UPDATE 2: Crew’s Space Station Docking Delayed Two Days Due To Glitch

Steve Swanson, commander of Expedition 40, during a spacewalk on 2007 shuttle mission STS-117. Credit: NASA

Update, 10:13 p.m. EDT: Tonight’s docking with the International Space Station will not happen because one of the engine firings scheduled to happen did not take place when it was supposed to. The crew is safe, according to NASA, and going to a standard backup plan that should bring the craft to the station on Thursday (2 days from now). Roscosmos is examining the issue. We will provide updates as warranted.

Update, 6:43 p.m. EDT: The Soyuz is on its way to space after an on-time launch — and by the way, astronauts saw it leave from the space station! It’s en route and NASA is still expecting an arrival around 11:04 p.m. EDT., which you can watch live on NASA TV above.

Despite tensions on the ground between the United States and Russia, officials say that it’s business as usual on the International Space Station. The three people launching to space today, in fact, are from both countries: Alexander Skvortsov and Oleg Artemyev of the Russian Federal Space Agency (Roscosmos), and Steve Swanson from NASA.

As has been the habit lately, the Expedition 39/40 crew will take a faster route to the International Space Station that see launch and docking happen in the same day, should all go to plan. It all begins with the launch at 5:17 p.m. EDT (9:17 p.m. UTC) from the Baikonur Cosmodrome in Kazakhstan, with docking scheduled to happen at 11:04 p.m. EDT (3:04 a.m. UTC).

Bear in mind that schedules are subject to change, so it’s a good idea to watch NASA TV (see video above) well before each milestone to see if things are happening on time. Once the crew arrives at station, one big question is if they’ll do spacewalks when they get there.

Last July, Italian astronaut Luca Parmitano experienced a severe water leak in his NASA spacesuit that sent the crew scrambling back to the station. While Parmitano emerged physically all right, the agency opened an investigation and suspended all non-essential activities. A report was issued in February and the agency pledged to deal with all the urgent items quickly.

Spacewalks are planned for Expedition 40, but only if these urgent items are cleared in time for that. (That expedition begins in May and will include NASA astronauts Alex Gerst, Reid Wiseman and Russian cosmonaut Maxim Suraev.)

Why Trapping Somebody In Space Only Takes A Breeze (And Other Highlights From Expedition 40)

European Space Agency astronaut Alex Gerst during training prior to Expedition 40/41 in 2014. Credit: European Space Agency

Imagine that you were in the middle of a module on the International Space Station. Floating in mid-air, far from handholds or any way to propel yourself. Is there any way to get out of that situation?

The short answer is not easily, and the longer answer is it could be an effective way to trap criminals in space, joked veteran cosmonaut Maxim Suraev in a press conference today (March 18) for the upcoming Expedition 40/41 mission, which also includes rookies Alex Gerst and Reid Wiseman.

Speaking in Russian, Suraev explained that during his last 2010 mission, he had crew members set him up in the middle of the station’s Node 3. “It is true that you can twist as much as a contortionist, but you won’t be able to move because you have nothing to bear against,” he said in remarks translated into English.

That said, the ventilation system on station does tend to push objects (and people) towards the vents after a time, he observed. What if you had multiple vents set up, however?

“I thought that if ever we have a permanent human habitation in space, this would be the best way to keep a person confined — like in a prison — in the middle of the room, where he or she could not move anywhere,” Suraev continued. “Being in limbo, as you will. The only thing that is required is a large room, a person and several fans blowing in different directions to keep the person in the middle of the room. That’s scary, trust me!”

NASA astronaut Reid Wiseman does spacewalk training in a partial gravity simulator ahead of his Expedition 40/41 flight in 2014. Credit: NASA
NASA astronaut Reid Wiseman does spacewalk training in a partial gravity simulator ahead of his Expedition 40/41 flight in 2014. Credit: NASA

There’s no fear on Suraev’s part that it will happen with his crewmates, however. “My new crew, they’re really good guys and I’m really looking forward to being with my new crew in space, and to spend five and a half months aboard the space station,” he said in an English phone interview after the press conference. (Good news given that Suraev will assume command of Expedition 41.)

The crew (who lifts off in May) will have an action-packed mission. It will include the arrival of the last Automated Transfer Vehicle (ATV) and — if NASA fixes on a spacesuit leak allow — two American maintenance spacewalks. There also are 162 experiments to perform (this according to Gerst) and if there’s time, checking out our home planet.

“Earth observation was not one of the primary goals that [station] was designed for,” he cautioned in a phone interview, but he added that one of its strengths is there are people on board the orbiting laboratory that can fill in the gaps for other missions.

Gerst (who was a volcano researcher before becoming an astronaut) pointed out that if a volcano erupts, a typical Earth satellite would look straight down at it. Astronauts can swing around in the Cupola and get different views quickly, which could allow scientists to measure things such as the volcano plume height.

