In February of 2017, NASA scientists announced the existence of seven terrestrial (i.e. rocky) planets within the TRAPPIST-1 star system. Since that time, the system has been the focal point of intense research to determine whether or not any of these planets could be habitable. At the same time, astronomers have been wondering if all of the system’s planets are actually accounted for.
For instance, could this system have gas giants lurking in its outer reaches, as many other systems with rocky planets (for instance, ours) do? That was the question that a team of scientists, led by researchers from the Carnegie Institute of Science, sought to address in a recent study. According to their findings, TRAPPIST-1 may be orbited by gas giants at a much-greater distance than its seven rocky planets.
It has been an exciting time for the field of exoplanet studies lately! Last summer, researchers from the European Southern Observatory (ESO) announced the discovery of an Earth-like planet (Proxima b) located in the star system that is the nearest to our own. And just six months ago, an international team of astronomers announced the discovery of seven rocky planets orbiting the nearby star TRAPPIST-1.
But in what could be the most encouraging discovery for those hoping to find a habitable planet beyond Earth, an an international team of astronomers just announced the discovery of four exoplanet candidates in the tau Ceti system. Aside from being close to the Solar System – just 12 light-years away – this find is also encouraging because the planet candidates orbit a star very much like our own!
The study that details these findings – “Color difference makes a difference: four planet candidates around tau Ceti” – recently appeared online and has been accepted for publication in the Astrophysical Journal. Led by researchers from the Center for Astrophysics Research (CAR) at the University of Hertfordshire, the team analyzed tau Ceti using a noise-eliminating model to determine the presence of four Earth-like planets.
This discovery was made possible thanks to ongoing improvements in instrumentation, observation and data-sharing, which are allowing for surveys of ever-increasing sensitivity. As Steven Vogt, a professor of astronomy and astrophysics at UC Santa Cruz and a co-author on the paper, said in a UCSC press release:
“We are now finally crossing a threshold where, through very sophisticated modeling of large combined data sets from multiple independent observers, we can disentangle the noise due to stellar surface activity from the very tiny signals generated by the gravitational tugs from Earth-sized orbiting planets.”
This is the latest in a long-line of surveys of tau Ceti, which has been of interest to astronomers for decades. By 1988, several radial velocity measurements were conducted of the star system that ruled out the possibility of massive planets at Jupiter-like distances. In 2012, astronomers from UC Santa Barabara presented a study that indicated that tau Ceti might be orbited by five exoplanets, two of which were within the star’s habitable zone.
The team behind that study included several members who produced this latest study. At the time, lead author Mikko Tuomi (University of Hertfordshire, a co-author on the most recent one) was leading an effort to develop better data analysis techniques, and used this star as a benchmark case. As Tuomi explained, theses efforts allowed them to rule out two of the signals that has previously been identified as planets:
“We came up with an ingenious way of telling the difference between signals caused by planets and those caused by star’s activity. We realized that we could see how star’s activity differed at different wavelengths and use that information to separate this activity from signals of planets.”
For the sake of this latest study – which was led by Fabo Feng, a member of the CAR – the team relied on data provided by the High Accuracy Radial velocity Planet Searcher (HARPS) spectrograph at the ESO’s La Silla Observatory in Chile, and the High Resolution Echelle Spectrometer (HIRES) instrument at the W. M. Keck Observatory in Mauna Kea, Hawaii.
From this, they were able to create a model that removed “wavelength dependent noise” from radial velocity measurements. After applying this model to surveys made of tau Ceti, they were able to obtain measurements that were sensitive enough to detect variations in the star’s movement as small as 30 cm per second. In the end, they concluded that tau Ceti has a system of no more than four exoplanets.
As Tuomi indicated, after several surveys and attempts to eliminate extraneous noise, astronomers may finally have a clear picture of how many planets tau Ceti has, and of what type. “[N]o matter how we look at the star, there seem to be at least four rocky planets orbiting it,” he said. “We are slowly learning to tell the difference between wobbles caused by planets and those caused by stellar active surface. This enabled us to essentially verify the existence of the two outer, potentially habitable planets in the system.”
They further estimate from their refined measurements that these planets have masses ranging from four Earth-masses (aka. “super-Earths”) to as low as 1.7 Earth masses, making them among the smallest planets ever detected around a nearby sun-like star. But most exciting of all is the fact that that two of these planets (tau Ceti e and f) are located within the star’s habitable zone.
