Earth-sized exoplanet orbiting it. It’s an excellent candidate for further study with the James Webb Space Telescope.

Continue reading “An Earth-sized Exoplanet Found Orbiting a Jupiter-Sized Star”

Three Iron Rings Around A Star Show Where Planets are Forming

Observations with the European Southern Observatory's (ESO) Very Large Telescope Interferometer (VLTI) found various silicate compounds and potentially iron, substances we also find in large amounts in the solar system's rocky planets. Credit: Jenry

Researchers using the ESO’s Very Large Telescope Interferometer (VLTI) have found three iron rings around a young star about 500 light-years away. The rings indicate that planets are forming. What can these rings tell us about how Earth and the other planets in our Solar System formed?

Continue reading “Three Iron Rings Around A Star Show Where Planets are Forming”

GJ 367b is Another Dead World Orbiting a Red Dwarf

This artist's concept illustrates a red dwarf star surrounded by exoplanets. Credit: NASA/JPL-Caltech

Red dwarf exoplanet habitability is a hot topic in space science. These small dim stars host lots of exoplanets, including small rocky ones the size of Earth. But the little stars emit extremely powerful flares that can damage and strip away atmospheres.

If we’re ever going to understand red dwarf habitability, we need to understand the atmospheres of the exoplanets that orbit them.

Continue reading “GJ 367b is Another Dead World Orbiting a Red Dwarf”

Hubble Succeeds Where TESS Couldn’t: It Measured the Nearest Transiting Earth-Sized Planet

This is an artist’s concept of the nearby exoplanet, LTT 1445Ac, which is a nearby Earth-size world. The planet orbits a red dwarf star. The star is in a triple system, with two closely orbiting red dwarfs seen at upper right. The black dot in front of the foreground star is planet LTT 1445Ab, transiting the face of the star. Image Credit: NASA, ESA, L. Hustak (STScI)

Twenty-two light-years away, a rocky world orbits a red dwarf. It’s called LTT 1445Ac, and NASA’s Transiting Exoplanet Survey Satellite (TESS) found it in 2022. However, TESS was unable to gauge the small planet’s size.

That’s okay. The venerable Hubble took care of it.

Continue reading “Hubble Succeeds Where TESS Couldn’t: It Measured the Nearest Transiting Earth-Sized Planet”

Gliese 486b is a Hellish World With Temperatures Above 700 Kelvin

Credit and ©: MPIA/RenderArea

In the past two and a half decades, astronomers have confirmed the existence of thousands of exoplanets. In recent years, thanks to improvements in instrumentation and methodology, the process has slowly been shifting from the process of discovery to that of characterization. In particular, astronomers are hoping to obtain spectra from exoplanet atmospheres that would indicate their chemical composition.

This is no easy task since direct imaging is very difficult, and the only other method is to conduct observations during transits. However, astronomers of the CARMENES consortium recently reported the discovery of a hot rocky super-Earth orbiting the nearby red dwarf star. While being extremely hot, this planet has retained part of its original atmosphere, which makes it uniquely suited for observations using next-generation telescopes.

Continue reading “Gliese 486b is a Hellish World With Temperatures Above 700 Kelvin”

What Are Some Clues to the Climates of Exoplanets?

Credit: Cornell Chronicle

In the past few decades, the number of planets discovered beyond our Solar System has grown exponentially. To date, a total of 4,158 exoplanets have been confirmed in 3,081 systems, with an additional 5,144 candidates awaiting confirmation. Thanks to the abundance of discoveries, astronomers have been transitioning in recent years from the process of discovery to the process of characterization.

In particular, astronomers are developing tools to assess which of these planets could harbor life. Recently, a team of astronomers from the Carl Sagan Institute (CSI) at Cornell University designed an environmental “decoder” based on the color of exoplanet surfaces and their hosts stars. In the future, this tool could be used by astronomers to determine which exoplanets are potentially-habitable and worthy of follow-up studies.

Continue reading “What Are Some Clues to the Climates of Exoplanets?”

An Earth-Sized World Orbiting in its Star’s Habitable Zone Was Found in Older Kepler Data

Illustration of Kepler-186f, a recently-discovered, possibly Earthlike exoplanet that could be a host to life. (NASA Ames, SETI Institute, JPL-Caltech, T. Pyle)
This is Kepler 186f, an exoplanet in the habitable zone around a red dwarf. We've found many planets in their stars' habitable zones where they could potentially have surface water. But it's a fairly crude understanding of true habitability. Image Credit: NASA Ames, SETI Institute, JPL-Caltech, T. Pyle)

To date, astronomers have confirmed the existence of 4,144 extrasolar planets in 3,074 systems, with a further 5,094 candidates awaiting confirmation. The majority of these planets were found by the Kepler Space Telescope, which spent nine years (between May of 2009 and February of 2018) monitoring distant stars for transit signals – where a planet passing in front of a star causes a dip in brightness.

And yet, even though it is now defunct, the data that Kepler accumulated over the years continues to lead to new discoveries. For instance, a transatlantic team of researchers recently found a signal in Kepler‘s archival data that eluded detection before. This signal indicates that there is a second planet orbiting Kepler-1649, an M-type red dwarf star located 302 light-years away.

Continue reading “An Earth-Sized World Orbiting in its Star’s Habitable Zone Was Found in Older Kepler Data”

Small, Tough Planets can Survive the Death of Their Star

An asteroid torn apart by the strong gravity of a white dwarf has formed a ring of dust particles and debris orbiting the Earth-sized burnt out stellar core. Image Credit: University of Warwick/Mark Garlick

Sad fact of the Universe is that all stars will die, eventually. And when they do, what happens to their babies? Usually, the prognosis for the planets around a dying star is not good, but a new study says some might in fact survive.

A group of astronomers have taken a closer look at what happens when stars, like our Sun for instance, become white dwarfs late in their lives. As it turns out, denser planets like Earth might survive the event. But, only if they’re the right distance away.

Continue reading “Small, Tough Planets can Survive the Death of Their Star”