Another example of flexibility: The Expedition 39 crew right now is (news reports say) helping out with the search for the missing Malaysian Airline Flight 370.

“We’re really good at capturing things quickly and then sending the  pictures down to the ground,” Gerst said.

Wiseman, as one of the rookies on mission, says he is interested in comparing the experience to his multi-month Navy missions at sea. It’s all a matter of mindset, he said in a phone interview. He once was assigned to a naval voyage that was expected to be at sea for six months. Then they were instructed it would be 10 months, leading to fistfights and other problems on board, he recalled.

Russian cosmonaut Maxim Surayev during a spacewalk in January 2010 for Expedition 22. Credit: NASA
Russian cosmonaut Maxim Surayev during a spacewalk in January 2010 for Expedition 22. Credit: NASA

Astronauts for the forthcoming one-year mission to station, he pointed out, will launch with different expectations than someone expecting about a six-month stay. “If you know you’re up there for one year, you’re going to pace yourself for one year,” he said.

But there still will be sacrifices, as Wiseman has two daughters (five years old and eight years old). He’s asking the older child to do a bit of social media, and the younger one to draw pictures that could be included in the “care packages” astronauts receive from Earth. “It’s going to be tough not to see them on a daily basis. They grow so fast,” he said.

Other things to watch for on this mission include the arrival of the station’s first 3-D printer, setup of an alloy furnace to make new materials in microgravity, and a potential Wiseman-led “come out and wave campaign” that would encourage families to go outside and tweet about the space station as they watch it.

You can follow Expedition 40/41’s continuing adventures at Universe Today as well as on social media: @astro_reid for Wiseman, and for Gerst, @astro_alex or his Facebook page.

The crew members of Expedition 40/41 pose in front of a Soyuz spacecraft simulator in Star City, Russia. From left, Alex Gerst (European Space Agency), Max Suraev (Roscosmos) and Reid Wiseman (NASA). Credit: NASA
The crew members of Expedition 40/41 pose in front of a Soyuz spacecraft simulator in Star City, Russia. From left, Alex Gerst (European Space Agency), Max Suraev (Roscosmos) and Reid Wiseman (NASA). Credit: NASA

 

Inspiration Mars Wants To Work With NASA To Get To The Red Planet

An artist’s concept of how the spacecraft for the Inspiration Mars Foundation’s “Mission for America” might be configured. Credit: Inspiration Mars.

CORRECTION: This article has been updated after more information was received from Inspiration Mars. Tito was highlighting other countries’ interest in the Red Planet in his testimony and has no plans at this time to work with anyone but NASA.

Remember that proposal to send a couple in the direction of the Red Planet, loop around it and then come back to Earth? The founder of the Inspiration Mars project, Dennis Tito, outlined more details of his proposal before the House Science Subcommittee on Space yesterday (Nov. 20).

Inspiration Mars has released an Architecture Study Report that is the fruits of a 90-day study done not only by the foundation itself, but also working with “NASA centers and industry partners” to figure out the best way to launch humans there in late 2017 or 2018. But if it’s delayed, Tito is prepared to go to Russia or China instead, he warns.

Here’s the high-level summary:

  • Two launches using NASA’s forthcoming Space Launch System, one for cargo and one for crew;
  • The crew module would be from the crew transportation vehicle that NASA selected under its commercial crew program (see this Universe Today story yesterday for an update on funding concerns on that program);
  • The cargo and crew vehicles would dock in space and then head out to Mars.

If the NASA proposal doesn’t work out, Tito warned Russia may be interested as well. said he’s quite prepared to bring his idea to another country, Russia. (Recall that Tito flew into space in 2001 on a Russian Soyuz spacecraft as a private citizen, so he does have connections over there.)

Crew of Soyuz TM-32, which flew to the International Space Station in 2001. From left, space tourist Dennis Tito, Russian cosmonaut Talgat Musabayev, and Russian cosmonaut Yuri Baturin. Credit: Wikipedia/NASA
Crew of Soyuz TM-32, which flew to the International Space Station in 2001. From left, space tourist Dennis Tito, Russian cosmonaut Talgat Musabayev, and Russian cosmonaut
Yuri Baturin. Credit: Wikipedia/NASA

“Given Russia’s clear recognition of the value and prestige of accomplishments in human space exploration, and their long-time interest in exploring Mars, my personal belief is that in all likelihood the Energia super-heavy rocket revival announcement signals Russian intent to fly this mission in 2021,” Tito stated.

“Their heavy lift rocket, along with their other designs for modules and the Soyuz, can fly this mission with modest upgrades to their systems.”

A third option would be using Chinese capabilities, he added, The Chinese may also be interested, he said, because the country — reportedly developing a large space station of its own — is likely “contemplating this opportunity to be the first on Mars.” Tito said he is informing Congress of his plans to go elsewhere as a “civic duty”, and that he wants to give NASA the first shot.

