New Mosaic Reveals Jets Blasting from Rosetta’s Comet

Two jets of gas and dust blast from Comet 67P/C-G in this reassembled and enhanced mosaic made from four photos taken by Rosetta's navigation camera on September 2, Credit: ESA/Rosetta/ Navcam/Bob King

Hidden among the four new images of Comet 67P/Churyumov-Gerasimenko released by ESA this week are a pair of dusty jets shooting from the nucleus of Comet Churyumov-Gerasimenko. The photos were taken September 2, 2014 and posted as a mosaic of four separate images. I re-assembled the four, albeit imperfectly, and added some additional contrast to better show the dual geyser of ice crystals mixed with dust venting from the nucleus. 

Four image montage of comet 67P/C-G, using images taken on 2 September. Credits: ESA/Rosetta/NAVCAM
Original four image montage of comet 67P/C-G, using images taken on September 2. The dark spot at center is imaging artifact. Credits: ESA/Rosetta/NAVCAM

An earlier Rosetta photo taken of Comet 67P/ Churyumov-Gerasimenko from a great distance and deliberately overexposed showed jets of dust-laden vapor shooting from the comet, but this is the first image I’m aware of that shows both the comet’s surface and its much fainter exhalations.

Jets or sprays of vaporizing ice are what gives a comet its lively appearance. Dust released with water vapor is ultimately pushed back by the pressure of sunlight to grow 67P/C-G’s dust tail. Ultraviolet light from the sun causes volatiles within the vapor to fluoresce a pale blue, creating a second ion or gas tail. The coma or comet atmosphere is a mix of both.

Rosetta took a long-exposure image with its wide-angle camera on August 2, 2014, to observe jets of dust escaping from the comet. The photo was taken from a distance of 550 kilometers. ESA / Rosetta / MPS for OSIRIS Team MPS / UPD / LAM / IAA / SSO / INTA / UPM / DASP / IDA
On August 2, 2014 at distance of 342 miles (550 km), Rosetta took this wide-angle view of the comet and jets of dust and vapor shooting into space.
ESA / Rosetta / MPS for OSIRIS Team MPS / UPD / LAM / IAA / SSO / INTA / UPM / DASP / IDA

We can expect the jets to grow stronger and hopefully more numerous as 67P/C-G approaches perihelion in August 2015. Because the spacecraft is maneuvering into orbit between the comet and sun, we don’t get the best view of jetting activity. The comet nucleus, illuminated by sunlight, drowns out the fainter jets. Rosetta will make an excursion to the nightside on September 24. Assuming the jets remain active, we might see them backlit by the sun as bright beams extending from the darkened nucleus into space.

What Comets, Parking Lots and Charcoal Have in Common

Illustration of Comet 67P/C-G brought down to Earth in the city of Los Angeles, Calif. Compare to the same image (below) as viewed in space. Credit: ESA and anosmicovni

All the pictures we’ve seen of Rosetta’s target comet 67P/C-G show it reflecting brightly against the background of outer space. And well they should. Space is black as night. But if we were to see the comet against a more familiar earthly backdrop, we’d be shocked by its appearance. Instead of icy white, Rosetta’s would appear the color of a fresh asphalt parking lot. Most comets, including Rosetta’s, are no brighter than the charcoal briquettes you use to grill hamburgers. 

Astronomers rank an object’s reflectivity by its albedo (al-BEE-do). A body that reflects 100% of the light is said to have an albedo of 1.0. Venus’ albedo is .75 and reflects 75% of the light it receives from the sun, while the darker Earth’s average is 30%. Trees and the darker-toned continents reflect much less light compared to Venus’ pervasive cloud cover. In contrast, the coal-dark moon reflects only 12% of the sunlight falling on it and fresh asphalt just 4% – smack in the middle of the 2-6% range of most known comets. 

 

Photo of Comet 67P/C-G taken  by Rosetta on August 6, 2014. Credit: ESA
Photo of Comet 67P/C-G taken by Rosetta on August 6, 2014. Against the blackness of space, it appears whitish-grey. Credit: ESA

The brightest object in the solar system is Saturn’s icy moon Enceladus with a reflectivity of 99%. So why are comets so dark? It’s funny because before we sent the Giotto spacecraft to snap close-up pictures of Halley’s Comet  in 1986, astronomers thought comets, being made of reflective ice, were naturally white. Not Halley and not every comet seen up close since then.

Comets are as dark as charcoal but appear light only because the sun illuminates them against the blackness of outer space. The same charcoal, when viewed in normal light on Earth, appears black. Credit; Bob King
Comets are as dark as charcoal but appear light only because the sun illuminates them against the blackness of outer space. I shone a flashlight on a charcoal briquette (left) to simulate comet lighting. The same charcoal, when viewed in normal light, appears black. Credit; Bob King

Astronomers hypothesize that a comet grows a dark ‘skin’ both from accumulated dust and irradiation of its pristine ices by cosmic rays. Cosmic rays loosen oxygen atoms from water ice, freeing them to combine with simple carbon molecules present on comets to form larger, more complex and darker compounds resembling tars and crude oil. 

Comet colored parking lots have been the rage for years. Both comets and fresh asphalt reflect about the same amount of light. Credit: Bob King
Comet colored parking lots have been the rage for years. Both comets and fresh asphalt reflect about the same amount of light. Credit: Bob King

Over time, the comet can become insulated by dust and complex organic materials. Combined with a loss of ice to vaporization at each repeated swing past the sun, they stop outgassing and become inert or defunct comets similar to asteroids. And that might not be the end of the story.  Occasionally, a dead comet or an object originally discovered as an asteroid  can unexpectedly fire back up  after years of inactivity and become a comet again temporarily. Astronomers call these peculiar critters ‘damocloids’.