The reason for this is because tau Ceti is a G-type (yellow dwarf) star, which makes it similar to our own Sun – about 0.78 times as massive and half as bright. In contrast, many recently discovered exoplanets – such as Proxima b and the seven planets of TRAPPIST-1 – all orbit M-type (red dwarf) stars. Compared to our Sun, these stars are variable and unstable, increasing their chances of stripping the atmospheres of their respective planets.
In addition, since red dwarfs are much dimmer than our Sun, a rocky planet would have to orbit very closely to them in order to be within their habitable zones. At this kind of distance, the planet would likely be tidally-locked, meaning that one side would constantly be facing towards the sun. This too makes the odds of life emerging on any such planet pretty slim.
Because of this, astronomers have been looking forward to finding more exoplanets around stars that are closer in size, mass and luminosity to our own. But before anyone gets too excited, its important to note these worlds are Super-Earths – with up to four times the mass of Earth. This means that (depending on their density as well) any life that might emerge on these planets would be subject to significantly increased gravity.
In addition, a massive debris disc surrounds the star, which means that these outermost planets are probably subjected to intensive bombardment by asteroids and comets. This not doesn’t exactly bode well for potential life on these planets! Still, this study is very encouraging, and for a number of reasons. Beyond finding strong evidence of exoplanets around a Sun-like star, the measurements that led to their detection are the most sensitive to date.
At the rate that their methods are improving, researchers should be getting to the 10-centimeter-per-second limit in no time at all. This is the level of sensitively required for detecting Earth analogs – aka. the brass ring for exoplanet-hunters. As Feng indicated:
“Our detection of such weak wobbles is a milestone in the search for Earth analogs and the understanding of the Earth’s habitability through comparison with these analogs. We have introduced new methods to remove the noise in the data in order to reveal the weak planetary signals.”
Think of it! In no time at all, exoplanet-hunters could be finding a plethora of planets that are not only very close in size and mass to Earth, but also orbiting within their stars habitable zones. At that point, scientists are sure to dispense with decidedly vague terms like “potentially habitable” and “Earth-like” and begin using terms like “Earth-analog” confidently. No more ambiguity, just the firm conviction that Earth is not unique!
With an estimated 100 billion planets in our galaxy alone, we’re sure to find several Earths out here. One can only hope they have given rise to complex life like our own, and that they are in the mood to chat!
The hunt for exoplanet has revealed some very interesting things about our Universe. In addition to the many gas giants and “Super-Jupiters” discovered by mission like Kepler, there have also been the many exoplanet candidate that comparable in size and structure to Earth. But while these bodies may be terrestrial (i.e. composed of minerals and rocky material) this does not mean that they are “Earth-like”.
For example, what kind of minerals go into a rocky planet? And what could these particular compositions mean for the planet’s geological activity, which is intrinsic to planetary evolution? According to new study produced by a team of astronomers and geophysicists, the composition of an exoplanet depends on the chemical composition of its star – which can have serious implications for its habitability.
Using the Apache Point Observatory Galactic Evolution Experiment (APOGEE), which is part of the Sloan Digital Sky Survey (SDSS) Telescope at Apache Point Observatory, they examined spectrographic information obtained from 90 star systems – which were also observed by the Kepler Mission. These systems are of particular interest to exoplanet hunters because they have been shown to contain rocky planets.
As Teske explained during the course of the presentation, this information could help scientists to place further constraints on what it takes for a planet to be habitable. “[O]ur study combines new observations of stars with new models of planetary interiors,” she said. “We want to better understand the diversity of small, rocky exoplanet composition and structure — how likely are they to have plate tectonics or magnetic fields?”
Focusing on two star systems in particular – Kepler 102 and Kepler 407 – Teske demonstrated how the composition of a planet has a great deal to do with the composition of its star. Whereas Kepler 102 has five known planets, Kepler 407, has two different planets – one gaseous and the other terrestrial. And while Kepler 102 is quite similar to our Sun (slightly less luminous), Kepler 407 has close to the same mass (but a lot more silicon).
In order to understand what consequences these differences could have for planetary formation, the SDSS team turned to a team of geophysicists. Led by Cayman Unterborn from Arizona State University, this team ran computer models to see what kinds of planets each system would have. As Unterborn explained:
“We took the star compositions found by APOGEE and modeled how the elements condensed into planets in our models. We found that the planet around Kepler 407, which we called ‘Janet,” would likely be rich in the mineral garnet. The planet around Kepler 102, which we called ‘Olive,’ is probably rich in olivine, like Earth.”