More food for thought as Congress mulls how much money to allocate to NASA in fiscal 2014. And Tito had strong words about his feelings on the funding: “If I may offer a frank word of caution to this subcommittee: The United States will carry out a Mars flyby mission, or we will watch as others do it – leaving us to applaud their skill and their daring.”

Super-Typhoon Haiyan Causes Catastrophic Death & Destruction – Space Images from NASA, ISRO, Roscosmos & ISS

Super Typhoon Haiyan over the Philippines on November 9, 2013 as imaged from Earth orbit by NASA Astronaut Karen Nyberg aboard the International Space Station. Credit: NASA/Karen Nyberg

Super Typhoon Haiyan over the Philippines on November 9, 2013 as imaged from Earth orbit by NASA Astronaut Karen Nyberg aboard the International Space Station.Category 5 killer storm Haiyan stretches across the entire photo from about 250 miles (400 kilometer) altitude. Credit: NASA/Karen Nyberg
See more Super Typhoon Haiyan imagery and video below
[/caption]

NASA GODDARD SPACE FLIGHT CENTER, MARYLAND – Super Typhoon Haiyan smashed into the island nation of the Philippines, Friday, Nov. 8, with maximum sustained winds estimated at exceeding 195 MPH (315 kilometer per hour) by the U.S. Navy Joint Typhoon Warning Center – leaving an enormous region of catastrophic death and destruction in its terrible wake.

The Red Cross estimates over 1200 deaths so far. The final toll could be significantly higher. Local media reports today say bodies of men, women and children are now washing on shore.

The enormous scale of Super Typhoon Haiyan can be vividly seen in space imagery captured by NASA, ISRO and Russian satellites – as well as astronaut Karen Nyberg flying overhead on board the International Space Station (ISS); collected here.

As Super-Typhoon Haiyan moved over the central Philippines on Nov. 8 at 05:10 UTC/12:10 a.m. EDT, the MODIS instrument aboard NASA's Aqua satellite captured this visible image.   Credit: NASA Goddard MODIS Rapid Response Team
As Super-Typhoon Haiyan moved over the central Philippines on Nov. 8 at 05:10 UTC/12:10 a.m. EDT, the MODIS instrument aboard NASA’s Aqua satellite captured this visible image. Credit: NASA Goddard MODIS Rapid Response Team

Super Typhoon Haiyan is reported to be the largest and most powerful storm ever to make landfall in recorded human history.

Haiyan is classified as a Category 5 monster storm on the U.S. Saffir-Simpson scale.

It struck the central Philippines municipality of Guiuan at the southern tip of the province of Eastern Samar early Friday morning Nov. 8 at 20:45 UTC (4:45 am local time).

As Haiyan hit the central Philippines, NASA says wind gusts exceeded 235 mph (379 kilometers per hour).

The high resolution imagery and precise measurements provided by the worlds constellation of Earth observing space satellites (including NASA, Roscosmos, ISRO, ESA, JAXA) are absolutely essential to tracking killer storms and providing significant advance warning to evacuate residents in affected areas to help minimize the death toll and damage.

More than 800,000 people were evacuated. The storm surge caused waves exceeding 30 feet (10 meters), mudslides and flash flooding.

NASA’s Tropical Rainfall Measuring Mission (TRMM) satellite captured visible, microwave and infrared data on the storm just as it was crossing the island of Leyte in the central Philippines, reports NASA – see image below.

NASA's TRMM satellite data on Nov. 8 at 00:19 UTC showed Haiyan had a well-defined eye surrounded by a symmetric area of moderate rain (green ring with a blue center) with several rainbands wrapping in from the south (green arcs) while crossing the island of Leyte in the central Philippines.  Credit:  NASA/SSAI, Hal Pierce
NASA’s TRMM satellite data on Nov. 8 at 00:19 UTC showed Haiyan had a well-defined eye surrounded by a symmetric area of moderate rain (green ring with a blue center) with several rainbands wrapping in from the south (green arcs) while crossing the island of Leyte in the central Philippines. Credit: NASA/SSAI, Hal Pierce

TRMM data from rain rates are measured by the TRMM Precipitation Radar (PR) and TRMM Microwave Imager (TMI) and combined with infrared (IR) data from the TRMM Visible Infrared Scanner (VIRS) by science teams working at NASA’s Goddard Space Flight Center in Greenbelt, Md.

Coincidentally NASA Goddard has just completed assembly of the next generation weather satellite Global Precipitation Measurement (GPM) observatory that replaces TRMM – and where I inspected the GPM satellite inside the Goddard clean room on Friday.

“GPM is a direct follow-up to NASA’s currently orbiting TRMM satellite,” Art Azarbarzin, GPM project manager, told Universe Today during my exclusive clean room inspection of the huge GPM satellite.