One wonders what you’d see if you could slice open a 67P/Churyumov-Gerasimenko. Would it resemble an Oreo cookie with a dark exterior and creamy white inside?  One of NASA’s instruments aboard Rosetta named Alice began mapping the comet last month. In its first far ultraviolet spectra of the surface, we learned just this week that 67P is “darker than charcoal black”. Alice also detected hydrogen and oxygen in the comet’s coma, or atmosphere.

Oreo cookies - a model of a comet nucleus? Credit: Evan-Amos
Oreo cookies – a model of a comet nucleus? Credit: Evan-Amos

Rosetta scientists also discovered the comet’s surface so far shows no  large water-ice patches. The team expected to see ice patches on the  comet’s surface because it’s too far away for the sun’s warmth to turn its water into vapor.

“We’re a bit surprised at just how unreflective the comet’s surface is  and how little evidence of exposed water-ice it shows,” said Alan Stern,  Alice principal investigator at the Southwest Research Institute in Boulder,  Colorado.

Hmmm … maybe it really is a giant cookie.

Rosetta Now Up Close to Comet 67P – Snapping Mapping Mosaics for Momentous Philae Landing

Four-image photo mosaic comprising images taken by Rosetta's navigation camera on 31 August 2014 from a distance of 61 km from comet 67P/Churyumov-Gerasimenko. The mosaic has been contrast enhanced to bring out details. The comet nucleus is about 4 km across. Credits: ESA/Rosetta/NAVCAM/Ken Kremer/Marco Di Lorenzo

Four-image photo mosaic comprising images taken by Rosetta’s navigation camera on 31 August 2014 from a distance of 61 km from comet 67P/Churyumov-Gerasimenko. The mosaic has been contrast enhanced to bring out details. The comet nucleus is about 4 km across.
Credits: ESA/Rosetta/NAVCAM/Ken Kremer – kenkremer.com/Marco Di Lorenzo
See rotated version and 4 individual images below[/caption]

ESA’s Rosetta orbiter has now moved in so close to its comet quarry that the primordial body overwhelms the screen, and thus its snapping mapping mosaics to capture the complete scene of the bizarre world so it can find the most suitable spot for the momentous Philae landing – upcoming in mid-November.

In fact Rosetta has ‘drawn and quartered’ the comet to collect high resolution views of Comet 67P/Churyumov-Gerasimenko with the navcam camera on Sunday, August 31.

The navcam quartet has just been posted to the Rosetta portal today, Monday, September 1, 2014. ESA invited readers to create global photo mosaics.

See above our four frame photo mosaic of navcam images Rosetta took on Aug. 31.

The purpose of taking the images as well as spectra and physical measurements up close is to find a ‘technically feasible’ Philae touchdown site that is both safe and scientifically interesting.

Below is the Rosetta teams four image navcam montage, arranged individually in a 2 x 2 raster.

Four-image montage comprising images taken by Rosetta's navigation camera on 31 August 2014 from a distance of 61 km from comet 67P/Churyumov-Gerasimenko. The comet nucleus is about 4 km across. Credits: ESA/Rosetta/NAVCAM
Four-image montage comprising images taken by Rosetta’s navigation camera on 31 August 2014 from a distance of 61 km from comet 67P/Churyumov-Gerasimenko. The comet nucleus is about 4 km across. Credits: ESA/Rosetta/NAVCAM

The navcam image raster sequence was taken from a distance of 61 km from comet 67P.

“Roughly one quarter of the comet is seen in the corner of each of the four images. The four images are taken over an approximately 20 minute period, meaning that there is some motion of the spacecraft and rotation of the comet between the images. As a result, making a clean mosaic out of the four images is not simple,” according to ESA’s Rosetta blog.

As I reported here last week, the ‘Top 5’ landing site candidates have been chosen for the Rosetta orbiters piggybacked Philae lander for humankind’s first attempt to land on a comet.

The potential touchdown sites were announced on Aug. 25, based on a thorough analysis of high resolution measurements collected by ESA’s Rosetta spacecraft over the prior weeks since it arrived at the pockmarked Comet 67P/Churyumov-Gerasimenko on Aug. 6, 2014.

See our montage of the ‘Top 5’ landing sites below.

Five candidate sites were identified on Comet 67P/Churyumov-Gerasimenko for Rosetta’s Philae lander.   The approximate locations of the five regions are marked on these OSIRIS narrow-angle camera images taken on 16 August 2014 from a distance of about 100 km. Enlarged insets below highlight 5 landing zones.  Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA  Processing: Marco Di Lorenzo/Ken Kremer
Five candidate sites were identified on Comet 67P/Churyumov-Gerasimenko for Rosetta’s Philae lander. The approximate locations of the five regions are marked on these OSIRIS narrow-angle camera images taken on 16 August 2014 from a distance of about 100 km. Enlarged insets below highlight 5 landing zones. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA Processing: Marco Di Lorenzo/Ken Kremer

Rosetta is a mission of many firsts, including history’s first ever attempt to orbit a comet for long term study.

Philae’s history making landing on comet 67P is currently scheduled for around Nov. 11, 2014, and will be entirely automatic. The 100 kg lander is equipped with 10 science instruments.

The new images released today are the best taken so far by the Navcam camera. The probes OSIRIS science camera are even more detailed, and will hopefully be released by ESA soon!

“This is the first time landing sites on a comet have been considered,” said Stephan Ulamec, Lander Manager at DLR (German Aerospace Center), in an ESA statement.

Since rendezvousing with the comet after a decade long chase of over 6.4 billion kilometers (4 Billion miles), a top priority task for the science and engineering team leading Rosetta has been “Finding a landing strip” for the Philae comet lander.

“The clock is ticking’ to select a suitable landing zone soon since the comet warms up and the surface becomes ever more active as it swings in closer to the sun and makes the landing ever more hazardous.