This difference would have considerable impact on planetary tectonics. For one, garnet is lot more rigid than olivine, which would mean “Janet” would experience less in the way of long-term plate tectonics. This in turn would mean that processes that are believed to be essential to life on Earth – like volcanic activity, atmospheric recycling, and mineral exchanges between the crust and mantle – would be less common.
This raises additional questions about the habitability of “Earth-like” planets in other star systems. In addition to being rocky and having strong magnetic fields and viable atmospheres, it seems that exoplanets also need to have the right mix of minerals in order to support life – life as we know it, at any rate. What’s more, this kind of research also helps us to understand how life came to emerge on Earth in the first place.
Looking forward, the research team hopes to extend their study to include all the 200,000 stars surveyed by APOGEE to see which could host terrestrial planets. This will allow astronomers to determine the mineral composition of more rocky worlds, thus helping them to determine which rocky exoplanets are “Earth-like”, and which are just “Earth-sized”.
Stars and planets form out of vast clouds of dust and gas. Small pockets in these clouds collapse under the pull of gravity. But as the pocket shrinks, it spins rapidly, with the outer region flattening into a disk.
Eventually the central pocket collapses enough that its high temperature and density allows it to ignite nuclear fusion, while in the turbulent disk, microscopic bits of dust glob together to form planets. Theories predict that a typical dust grain is similar in size to fine soot or sand.
In recent years, however, millimeter-size dust grains — 100 to 1,000 times larger than the dust grains expected — have been spotted around a few select stars and brown dwarfs, suggesting that these particles may be more abundant than previous thought. Now, observations of the Orion nebula show a new object that may also be brimming with these pebble-size grains.
The team used the National Science Foundation’s Green Bank Telescope to observe the northern portion of the Orion Molecular Cloud Complex, a star-forming region that spans hundreds of light-years. It contains long, dust-rich filaments, which are dotted with many dense cores. Some of the cores are just starting to coalesce, while others have already begun to form protostars.
Based on previous observations from the IRAM 30-meter radio telescope in Spain, the team expected to find a particular brightness to the dust emission. Instead, they found that it was much brighter.
“This means that the material in this region has different properties than would be expected for normal interstellar dust,” said Scott Schnee, from the National Radio Astronomy Observatory, in a press release. “In particular, since the particles are more efficient than expected at emitting at millimeter wavelengths, the grains are very likely to be at least a millimeter, and possibly as large as a centimeter across, or roughly the size of a small Lego-style building block.”
Such massive dust grains are hard to explain in any environment.
Around a star or a brown dwarf, it’s expected that drag forces cause large particles to lose kinetic energy and spiral in toward the star. This process should be relatively fast, but since planets are fairly common, many astronomers have put forth theories to explain how dust hangs around long enough to form planets. One such theory is the so-called dust trap: a mechanism that herds together large grains, keeping them from spiraling inward.
But these dust particles occur in a rather different environment. So the researchers propose two new intriguing theories for their origin.
The first is that the filaments themselves helped the dust grow to such colossal proportions. These regions, compared to molecular clouds in general, have lower temperatures, high densities, and lower velocities — all of which encourage grain growth.
The second is that the rocky particles originally grew inside a previous generation of cores or even protoplanetary disks. The material then escaped back into the surrounding molecular cloud.
This finding further challenges theories of how rocky, Earth-like planets form, suggesting that millimeter-size dust grains may jump-start planet formation and cause rocky planets to be much more common than previously thought.
The paper has been accepted for publication in the Monthly Notices of the Royal Astronomical Society.
Is our Solar System normal? Or is it weird? How does the Solar System fit within the strange star systems we’ve discovered in the Milky Way so far?
With all the beautiful images that come down the pipe from Hubble, our Solar System has been left with celestial body image questions rivaling that of your average teenager. They’re questions we’re all familiar with. Is my posture crooked? Do I look pasty? Are my arms too long? Is it supposed to bulge out like this in the middle? Some of my larger asteroids are slightly asymmetrical. Can everyone tell? And of course the toughest question of all… Am I normal?