NASA’s next generation Global Precipation Managemnet Measurement (GPM) observatory inside the clean room at NASA Goddard Space Flight Center. GPM is slated to launch In February 2014 and will provide global measurements of rain and snow every 3 hours - as a direct follow-up to NASA’s currently orbiting TRMM satellite; reaching the end of its usable lifetime. Credit: Ken Kremer/kenkremer.com
NASA’s next generation Global Precipitation Measurement (GPM) observatory inside the clean room at NASA Goddard Space Flight Center. GPM is slated to launch In February 2014 and will provide global measurements of rain and snow every 3 hours – as a direct follow-up to NASA’s currently orbiting TRMM satellite; reaching the end of its usable lifetime.
Credit: Ken Kremer/kenkremer.com

“TRMM is reaching the end of its usable lifetime. GPM launches in February 2014 and we hope it has some overlap with observations from TRMM.”

“The Global Precipitation Measurement (GPM) observatory will provide high resolution global measurements of rain and snow every 3 hours,” Dalia Kirschbaum, GPM research scientist, told me at Goddard.

GPM is equipped with advanced, higher resolution radar instruments. It is vital to continuing the TRMM measurements and will help provide improved forecasts and advance warning of extreme super storms like Hurricane Sandy and Super Typhoon Haiyan, Azarbarzin and Kirschbaum explained.

Video Caption: Super Typhoon Haiyan imaged on Nov 6 – 8, 2013 by the Russian Elektro-L satellite operating in geostationary orbit. Credit: Roscosmos via Vitaliy Egorov

The full magnitude of Haiyan’s destruction is just starting to be assessed as rescue teams reach the devastated areas where winds wantonly ripped apart homes, farms, factories, buildings and structures of every imaginable type vital to everyday human existence.

Typhoon Haiyan is moving westward and is expected to forcefully strike central Vietnam in a day or two. Mass evacuations are underway at this time

Ken Kremer

SuperTyphoon Haiyan imaged by the Russian Elektro-L satellite operating in geostationary orbit. Credit: Roscosmos via Vitaliy Egorov
Super Typhoon Haiyan imaged by the Russian Elektro-L satellite operating in geostationary orbit. Credit: Roscosmos via Vitaliy Egorov
Super Typhoon Haiyan's ocean surface winds were measured by the OSCAT radar scatterometer on the Indian Space Research Organization's (ISRO) OceanSAT-2 satellite at 5:30 p.m. PST on Nov. 6. The colors indicate wind speed and arrows indicate wind direction. Credit: ISRO/NASA/JPL-Caltech
Super Typhoon Haiyan’s ocean surface winds were measured by the OSCAT radar scatterometer on the Indian Space Research Organization’s (ISRO) OceanSAT-2 satellite at 5:30 p.m. PST on Nov. 6. The colors indicate wind speed and arrows indicate wind direction. Credit: ISRO/NASA/JPL-Caltech

Can The International Space Station Fit Bigger Astronaut Crews?

Astronauts from Expeditions 37, 38 and 39 during a rare space station press conference Nov. 8, 2013. Front row, left to right: NASA astronaut Karen Nyberg, Russian cosmonaut Fyodor Yurchikhin and European Space Agency astronaut Luca Parmitano. Middle row, left to right: NASA astronaut Michael Hopkins, Russian cosmonaut Oleg Kotov and Russian cosmonaut Russian cosmonaut Sergey Ryazanskiy. Back row, left to right: NASA astronaut Rick Mastracchio, Japanese astronaut Koichi Wakata and Russian cosmonaut Mikhail Tyurin. Credit: NASA TV (screencap)

Things are a little more crowded than usual in the International Space Station. For a few days, nine astronauts and cosmonauts are floating in the cramped quarters of the orbiting complex. Typical crew sizes range between three and six. How did the astronauts find room to work and sleep?

“One of the things we had to do was make space for them,” said European Space Agency astronaut Luca Parmitano in a rare press conference today (Nov. 8) from orbit, which included participation from Universe Today. He then explained a procedure where the astronauts swapped a Soyuz crew spacecraft from one Russian docking port to another a few days before Expedition 38/39’s crew arrived on board on Thursday. This cleared the way for three more people to arrive.

“We [also] had to adjust for emergency procedures. All of our procedures are trained and worked for a group of six. We had to work on a way to respond if something happened.” As for sleeping, it was decided the six people already on board, “as seniority, would stay in the crew quarters.” The newer astronauts have temporary sleeping arrangements in other modules until the ranks thin out a bit on Sunday.

So this works for a short while, but what about the long-term? Could the station handle having nine people there for weeks at a time, rather than six, and would there be enough science work to go around?

Luca Parmitano controlled the K-10 rover from space on July 26, 2013. Credit: NASA Television (screencap)
Luca Parmitano controlling the K-10 rover from space on July 26, 2013 in a test intended to see how well astronauts in a spacecraft can communicate with rovers on the surface. This information could be used for missions far in the future. Credit: NASA Television (screencap)

“I think, absolutely, moving to nine people is doable and in terms of the science would be fantastic,” NASA astronaut Karen Nyberg said. The station partners had experience with increasing crews before, she added, as for several years a regular space station rotation was only three astronauts during construction. Bumping up to the current maximum of six was a “big jump.”