This image of comet 67P/Churyumov-Gerasimenko shows the diversity of surface structures on the comet's nucleus. It was taken by the Rosetta spacecraft's OSIRIS narrow-angle camera on August 7, 2014. At the time, the spacecraft was 65 miles (104 kilometers) away from the 2.5 mile (4 kilometer) wide nucleus.  Credit:  ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA/Enhanced processing Marco Di Lorenzo/Ken Kremer
This image of comet 67P/Churyumov-Gerasimenko shows the diversity of surface structures on the comet’s nucleus. It was taken by the Rosetta spacecraft’s OSIRIS narrow-angle camera on August 7, 2014. At the time, the spacecraft was 65 miles (104 kilometers) away from the 2.5 mile (4 kilometer) wide nucleus. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA/Enhanced processing Marco Di Lorenzo/Ken Kremer

The three-legged lander will fire two harpoons and use ice screws to anchor itself to the 4 kilometer (2.5 mile) wide comet’s surface. Philae will collect stereo and panoramic images and also drill 23 centimeters into and sample its incredibly varied surface.

Stay tuned here for Ken’s continuing Rosetta, Earth and Planetary science and human spaceflight news.

Ken Kremer

Four-image photo mosaic comprising images taken by Rosetta's navigation camera on 31 August 2014 from a distance of 61 km from comet 67P/Churyumov-Gerasimenko. The mosaic has been rotated and contrast enhanced to bring out details. The comet nucleus is about 4 km across. Credits: ESA/Rosetta/NAVCAM/Ken Kremer/Marco Di Lorenzo
Four-image photo mosaic comprising images taken by Rosetta’s navigation camera on 31 August 2014 from a distance of 61 km from comet 67P/Churyumov-Gerasimenko. The mosaic has been rotated and contrast enhanced to bring out details. The comet nucleus is about 4 km across. Credits: ESA/Rosetta/NAVCAM/Ken Kremer/Marco Di Lorenzo
ESA’s Rosetta spacecraft on final approach to Comet 67P/Churyumov-Gerasimenko in early August 2014. This collage of navcam imagery from Rosetta was taken on Aug. 1, 2, 3 and 4 from distances of 1026 km, 500 km, 300 km and 234 km. Not to scale.  Credit: ESA/Rosetta/NAVCAM - Collage/Processing: Marco Di Lorenzo/Ken Kremer- kenkremer.com
ESA’s Rosetta spacecraft on final approach to Comet 67P/Churyumov-Gerasimenko in early August 2014. This collage of navcam imagery from Rosetta was taken on Aug. 1, 2, 3 and 4 from distances of 1026 km, 500 km, 300 km and 234 km. Not to scale. Credit: ESA/Rosetta/NAVCAM – Collage/Processing: Marco Di Lorenzo/Ken Kremer- kenkremer.com

Read my Rosetta series here:

5 Landing Site Candidates Selected for Rosetta’s Historic Philae Comet Lander

Rosetta Moving Closer to Comet 67P Hunting for Philae Landing Site

What’s Ahead for Rosetta – ‘Finding a Landing Strip’ on Bizarre Comet 67P/Churyumov-Gerasimenko

Rosetta Arrives at ‘Scientific Disneyland’ for Ambitious Study of Comet 67P/Churyumov-Gerasimenko after 10 Year Voyage

Rosetta on Final Approach to Historic Comet Rendezvous – Watch Live Here

Rosetta Probe Swoops Closer to Comet Destination than ISS is to Earth and Reveals Exquisite Views

Rosetta Orbiter less than 500 Kilometers from Comet 67P Following Penultimate Trajectory Burn

Rosetta Closing in on Comet 67P/Churyumov-Gerasimenko after Decade Long Chase

5 Landing Site Candidates Selected for Rosetta’s Historic Philae Comet Lander

Five candidate sites were identified on Comet 67P/Churyumov-Gerasimenko for Rosetta’s Philae lander. The approximate locations of the five regions are marked on these OSIRIS narrow-angle camera images taken on 16 August 2014 from a distance of about 100 km. Enlarged insets below highlight 5 landing zones. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA Processing: Marco Di Lorenzo/Ken Kremer

Five candidate sites were identified on Comet 67P/Churyumov-Gerasimenko for Rosetta’s Philae lander. The approximate locations of the five regions are marked on these OSIRIS narrow-angle camera images taken on 16 August 2014 from a distance of about 100 km. Enlarged insets below highlight 5 landing zones. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA Processing: Marco Di Lorenzo/Ken Kremer
Story updated[/caption]

The ‘Top 5’ landing site candidates have been chosen for the Rosetta orbiters piggybacked Philae lander for humankind’s first attempt to land on a comet. See graphics above and below.

The potential touchdown sites were announce today, Aug. 25, based on high resolution measurements collected by ESA’s Rosetta spacecraft over the past two weeks since arriving at the bizarre and pockmarked Comet 67P/Churyumov-Gerasimenko on Aug. 6, 2014.

Rosetta is a mission of many firsts, including history’s first ever attempt to orbit a comet for long term study.

Philae’s history making landing on comet 67P is currently scheduled for around Nov. 11, 2014, and will be entirely automatic. The 100 kg lander is equipped with 10 science instruments.

“This is the first time landing sites on a comet have been considered,” said Stephan Ulamec, Lander Manager at DLR (German Aerospace Center), in an ESA statement.

Artist impression of Philae on the surface of comet 67P/Churyumov-Gerasimenko.  Credit: ESA/ATG medialab
Artist impression of Philae on the surface of comet 67P/Churyumov-Gerasimenko. Credit: ESA/ATG medialab

Since rendezvousing with the comet after a decade long chase of over 6.4 billion kilometers (4 Billion miles), a top priority task for the science and engineering team leading Rosetta has been “Finding a landing strip” for the Philae comet lander.

“The challenge ahead is to map the surface and find a landing strip,” said Andrea Accomazzo, ESA Rosetta Spacecraft Operations Manager, at the Aug. 6 ESA arrival live webcast.