The idea that stars are suns with planets orbiting them dates back to early human history. This was generally accompanied by the idea that other planetary systems would be much like our own. It’s only in the last few decades that we’ve had real evidence of planets around other stars, known as exoplanets. The first extrasolar planet was discovered around a pulsar in 1992 and the first “hot jupiter” was discovered in 1995.
Most of the known exoplanets have been discovered by the amazing Kepler spacecraft. Kepler uses the transit method, observing stars over long periods of time to see if they dim as a planet passes in front of the star. Since then, astronomers have found more than 1700 exoplanets, and 460 stars are known to have multiple planets. Most of these stellar systems are around main sequence stars, just like the Sun. Leaving us with plenty of systems for comparison.
So, is our Solar System normal? Planets in a stellar system tend to have roughly circular orbits, just like our Solar system. They have a range of larger and smaller planets, just like ours. Most of the known systems are even around G-type stars. Just like ours.….and we are even starting to find Earth-size planets in the habitable zones of their stars. JUST LIKE OURS!
Not so fast…Other stellar systems don’t seem to have the division of small rocky planets closer to the star and larger gas planets farther away. In fact, large Jupiter-type planets are generally found close to the star. This makes our solar system rather unusual.
Computer simulations of early planetary formation shows that large planets tend to move inward toward their star as they form, due to its interaction with the material of the protoplanetary disk. This would imply that large planets are often close to the star, which is what we observe. Large planets in our own system are unusually distant from the Sun because of a gravitational dance between Jupiter and Saturn that happened when our Solar System was young.
Although our Solar System is slightly unusual, there are some planetary systems that are downright quirky. There are planetary systems where the orbits are tilted at radically different angles, like Kepler 56, and a sci-fi favorite, the planets that orbit two stars like Kepler 16 and 34. There is even a planet so close to its star that its year lasts only 18 hours, known 55 Cancri e.
And so, the Kepler telescope has presented us with a wealth of exoplanets, that we can compare our beautiful Solar System to. Future telescopes such as Gaia, which was launched in 2013, TESS and PLATO slated for launch in 2017 and 2024 will likely discover even more. Perhaps even discovering the holy grail of exoplanets, a habitable planet with life…
And the who knows, maybe we’ll find another planet… just like ours.
What say you? Where should we go looking for habitable worlds in this big bad universe of ours? Tell us in the comments.
And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!
For those of us who practice amateur astronomy, we’re very familiar with the 150 light-year distant Hyades star cluster – one of the jewels in the Taurus crown. We’ve looked at it countless times, but now the NASA/ESA Hubble Space Telescope has taken its turn observing and spotted something astronomers weren’t expecting – the debris of Earth-like planets orbiting white dwarf stars. Are these “burn outs” being polluted by detritus similar to asteroids? According to researchers, this new observation could mean that rocky planet creation is commonplace in star clusters.
“We have identified chemical evidence for the building blocks of rocky planets,” said Jay Farihi of the University of Cambridge in England. He is lead author of a new study appearing in the Monthly Notices of the Royal Astronomical Society. “When these stars were born, they built planets, and there’s a good chance they currently retain some of them. The material we are seeing is evidence of this. The debris is at least as rocky as the most primitive terrestrial bodies in our solar system.”
So what makes this an uncommon occurrence? Research tells us that all stars are formed in clusters, and we know that planets form around stars. However, the equation doesn’t go hand in hand. Out of the hundreds of known exoplanets, only four are known to have homes in star clusters. As a matter of fact, that number is a meager half percent, but why? As a rule, the stars contained within a cluster are young and active. They are busy producing stellar flares and similar brilliant activity which may mask signs of emerging planets. This new research is looking to the “older” members of the cluster stars – the grandparents which may be babysitting.
To locate possible candidates, astronomers have employed Hubble’s Cosmic Origins Spectrograph and focused on two white dwarf stars. Their return showed evidence of silicon and just slight levels of carbon in their atmospheres. This observation was important because silicon is key in rocky materials – a prime ingredient on Earth’s list and other similar solid planets. This silicon signature may have come from the disintegration of asteroids as they wandered too close to the stars and were torn apart. A lack of carbon is equally exciting because, while it helps shape the properties and origins of planetary debris, it becomes scarce when rocky planets are formed. This material may have formed a torus around the defunct stars which then drew the matter towards them.
“We have identified chemical evidence for the building blocks of rocky planets,” said Farihi. “When these stars were born, they built planets, and there’s a good chance they currently retain some of them. The material we are seeing is evidence of this. The debris is at least as rocky as the most primitive terrestrial bodies in our solar system.”