“One of the things to be concerned about our environmental control system, our CO2 [carbon dioxide scrubbing] system … and also the consumables and the supplies we need,” she added. “Making up the science for us to do would be very doable. I think the hard part would be getting the systems to accommodate nine people.”

Parmitano, Nyberg and Russian cosmonaut Fyodor Yurchikhin plan to return to Earth Sunday, but a busy weekend lies ahead. On Saturday, Roscosmos (Russian Federal Space Agency) flight engineers Oleg Kotov and Sergey Ryazanskiy of the Russian Federal Space Agency will start a spacewalk around 9:30 a.m. EST (2:30 p.m. UTC) if all goes to plan.

Expedition 38/39 poses with the Olympic torch that they brought into orbit with them in November 2013 as part of the relay for the 2014 Games in Sochi, Russia. From left, Koichi Wakata of the Japan Aerospace Exploration Agency, Mikhail Tyurin of Roscosmos, and Rick Mastracchio of NASA. Credit: NASA/Bill Ingalls
Expedition 38/39 poses with the Olympic torch that they brought into orbit with them in November 2013 as part of the relay for the 2014 Games in Sochi, Russia. From left, Koichi Wakata of the Japan Aerospace Exploration Agency, Mikhail Tyurin of Roscosmos, and Rick Mastracchio of NASA. Credit: NASA/Bill Ingalls

As part of the Olympic torch relay ahead of the Sochi games in 2014, they will briefly bring the Olympic torch outside with them, unlit, before doing some outside maintenance.

“After the photo opportunity, Kotov and Ryazanskiy will prepare a pointing platform on the hull of the station’s Zvezda service module for the installation of a high resolution camera system in December, relocate … a foot restraint for use on future spacewalks and deactivate an experiment package,” NASA stated in a Thursday press release.

Several journalists were unable to ask questions during the NASA portion of the press conference, which included participation from countries covered by NASA, the European Space Agency, the Japanese Aerospace Exploration Agency and Roscosmos (the Russian Federal Space Agency).

“We had a failure in a crucial component in the phone bridge,” NASA spokesman Kelly Humphries told Universe Today following the media event. They don’t know what component failed, but most of the journalists were unable to hear the moderator or the astronauts.

“A piece of equipment picked the wrong time to fail,” Humphries said

NASA will do a thorough investigation before holding another event like this to make sure it works for everyone.

Here’s a replay of the news conference:

Space Trucks! A Pictorial History Of These Mighty Machines

A view of Orbital Sciences' Cygnus spacecraft while it was being released from the International Space Station on Oct. 22. Credit: NASA/Karen Nyberg

Cargo resupply ships are vital for space exploration. These days they bring food, experiments and equipment to astronauts on the International Space Station. And in recent years, it hasn’t just been government agencies sending these things up; SpaceX’s Dragon spacecraft and (just this week) Orbital Sciences’ Cygnus spacecraft brought up cargo of their own to station in recent months.

NASA just published a brief timeline of (real-life) cargo spacecraft, so we thought we’d adapt that information in pictorial form. Here are some of the prominent members of that elite group. Did we miss anything? Let us know in the comments.

Dragon in orbit during the CRS-2 mission. Credit: NASA/CSA/Chris Hadfield
SpaceX’s Dragon in orbit during the CRS-2 mission. It was the first commercial spacecraft to resupply the space station, and since 2012 has completed resupply missions. Credit: NASA/CSA/Chris Hadfield
Thrust
Space shuttle Discovery heads to space after lifting off from Launch Pad 39A at NASA’s Kennedy Space Center in Florida to begin its final flight to the International Space Station on the STS-133 mission. The shuttle was NASA’s main human spacecraft between 1981 and 2011. Credit: NASA
Progress 51 on final approach to the International Space Station. The stuck antenna is visible below the crosshairs. Credit: NASA TV (screencap)
Progress 51 on final approach to the International Space Station. The Russians have been flying versions of this cargo spacecraft since 1978. Credit: NASA TV (screencap)
JAXA's H-II Transfer Vehicle during a mission in July 2012. The first demonstration flight took place in 2009. Credit: NASA
JAXA’s H-II Transfer Vehicle (HTV) during a mission in July 2012. The first demonstration flight took place in 2009. Credit: NASA

 