So ‘the clock is ticking’ to select a suitable landing zone soon as the comet warms up and the surface becomes ever more active as it swings in closer to the sun and makes the landing ever more hazardous.

This past weekend, the site selection team met at CNES, Toulouse, France, and intensively discussed and scrutinized a preliminary list of 10 potential sites, and whittled that down to the ‘Top 5.’

Their goal was to find a ‘technically feasible’ touchdown site that was both safe and scientifically interesting.

“The site must balance the technical needs of the orbiter and lander during all phases of the separation, descent, and landing, and during operations on the surface with the scientific requirements of the 10 instruments on board Philae,” said ESA.

They also had to be within an ellipse of at least 1 square kilometer (six-tenths of a square mile) in diameter due to uncertainties in navigation as well as many other factors.

“For each possible zone, important questions must be asked: Will the lander be able to maintain regular communications with Rosetta? How common are surface hazards such as large boulders, deep crevasses or steep slopes? Is there sufficient illumination for scientific operations and enough sunlight to recharge the lander’s batteries beyond its initial 64-hour lifetime, while not so much as to cause overheating?” according to ESA.

Stephan Ulamec, Philae Lander Manager at DLR (German Aerospace Center) discusses landing during ESA webcast of Rosetta’s arrival at comet  Comet 67P/Churyumov-Gerasimenko. Credit: ESA
Stephan Ulamec, Philae Lander Manager at DLR (German Aerospace Center) discusses landing during ESA webcast of Rosetta’s arrival at comet Comet 67P/Churyumov-Gerasimenko. Credit: ESA

The Landing Site Selection Group (LSSG) team was comprised of engineers and scientists from Philae’s Science, Operations and Navigation Centre (SONC) at CNES, the Lander Control Centre (LCC) at DLR, scientists representing the Philae Lander instruments as well as the ESA Rosetta team, which includes representatives from science, operations and flight dynamics.

“Based on the particular shape and the global topography of Comet 67P/ Churyumov-Gerasimenko, it is probably no surprise that many locations had to be ruled out,” said Ulamec.

“The candidate sites that we want to follow up for further analysis are thought to be technically feasible on the basis of a preliminary analysis of flight dynamics and other key issues – for example they all provide at least six hours of daylight per comet rotation and offer some flat terrain. Of course, every site has the potential for unique scientific discoveries.”

When Rosetta arrived on Aug. 6, it was initially orbiting at a distance of about 100 km (62 miles) in front of the comet. Carefully timed thruster firings then brought it to within about 80 km distance. And it is moving far closer – to within 50 kilometers (31 miles) and even closer!

Upon arrival the comet was 522 million km from the Sun. As Rosetta escorts the comet looping around the sun, they move much closer. By landing time in mid-November they are only about 450 million km (280 million mi) from the sun.

At closest approach on 13 August 2015 the comet and Rosetta will be 185 million km from the Sun. That corresponds to an eightfold increase in the light received from the Sun.

Five candidate sites were identified on Comet 67P/Churyumov-Gerasimenko for Rosetta’s Philae lander.   The approximate locations of the five regions are marked on these OSIRIS narrow-angle camera images taken on 16 August from a distance of about 100 km. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Five candidate sites were identified on Comet 67P/Churyumov-Gerasimenko for Rosetta’s Philae lander. The approximate locations of the five regions are marked on these OSIRIS narrow-angle camera images taken on 16 August 2014 from a distance of about 100 km. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Therefore Rosetta and Philae will simultaneously study the warming effects of the sun as the comet outgases dust, water and much more.

The short period Comet 67P/Churyumov-Gerasimenko has an orbital period of 6.5 years.

“The comet is very different to anything we’ve seen before, and exhibits spectacular features still to be understood,” says Jean-Pierre Bibring, a lead lander scientist and principal investigator of the CIVA instrument.

“The five chosen sites offer us the best chance to land and study the composition, internal structure and activity of the comet with the ten lander experiments.”

A close-up view of Comet 67P/Churyumov–Gerasimenko taken by the Rosetta spacecraft on Aug. 7, 2014. Credit:  ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
A close-up view of Comet 67P/Churyumov–Gerasimenko taken by the Rosetta spacecraft on Aug. 7, 2014. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

The ‘Top 5’ zones will be ranked by 14 September. Three are on the ‘head’ and two are on the ‘body’ of the bizarre two lobed alien world.

And a backup landing site will also be chosen for planning purposes and to develop landing sequences.

The ultimate selection of the primary landing site is slated for 14 October after consultation between ESA and the lander team on a “Go/No Go” decision.

The three-legged lander will fire two harpoons and use ice screws to anchor itself to the 4 kilometer (2.5 mile) wide comet’s surface. Philae will collect stereo and panoramic images and also drill 23 centimeters into and sample its incredibly varied surface.

Why study comets?

Comets are leftover remnants from the formation of the solar system. Scientists believe they delivered a vast quantity of water to Earth. They may have also seeded Earth with organic molecules – the building blocks of life as we know it.

Any finding of organic molecules will be a major discovery for Rosetta and ESA and inform us about the origin of life on Earth.