Ring around the rosie? You bet. This leftover material swirling around the white dwarf stars could mean that planet formation happened almost simultaneously as the stars were born. At their collapse, the surviving gas giants may have had the gravitational “push” to relocate asteroid-like bodies into “star-grazing orbits”.
“We have identified chemical evidence for the building blocks of rocky planets,” explains Farihi. “When these stars were born, they built planets, and there’s a good chance that they currently retain some of them. The signs of rocky debris we are seeing are evidence of this — it is at least as rocky as the most primitive terrestrial bodies in our Solar System. The one thing the white dwarf pollution technique gives us that we won’t get with any other planet detection technique is the chemistry of solid planets. Based on the silicon-to-carbon ratio in our study, for example, we can actually say that this material is basically Earth-like.”
What of future plans? According to Farihi and the research team, by continuing to observe with methods like those employed by Hubble, they can take an even deeper look at the atmospheres around white dwarf stars. They will be searching for signs of solid planet “pollution” – exploring the white dwarf chemistry and analyzing stellar composition. Right now, the two “polluted” Hyades white dwarfs are just a small segment of more than a hundred future candidates which will be studied by a team led by Boris Gansicke of the University of Warwick in England. Team member Detlev Koester of the University of Kiel in Germany is also contributing by using sophisticated computer models of white dwarf atmospheres to determine the abundances of various elements that can be traced to planets in the Hubble spectrograph data.
“Normally, white dwarfs are like blank pieces of paper, containing only the light elements hydrogen and helium,” Farihi said. “Heavy elements like silicon and carbon sink to the core. The one thing the white dwarf pollution technique gives us that we just won’t get with any other planet-detection technique is the chemistry of solid planets.”
The team also plans to look deeper into the stellar composition as well. “The beauty of this technique is that whatever the Universe is doing, we’ll be able to measure it,” Farihi said. “We have been using the Solar System as a kind of map, but we don’t know what the rest of the Universe does. Hopefully with Hubble and its powerful ultraviolet-light spectrograph COS, and with the upcoming ground-based 30- and 40-metre telescopes, we’ll be able to tell more of the story.”
According to data received from ESA’s Rosetta spacecraft, ESO’s New Technology Telescope, and NASA telescopes, strange asteroid Lutetia could be a real piece of the rock… the original material that formed the Earth, Venus and Mercury! By examining precious meteors which may have formed at the time of the inner Solar System, scientists have found matching properties which indicate a relationship. Independent Lutetia must have just moved its way out to join in the main asteroid belt…
A team of astronomers from French and North American universities have been hard at work studying asteroid Lutetia spectroscopically. Data sets from the OSIRIS camera on ESA’s Rosetta spacecraft, ESO’s New Technology Telescope (NTT) at the La Silla Observatory in Chile, and NASA’s Infrared Telescope Facility in Hawaii and Spitzer Space Telescope have been combined to give us a multi-wavelength look at this very different space rock. What they found was a very specific type of meteorite called an enstatite chondrite displayed similar content which matched Lutetia… and what is theorized as the material which dates back to the early Solar System. Chances are very good that enstatite chondrites are the same “stuff” which formed the rocky planets – Earth, Mars and Venus.
“But how did Lutetia escape from the inner Solar System and reach the main asteroid belt?” asks Pierre Vernazza (ESO), the lead author of the paper.
It’s a very good question considering that an estimated less than 2% of the material which formed in the same region of Earth migrated to the main asteroid belt. Within a few million years of formation, this type of “debris” had either been incorporated into the gelling planets or else larger pieces had escaped to a safer, more distant orbit from the Sun. At about 100 kilometers across, Lutetia may have been gravitationally influenced by a close pass to the rocky planets and then further affected by a young Jupiter.
“We think that such an ejection must have happened to Lutetia. It ended up as an interloper in the main asteroid belt and it has been preserved there for four billion years,” continues Pierre Vernazza.
Asteroid Lutetia is a “real looker” and has long been a source of speculation due to its unusual color and surface properties. Only 1% of the asteroids located in the main belt share its rare characteristics.
“Lutetia seems to be the largest, and one of the very few, remnants of such material in the main asteroid belt. For this reason, asteroids like Lutetia represent ideal targets for future sample return missions. We could then study in detail the origin of the rocky planets, including our Earth,” concludes Pierre Vernazza.