The ATV Johannes Kepler docked at the International Space Station. Credit: NASA
The ATV Johannes Kepler docked at the International Space Station. Versions of this spacecraft have flown since 2008. Credit: NASA
A line drawing of the TKS (Transportnyi Korabl’ Snabzheniia, or Transport Supply Spacecraft). It was intended to send crew and cargo together in one flight, but delays and a change in program priorities never allowed it to achieve that. According to NASA, versions of TKS (under the Cosmos designation) flew to the Salyut 6 and Salyut 7 space station. The cargo part of the spacecraft was also used for Russian base modules in the Mir space station and International Space Station. Credit: NASA/Wikimedia Commons
A line drawing of the TKS (Transportnyi Korabl’ Snabzheniia, or Transport Supply Spacecraft). It was intended to send crew and cargo together in one flight, but delays and a change in program priorities never allowed it to achieve that. According to NASA, versions of TKS (under the Cosmos designation) flew to the Salyut 6 and Salyut 7 space station. The cargo part of the spacecraft was also used for Russian base modules in the Mir space station and International Space Station. Credit: NASA/Wikimedia Commons

Rocket Failures May Spur Change In Russian Federal Space Agency: Report

Archive picture of a Proton launch. Image credit: ILS

It appears that the Russian government wants to take action over the string of unmanned mission failures beleaguering Roscosmos, or the Russian Federal Space Agency. A recent example includes the loss in June of three GLONASS navigation/positioning satellites in a launch failure. In 2011, Roscosmos lost four major missions, including the Phobos-Grunt spacecraft that was bound for the Martian moon Phobos.

RIA Novosti reports that Dmitry Rogozin, Russia’s deputy prime minister, plans to create a new state entity to take over space manufacturing. The proposed United Rocket and Space Corporation, the report says, will reduce the reliance on imported parts to get missions off the ground, among other aims.

“A new state corporation will be created to take over manufacturing facilities from the Federal Space Agency, whose prestige has been severely dented in recent years by a string of failed rocket launches,” the report says. “The proposed United Rocket and Space Corporation will enable the trimming away of redundant departments replicated elsewhere in the space industry.”

As for Roscosmos itself, the report hints that other changes could be on the way. Its envisioned role is to “act as a federal executive body and contracting authority for programs to be implemented by the industry.” There are expected to be changes in management, among other measures.

The agency was formed after the breakup of the Soviet Union in 1991 and is responsible for most of Russia’s space activities. Russia’s heritage in space actually stretches back to the dawn of the space age in the 1950s and 1960s, when the country became the first nation to launch a satellite (Sputnik) and a human (Yuri Gagarin), among other milestones.

Read the whole report in Roscosmos.

Final Construction Starts for Europe’s 2016 Methane Sniffing Mars Mission

The European/Russian ExoMars Trace Gas Orbiter (TGO) will launch in 2016 and sniff the Martian atmosphere for signs of methane which could originate for either biological or geological mechanisms. Credit: ESA

Has life ever existed on Mars? Or anywhere beyond Earth?

Answering that question is one of the most profound scientific inquiries of our time.

Europe and Russia have teamed up for a bold venture named ExoMars that’s set to blast off in search of Martian life in about two and a half years.

Determining if life ever originated on the Red Planet is the primary goal of the audacious two pronged ExoMars missions set to launch in 2016 & 2018 in a partnership between the European and Russian space agencies, ESA and Roscosmos.

In a major milestone announced today (June 17) at the Paris Air Show, ESA signed the implementing contract with Thales Alenia Space, the industrial prime contractor, to start the final construction phase for the 2016 Mars mission.

“The award of this contract provides continuity to the work of the industrial team members of Thales Alenia Space on this complex mission, and will ensure that it remains on track for launch in January 2016,” noted Alvaro Giménez, ESA’s Director of Science and Robotic Exploration.

ExoMars 2016 Mission to the Red Planet.  It consists of two spacecraft -  the Trace Gas Orbiter (TGO) and the Entry, Descent and Landing Demonstrator Module (EDM) which will land.  Credit: ESA
ExoMars 2016 Mission to the Red Planet. It consists of two spacecraft – the Trace Gas Orbiter (TGO) and the Entry, Descent and Landing Demonstrator Module (EDM) which will land. Credit: ESA

The ambitious 2016 ExoMars mission comprises of both an orbiter and a lander- namely the methane sniffing Trace Gas Orbiter (TGO) and the piggybacked Entry, Descent and Landing Demonstrator Module (EDM).

ExoMars 2016 will be Europe’s first spacecraft dispatched to the Red Planet since the 2003 blast off of the phenomenally successful Mars Express mission – which just celebrated its 10th anniversary since launch.

Methane (CH4) gas is the simplest organic molecule and very low levels have reportedly been detected in the thin Martian atmosphere. But the data are not certain and its origin is not clear cut.

Methane could be a marker either for active living organisms today or it could originate from non life geologic processes. On Earth more than 90% of the methane originates from biological sources.

The ExoMars 2016 orbiter will investigate the source and precisely measure the quantity of the methane.

The 2016 lander will carry an international suite of science instruments and test European landing technologies for the 2nd ExoMars mission slated for 2018.