Read an Italian language version of this story by my imaging partner Marco Di Lorenzo – here

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Holger Sierks, OSIRIS principal investigator, discusses spectacular hi res comet images returned so far by Rosetta during the Aug. 6 ESA webcast from mission control at ESOC, Darmstadt, Germany. Credit: Roland Keller
Holger Sierks, OSIRIS principal investigator, discusses spectacular hi res comet images returned so far by Rosetta during the Aug. 6 ESA webcast from mission control at ESOC, Darmstadt, Germany. Credit: Roland Keller
ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA   Collage/Processing: Marco Di Lorenzo/Ken Kremer
ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA Collage/Processing: Marco Di Lorenzo/Ken Kremer

Read my Rosetta series here:

Rosetta Moving Closer to Comet 67P Hunting for Philae Landing Site


Coma Dust Collection Science starts for Rosetta at Comet 67P/Churyumov-Gerasimenko

What’s Ahead for Rosetta – ‘Finding a Landing Strip’ on Bizarre Comet 67P/Churyumov-Gerasimenko

Rosetta Arrives at ‘Scientific Disneyland’ for Ambitious Study of Comet 67P/Churyumov-Gerasimenko after 10 Year Voyage

Rosetta on Final Approach to Historic Comet Rendezvous – Watch Live Here

Rosetta Probe Swoops Closer to Comet Destination than ISS is to Earth and Reveals Exquisite Views

Rosetta Orbiter less than 500 Kilometers from Comet 67P Following Penultimate Trajectory Burn

Rosetta Closing in on Comet 67P/Churyumov-Gerasimenko after Decade Long Chase

Rosetta Moving Closer to Comet 67P Hunting for Philae Landing Site

Holger Sierks, OSIRIS principal investigator, discusses spectacular hi res comet images returned so far by Rosetta during the Aug. 6 ESA webcast from mission control at ESOC, Darmstadt, Germany. Credit: Roland Keller

Animation Caption: Possible landing sites on Comet 67P/Churyumov-Gerasimenko. The model shows the illumination of the comets surface and regions under landing site consideration for the Philae lander on board ESA’s Rosetta spececraft . Credit: CNES

“The race is on” to find a safe and scientifically interesting landing site for the Philae lander piggybacked on ESA’s Rosetta spacecraft as it swoops in ever closer to the heavily cratered Comet 67P/Churyumov-Gerasimenko since arriving two weeks ago after a decade long chase of 6.4 billion kilometers (4 Billion miles).

Rosetta made history by becoming the first ever probe from Earth to orbit a comet upon arrival on Aug. 6, 2014.

The probe discovered an utterly alien and bizarre icy wanderer that science team member Mark McCaughrean, of ESA’s Science Directorate, delightedly calls a ‘Scientific Disneyland.’

“It’s just astonishing,” he said during a live ESA webcast of the Aug. 6 arrival event.

Now, another audacious and history making event is on tap – Landing on the comet!

To enable a safe landing, Rosetta is moving in closer to the comet to gather higher resolution imaging and spectroscopic data. When Rosetta arrived on Aug. 6, it was initially orbiting at a distance of about 100 km (62 miles). As of today, carefully timed thruster firings have brought it to within about 80 km distance. And it will get far closer.

Right now a top priority task for the science and engineering team leading Rosetta is “Finding a landing strip” for the Philae comet lander.

Philae’s landing on comet 67P is currently scheduled for Nov. 11, 2014. The 100 kg lander is equipped with 10 science instruments

“The challenge ahead is to map the surface and find a landing strip,” said Andrea Accomazzo, ESA Rosetta Spacecraft Operations Manager, at the Aug. 6 ESA webcast.

The team responsibility for choosing the candidate sites comprises “the Landing Site Selection Group (LSSG), which comprises engineers and scientists from Philae’s Science, Operations and Navigation Centre (SONC) at CNES, the Lander Control Centre (LCC) at DLR, scientists representing the Philae Lander instruments, and supported by the ESA Rosetta team, which includes representatives from science, operations and flight dynamics,” according to an ESA statement.

This week the team is intensively combing through a preliminary list of 10 potential landing sites.

Over the weekend they will whittle the list down to five candidate landing sites for continued detailed analysis.

ESA will announce the Top 5 landing site candidates on Monday, Aug. 25.

This image of comet 67P/Churyumov-Gerasimenko shows the diversity of surface structures on the comet's nucleus. It was taken by the Rosetta spacecraft's OSIRIS narrow-angle camera on August 7, 2014. At the time, the spacecraft was 65 miles (104 kilometers) away from the 2.5 mile (4 kilometer) wide nucleus.  Credit:  ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA/Enhanced processing Marco Di Lorenzo/Ken Kremer
Where will Philae land?
This image of comet 67P/Churyumov-Gerasimenko shows the diversity of surface structures on the comet’s nucleus. It was taken by the Rosetta spacecraft’s OSIRIS narrow-angle camera on August 7, 2014. At the time, the spacecraft was 65 miles (104 kilometers) away from the 2.5 mile (4 kilometer) wide nucleus. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA/Enhanced processing Marco Di Lorenzo/Ken Kremer

The decision rests on the results of Rosetta’s ongoing global mapping campaign, including high resolution imaging from the OSIRIS and NAVCAM cameras and further observations from the other science instruments, especially MIRO, VIRTIS, ALICE, GIADA and ROSINA.

The surface criteria for a suitable landing site include day time landing illumination, a balance between day and night to allow the solar panels to recharge the batteries, avoiding steep slopes, large boulders and deep crevasses so it doesn’t topple over.

Of course the team also must consider the comet’s rotation period (12.4 hours) and axis of rotation (see animation at top). Sites near the equator offering roughly equal periods of day and night may be preferred.

The selection of the primary landing site is slated for mid-October after consultation between ESA and the lander team on a “Go/No Go” decision.

The three-legged lander will fire two harpoons and use ice screws to anchor itself to the 4 kilometer (2.5 mile) wide comet’s surface. Philae will collect stereo and panoramic images and also drill 23 centimeters into and sample its incredibly varied surface.

Artist impression of Philae on the surface of comet 67P/Churyumov-Gerasimenko.  Credit: ESA/ATG medialab
Artist impression of Philae on the surface of comet 67P/Churyumov-Gerasimenko. Credit: ESA/ATG medialab

Read an Italian language version of this story by my imaging partner Marco Di Lorenzo – here

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Rosetta’s Comet, Now in 3-D

A 3-D image from the Rosetta spacecraft showing Comet 67P/Churyumov-Gerasimenko and its boulder-strewn 'neck' region. Also visible is an exposed cliff face and numerous crater-like depressions. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA.

You always have a pair of those cardboard red-blue 3-D glasses by your desk, right? Well, grab them and take a look at this view of Comet 67P/Churyumov-Gerasimenko, just out from the Rosetta mission team. It almost feels like you’re right there with the spacecraft.

Notice the cliffs (see the exposed layers there?), boulders and depressions. The 3-D image was created using two images (you can see the two images here at the ESA blog) They were both taken on 7 August 2014, from a distance of 104 kilometres through the orange filter of the OSIRIS narrow-angle camera. ESA says the two images are separated by 17 minutes and the exposure time is 138 milliseconds.

Coma Dust Collection Science starts for Rosetta at Comet 67P/Churyumov-Gerasimenko

Rosetta NAVCAM image taken on 10 August 2014 from a distance of about 110 km from comet 67P/Churyumov-Gerasimenko. The comet nucleus is about 4 km across. Credit: ESA/Rosetta/NAVCAM

With the historic arrival of the European Space Agency’s (ESA) Rosetta spacecraft at destination Comet 67P/Churyumov-Gerasimenko flawlessly accomplished on August 6, 2014 after a decade long journey, ground breaking up close science at this bizarre world has begun while the team diligently and simultaneously searches for a landing site for the attached Philae comet lander.

Rosetta started collecting cometary dust from the coma encircling the comet’s nucleus with the onboard COSIMA instrument on Sunday, August 10, 2014 as the spacecraft orbits around and ahead of the icy wanderer from a distance of approximately 100 kilometers (62 miles). See coma image below.

Hopes are high that unprecedented science discoveries await at this alien world described as a “Scientific Disneyland,” by Mark McCaughrean, senior scientific adviser to ESA’s Science Directorate, during ESA’s live arrival day webcast. “It’s just astonishing.”

COSIMA stands for Cometary Secondary Ion Mass Analyser and is one of Rosetta’s suite of 11 state-of-the-art science instruments with a combined mass of 165 kg.

Its purpose is to conduct the first “in situ” analysis of the grains of dust particles emitted from the comets nucleus and determine their physical and chemical characteristics, including whether they are organic or inorganic – in essence what is cometary dust material made of and how it differs from the surface composition.

COSIMA will collect the coma dust using 24 specially designed ‘target holders’ – the first of which was opened to study the comets environment on Aug. 10. Since the comet is not especially active right now, the team plans to keep the target holder open for at least a month and check the progress of any particle collections on a weekly basis.

COSISCOPE image of the first target taken on 19 July 2014 (before the exposure, on 10 August, for cometary dust collection). The 1x1 cm target consists of a gold plate covered with a thin layer (30 µm) of gold nanoparticles (“gold black”). Illumination is by two LEDs, from the right side in this case. The bright dots on the vertical strip on the right side are used for target identification and for defining the coordinate system. Credits: ESA/Rosetta/MPS for COSIMA Team MPS/CSNSM/UNIBW/TUORLA/IWF/IAS/ESA/BUW/MPE/LPC2E/LCM/FMI/UTU/LISA/UOFC/vH&S
COSISCOPE image of the first target taken on 19 July 2014 (before the exposure, on 10 August, for cometary dust collection). The 1×1 cm target consists of a gold plate covered with a thin layer (30 µm) of gold nanoparticles (“gold black”). Illumination is by two LEDs, from the right side in this case. The bright dots on the vertical strip on the right side are used for target identification and for defining the coordinate system. Credits: ESA/Rosetta/MPS for COSIMA Team MPS/CSNSM/UNIBW/TUORLA/IWF/IAS/ESA/BUW/MPE/LPC2E/LCM/FMI/UTU/LISA/UOFC/vH&S

In fact the team says the coma environment “is still comparable to a high-quality cleanroom”at this time.

But everyone expects that to change radically as Rosetta continues escorting Comet 67P as it loops around the sun, getting closer and warming the surface every day and until reaching perihelion in August 2015.

COSIMA is managed by the Max Planck Institute for Solar System Research (Max-Planck-Institut für Sonnensystemforschung ) in Katlenburg-Lindau, Germany, with Principal Investigator Martin Hilchenbach.

There are also substantial contributions from the Institut d’Astrophysique Spatiale in France, Finnish Meteorological Institute, Osterreichisches Forschungszentrum Seibersdorf and more.

The target holders measure about one square centimeter and were developed by the Universität der Bundeswehr in Germany.

Each of these targets measures one square centimeter and is comprised of a gold plate covered with a thin 30 µm layer of gold nanoparticles (“gold black”) which the team says should “decelerate and capture cometary dust particles impacting with velocities of ~100 m/s.”

The target will be illuminated by a pair of LED’s to find the dust particles. The particles will be analyzed by COSIMA’s built in mass spectrometer after being located on the target holder by the French supplied COSISCOPE microscopic camera and ionized by a beam of indium ions.

Photo of the COSIMA (Cometary Secondary Ion Mass Analyser) instrument on Rosetta.  Credit: Max Planck Institute for Solar System Research/ESA
Photo of the COSIMA (Cometary Secondary Ion Mass Analyser) instrument on Rosetta. Credit: Max Planck Institute for Solar System Research/ESA

The team expects any grains found on the first target to be analyzed by mid-September 2014.

“COSIMA uses the method of Secondary Ion Mass Spectrometry. They will be fired at with a beam of Indium ions. This will spark individual ions (we say secondary ions) from their surfaces, which will then be analysed with COSIMA’s mass spectrometer,” according to a description from the COSIMA team.

The mass spec has the capability to analyze the elemental composition in an atomic mass range of 1 to 4000 atomic mass units, determine isotopic abundances of some key elements, characterize organic components and functional groups, and conduct mineralic and petrographic characterization of the inorganic phases, all of which will inform as as never before about solar system chemistry.

Comets are leftover remnants from the formation of the solar system. Scientists believe they delivered a vast quantity of water to Earth. They may have also seeded Earth with organic molecules – the building blocks of life as we know it.