The 2016 ExoMars Trace Gas Orbiter will carry and deploy the Entry, Descent and Landing Demonstrator Module to the surface of Mars. Credit: ESA-AOES Medialab
The 2016 ExoMars Trace Gas Orbiter will carry and deploy the Entry, Descent and Landing Demonstrator Module to the surface of Mars. Credit: ESA-AOES Medialab

The 2018 ExoMars mission will deliver an advanced rover to the Red Planet’s surface. It is equipped with the first ever deep driller that can collect samples to depths of 2 meters where the environment is shielded from the harsh conditions on the surface – namely the constant bombardment of cosmic radiation and the presence of strong oxidants like perchlorates that can destroy organic molecules.

ExoMars was originally a joint NASA/ESA project until hefty cuts to NASA’s budget by Washington DC politicians forced NASA to terminate the agencies involvement after several years of detailed work.

Elements of the ExoMars program 2016-2018.  Credit: ESA
Elements of the ExoMars program 2016-2018. Credit: ESA
Thereafter Russia agreed to take NASA’s place and provide the much needed funding and rockets for the pair of planetary launches scheduled for January 2016 and May 2018.

NASA does not have the funds to launch another Mars rover until 2020 at the earliest – and continuing budget cuts threaten even the 2020 launch date.

NASA will still have a small role in the ExoMars project by funding several science instruments.

The ExoMars missions along with NASA’s ongoing Curiosity and Opportunity Mars rovers will pave the way for Mars Sample Return missions in the 2020’s and eventual Humans voyages to the Red Planet in the 2030’s.

And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013

Ken Kremer

…………….
Learn more about Mars, Curiosity, Opportunity, MAVEN, LADEE and NASA missions at Ken’s upcoming lecture presentations

June 23: “Send your Name to Mars on MAVEN” and “CIBER Astro Sat, LADEE Lunar & Antares Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8 PM

Gerbils, mice perish as Russian spacecraft returns to Earth

Bion-M's mission patch. Credit: NASA

A menagarie of animals launched to space last month has arrived back on Earth — with a few casualties for the voyage.

Bion-M, a small satellite carrying gerbils, lizards, mice and other critters, launched in April from the Plesetsk Cosmodrome in Russia and arrived, as planned, safely on Earth on Sunday (May 19).

However, not all of the assorted crew survived the voyage.

“This is the first time that animals have been put in space on their own for so long,” said Vladimir Sychov of the Russian Academy of Sciences, as reported by several news agencies. Half of the 45 mice were lost in the journey, which was expected, but the eight gerbils unexpectedly died “because of equipment failure”, he added.

The Bion-M hardware is readied for flight. Credit: Russian Federal Space Agency (Roscosmos)
The Bion-M hardware is readied for flight. Credit: Russian Federal Space Agency (Roscosmos)

Still, the scientists expect to pull a lot of long-duration data out of the mission. It is expected to help scientists better understand the effects of microgravity on biological organisms, with applications for long human voyages such as a trip to Mars.

Microgravity does a number on human systems, as just-returned-from-space astronaut Chris Hadfield eloquently described recently.

Bones lose calcium, muscles shrink and there are changes to your blood pressure flow and even your eyes. Taking a trip to space is like experiencing aging on fast-forward (although luckily, the effects are mostly reversible.)

Michael Foale on the ISS's treadmill. Credit: NASA
Michael Foale on the ISS’s treadmill. Astronauts on station exercise two hours a day, typically, to fight against microgravity’s effects. Credit: NASA

“Knowledge gained in the use of animals reveals the fundamental mechanisms of adaptation to spaceflight,” NASA stated in a web page about the mission. “Such knowledge provides insight for potential long-duration human spaceflight risk mitigation strategies and potential new approaches for Earth bound biomedical problems.”

Before Bion-M journeyed to space, most mouse studies only took place during space shuttle missions that were in orbit for a maximum of two weeks. The new 30-day mission doubled the length of previous studies and also allow more advanced technologies to be brought to bear on the science, stated NASA, who participated in the mission.

“NASA researchers will study the cellular mechanisms responsible for spaceflight-induced changes on tissues and cell growth in mice, including muscle, bone and the cardiovascular and reproductive systems,” the agency wrote in an April press release. “They also will study behavioral effects in gerbils.”

Other questions long-term voyages have to consider: the effects of radiation on your body, and whether it is ethical to conceive children in microgravity.

Still, that’s not deterring thousands of people from signing up for a one-way trip to Mars with the private group Mars One.

Happy Easter Sunday from the ISS ! Crew Hunts Easter Eggs & Goodies

ISS Commander Chris Hadfield plans surprise Easter egg hunt for station crew today. Credit: NASA/Chris Hadfield

ISS Commander Chris Hadfield plans surprise Easter egg hunt for station crew today – Easter Sunday, March 31, 2013. Credit: NASA/Chris Hadfield
Updated with more astounding ‘Easter from Space’ photos by Chris Hadfield !
Dont miss the scrumptious ‘Easter Finale’ – below

Thank you Chris ![/caption]

Hush, hush !