Any finding of organic molecules and their identification by COSIMA will be a major discovery for Rosetta and ESA and inform us about the origin of life on Earth.

Data obtained so far from Rosetta’s VIRTIS instrument indicates the comets surface is too hot to be covered in ice and must instead have a dark, dusty crust.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

…….

Read my Rosetta series here:

What’s Ahead for Rosetta – ‘Finding a Landing Strip’ on Bizarre Comet 67P/Churyumov-Gerasimenko

Rosetta Arrives at ‘Scientific Disneyland’ for Ambitious Study of Comet 67P/Churyumov-Gerasimenko after 10 Year Voyage

Rosetta on Final Approach to Historic Comet Rendezvous – Watch Live Here

Rosetta Probe Swoops Closer to Comet Destination than ISS is to Earth and Reveals Exquisite Views

Rosetta Orbiter less than 500 Kilometers from Comet 67P Following Penultimate Trajectory Burn

Rosetta Closing in on Comet 67P/Churyumov-Gerasimenko after Decade Long Chase

ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA   Collage/Processing: Marco Di Lorenzo/Ken Kremer
ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA Collage/Processing: Marco Di Lorenzo/Ken Kremer

Photo Gallery: Step Right Up And Tour Rosetta’s Comet! Where Shall We Land?

A picture of Comet 67P/Churyumov-Gerasimenko. Credit: ESA/Rosetta/NAVCAM

What’s one of the first things you do when arriving at a new destination? Likely it would be scoping out the local neighborhood. Getting a sense of its terrain and the good things to do around there.

That’s part of what Rosetta’s team is working on since arriving at its comet early in the morning of Aug. 6 (Eastern time). While only a few pictures have been beamed back to the public so far of Comet 67P/Churyumov-Gerasimenko, the glimpses of its surface are tantalizing. Which is important, because a little spacecraft is on its way there.

As the team busily calibrates its instruments and snaps pictures of the surface, one of their first tasks will be to pick a landing site for Philae, the machine that is scheduled to leave Rosetta and actually touch softly down on the surface in November. This is the first time such a soft-landing has been attempted, and it’s been a long decade of waiting for the scientists who sent the two spacecraft on their way.

Picking a spot will be difficult for the team, they explained last week. The gravity is light and the terrain is not only difficult to navigate, but also hard to choose from. Would you prefer a crater or a cliff? That will be what science investigators will examine in the coming months.

As they do that, check out the latest pictures of the comet in the gallery below.

A view of Comet 67P/Churyumov-Gerasimenko taken by the Rosetta spacecraft on Aug. 9, 2014. Credit: ESA/Rosetta/NAVCAM
A view of Comet 67P/Churyumov-Gerasimenko taken by the Rosetta spacecraft on Aug. 9, 2014. Credit: ESA/Rosetta/NAVCAM
A dark hollow beckons in this picture of Comet 67P/Churyumov-Gerasimenko taken by the Rosetta spacecraft Aug. 5, 2014. Credit:  ESA/Rosetta/NAVCAM
A dark hollow beckons in this picture of Comet 67P/Churyumov-Gerasimenko taken by the Rosetta spacecraft Aug. 5, 2014. Credit: ESA/Rosetta/NAVCAM
The Rosetta spacecraft captured the "rubbe duckie" shape of Comet 67P/Churyumov-Gerasimenko on Aug. 6, 2014. Credit: ESA/Rosetta/NAVCAM
The Rosetta spacecraft captured the “rubbe duckie” shape of Comet 67P/Churyumov-Gerasimenko on Aug. 6, 2014. Credit: ESA/Rosetta/NAVCAM
The mottled surface of Comet 67P/Churyumov-Gerasimenko beckons in this picure taken by the Rosetta spacecraft on Aug. 7, 2014. Credit: ESA/Rosetta/NAVCAM
The mottled surface of Comet 67P/Churyumov-Gerasimenko beckons in this picure taken by the Rosetta spacecraft on Aug. 7, 2014. Credit: ESA/Rosetta/NAVCAM

What’s Ahead for Rosetta – ‘Finding a Landing Strip’ on Bizarre Comet 67P/Churyumov-Gerasimenko

NAVCAM image taken by Rosetta on 5 August 2014 from a distance of about 145 km from comet 67P/Churyumov-Gerasimenko. Image has been rotated 180 degrees. Credit: ESA/Rosetta/NAVCAM

Where would you land here?
Newly released NAVCAM image taken by Rosetta on 5 August 2014 from a distance of about 145 km from comet 67P/Churyumov-Gerasimenko. Image has been rotated 180 degrees. Credit: ESA/Rosetta/NAVCAM[/caption]

Following the flawless and history making arrival of the European Space Agency’s (ESA) Rosetta spacecraft at its long sought destination of Comet 67P/Churyumov-Gerasimenko on Wednesday, Aug. 6, the goal of conducting ground breaking science at this utterly alien and bizarre icy wanderer that looks like a ‘Scientific Disneyland’ can actually begin.

Rosetta is the first spacecraft in history to rendezvous with a comet and enter orbit – after a more than 10 year chase of 6.4 billion kilometers (4 Billion miles) along a highly complex trajectory from Earth. The arrival event was broadcast live from mission control at ESA’s spacecraft operations centre (ESOC) in Darmstadt, Germany. Read my complete arrival story – here.

So what’s ahead for Rosetta? Another audacious and history making event – Landing on the comet!

A top priority task is also another highly complex task – ‘Finding a landing strip’ on the bizarre world of Comet 67P for the piggybacked Philae comet lander equipped with 10 science instruments.

“The challenge ahead is to map the surface and find a landing strip,” said Andrea Accomazzo, ESA Rosetta Spacecraft Operations Manager, at the Aug. 6 ESA webcast.