Don’t’ tell his crew, but Canadian astronaut Chris Hadfield has secretly planned a delightful space station surprise sure to also warm the hearts of Earth’s children celebrating the joyous occasion of this Easter Sunday – and there’s delicious photos below too.

They’re going on an Easter egg hunt !

“Don’t tell my crew, but I brought them Easter Eggs :)”, tweeted Hadfield from the ISS – where he currently serves as Commander of the Expedition 35 crew.

And Hadfield sends his greetings and ‘Easter from Space’ photos to all of us down here on the good Earth on this Holy Day.

“Good Morning, Earth! A fine Easter Sunday morning to you, from the crew of the International Space Station.”

You can follow along with Hadfield’s adventures from space as – @Cmdr_Hadfield

A Full Moon. It may not be made of chocolate, but it makes for a wonderfully natural Easter egg. Credit: NASA/Chris Hadfield
A Full Moon. It may not be made of chocolate, but it makes for a wonderfully natural Easter egg. Credit: NASA/Chris Hadfield

Occasionally, Mission Control relents and lets the astronauts have fun, taking a break from their out of this world chores.

But given the weightless of space, it’s not obvious how they’ll accomplish the traditional Easter egg roll. Perhaps we’ll hear about that later.

And there’s no word back yet on Easter Bunny sightings.

Well, to get ready Hadfield has been busy stashing assorted Easter goodies & gifts in the gazillion nooks and crannies aboard the ISS – and snapping fun photos for all the kids to play along.

“Sometimes the best place to hide an item is floating right above your nose. Or in this case, your sleep pod.”

This sleep pod apparently makes for a great hiding spot for Easter eggs and gift baskets on the ISS. Credit: NASA
This sleep pod apparently makes for a great hiding spot for floating Easter eggs and gift baskets on the ISS. Credit: NASA

Hadfield just couldn’t resist the temptation of some weightless juggling – and he’s not telling if they went .. splat !!

“It appears that I’m as bad at juggling in weightlessness as I am on Earth. Hopefully I’m better at hiding them… ”

Canadian astronaut Chris Hadfield attempts to juggle Easter eggs aboard the International Space Station. Do they go splat ??. Credit: NASA
Canadian astronaut Chris Hadfield attempts to juggle Easter eggs aboard the International Space Station. Do they go splat ??. Credit: NASA

Time will tell whether the crew of six guys are indeed clever enough to figure out all the secret hiding spots.

The Easter egg hunt could be especially trying for the three ‘new guys’ who just arrived on Thursday, March 28, on the Russian Soyuz express capsule – comprising of Russian cosmonauts Pavel Vinogradov and Alexander Misurkin and NASA astronaut Chris Cassidy. They join Hadfield, astronaut Tom Marshburn and cosmonaut Roman Romanenko who will stay aboard the station until May.

In the meantime, Hadfield is playfully diverting everyone’s concentration with gorgeous shots of Earth, like the Easter sunrise glinting across North America’s heartland – below.

An Easter sunrise glints across the Great Lakes. Heartland watershed. Credit: NASA/Chris Hadfield
An Easter sunrise glints across the Great Lakes. Heartland watershed. Credit: NASA/Chris Hadfield

And the Canadian Space Agency has now passed along an Easter greeting card.

Astronaut and cosmonaut crews have a decade’s long tradition of celebrating religious holidays in space. Probably the most famous occasion was when the three man American crew of Apollo 8 read scriptures from Genesis marking the first time in history that humans were orbiting the Moon – back in 1968.

All in all it’s been a busy week aboard the massive orbiting lab complex.

On Tuesday, March 26, the SpaceX Dragon capsule departed the station, loaded with a long awaited trove of science goodies and successfully splashed down in the ocean. Two days later the trio of new space men arriving aboard the Soyuz restored the ISS to its full crew complement of six.

Since arriving at the station just before Christmas 2012, Hadfield has been doing a stellar job enlightening folks about what it’s like to live and work in space in fun and understandable ways.

Happy Easter !

Ken Kremer

Easter Finale: The Sun, a bright point of light surrounded by profound blackness, our world glowing in-between. Credit: NASA/Chris Hadfield
Easter Finale: The Sun, a bright point of light surrounded by profound blackness, our world glowing in-between. Credit: NASA/Chris Hadfield

…………….

Learn more about the ISS, Curiosity, SpaceX, Antares, and NASA missions at Ken’s upcoming lecture presentations:

April 20/21 : “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus Orion, SpaceX, Antares, ISS, the Space Shuttle and more! NEAF Astronomy Forum, Suffern, NY

April 28: “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus the Space Shuttle, SpaceX, Antares, Orion and more. Washington Crossing State Park, Titusville, NJ, 130 PM