That will be no easy task based on the spectacular imagery captured by the OSIRIS high resolution science camera and the Navcam camera that has revealed an utterly wacky and incredibly differentiated world like none other we have ever visited or expected when the mission was conceived.

Magnificently detailed new navcam images were released by ESA today, Aug, 7, streaming back to Earth across some 405 million kilometers (250 million miles) of interplanetary space – see above and below.

The team will have its hand full trying to find a safe spot for touchdown.

“We now see lots of structure and details. Lots of topography is visible on the surface,” said Holger Sierks, principal investigator for Rosetta’s OSIRIS camera from the Max Planck Institute for Solar System Research in Gottingen, Germany, during the webcast.

“There is a big depression and 150 meter high cliffs, rubble piles, and also we see smooth areas and plains. It’s really fantastic”

“We see a village of house size boulders. Some about 10 meters in size and bigger and they vary in brightness. And some with sharp edges. We don’t know their composition yet,” explained Sierks.

NAVCAM image taken on 6 August 2014 from a distance of about 96 km from comet 67P/Churyumov-Gerasimenko.   Credit: ESA/Rosetta/NAVCAM
Newly released NAVCAM image taken on 6 August 2014 from a distance of about 96 km from comet 67P/Churyumov-Gerasimenko. Credit: ESA/Rosetta/NAVCAM

The key to finding a safe landing site for Philae will be quickly conducting a global comet mapping campaign with OSIRIS, Navcam and the remaining suite of 11 science instruments to provide a detailed scientific study of the physical characteristics and chemical composition of the surface.

They also need to determine which areas are hard or soft.

Holger Sierks, OSIRIS principal investigator, discuss spectacular hi res comet images returned so far by Rosetta during the Aug. 6 ESA webcast from mission control at ESOC, Darmstadt, Germany. Credit: Roland Keller
Holger Sierks, OSIRIS principal investigator, discusses spectacular hi res comet images returned so far by Rosetta during the Aug. 6 ESA webcast from mission control at ESOC, Darmstadt, Germany. Credit: Roland Keller

“Our first clear views of the comet have given us plenty to think about,” says Matt Taylor, ESA’s Rosetta project scientist.

“Is this double-lobed structure built from two separate comets that came together in the Solar System’s history, or is it one comet that has eroded dramatically and asymmetrically over time? Rosetta, by design, is in the best place to study one of these unique objects.”

The image of Comet 67P/Churyumov-Gerasimenko was taken by Rosetta’s OSIRIS narrow-angle camera on 3 August 2014 from a distance of 285 km.   Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
The image of Comet 67P/Churyumov-Gerasimenko was taken by Rosetta’s OSIRIS narrow-angle camera on 3 August 2014 from a distance of 285 km. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Yesterday’s (Aug. 6) critical final thruster firing placed the 1.3 Billion euro robotic emissary from Earth into a triangular shaped orbit about 100 kilometers (62 miles) above and in front of the comet’s incredibly varied surface.

Therefore the initial mapping will be conducted from the 100 km (62 mi.) standoff distance.

Since the landing is currently targeted for November 11, 2014, in barely three months time there is not a moment to waste.

“Over the next few months, in addition to characterizing the comet nucleus and setting the bar for the rest of the mission, we will begin final preparations for another space history first: landing on a comet,” says Taylor.

The team will identify up to five possible landing sites by late August and expect to choose the primary site by mid-September.

Then the team has to plan and build the programming and maneuvers for the final timeline to implement the sequence of events leading to the nailbiting landing.

With Rosetta now travelling in a series of 100 kilometer-long (62 mile-long) triangular arcs in front of the comet lasting about 3 days each, it will also be firing thrusters at each apex.

After catching up with the comet Rosetta will slightly overtake and enter orbit from the ‘front’ of the comet as both the spacecraft and 67P/CG move along their orbits around the Sun. Rosetta will carry out a complex series of manoeuvres to reduce the separation between the spacecraft and comet from around 100 km to 25-30 km. From this close orbit, detailed mapping will allow scientists to determine the landing site for the mission’s Philae lander. Immediately prior to the deployment of Philae in November, Rosetta will come to within just 2.5 km of the comet’s nucleus.  This animation is not to scale; Rosetta’s solar arrays span 32 m, and the comet is approximately 4 km wide.  Credit: ESA–C. Carreau
After catching up with the comet Rosetta will slightly overtake and enter orbit from the ‘front’ of the comet as both the spacecraft and 67P/CG move along their orbits around the Sun. Rosetta will carry out a complex series of manoeuvres to reduce the separation between the spacecraft and comet from around 100 km to 25-30 km. From this close orbit, detailed mapping will allow scientists to determine the landing site for the mission’s Philae lander. Immediately prior to the deployment of Philae in November, Rosetta will come to within just 2.5 km of the comet’s nucleus. This animation is not to scale; Rosetta’s solar arrays span 32 m, and the comet is approximately 4 km wide. Credit: ESA–C. Carreau

But it will also gradually edge closer over the next six weeks to about 50 km distance and then even closer to lower Rosetta’s altitude about Comet 67P until the spacecraft is captured by the comet’s gravity.

In November 2014, Rosetta will attempt another historic first when it deploys the Philae science lander from an altitude of just about 2.5 kilometers above the comet for the first ever attempt to land on a comet’s nucleus.

The three-legged lander will fire harpoons and use ice screws to anchor itself to the 4 kilometer (2.5 mile) wide comet’s surface. Philae will collect stereo and panoramic images and also drill into and sample its incredibly varied surface.

How will Philae land?

Stefan Ulamec, Philae Lander Manager from the German Aerospace Center (DLR) talked about the challenges of landing in a low gravity environment during the ESA webcast.

“The touchdown will be at a speed of just 1 m/s,” Ulamec explained. “This is like walking and bouncing against a wall.”

Details in an upcoming story!

Why study comets?

Comets are leftover remnants from the formation of the solar system. Scientists believe they delivered a vast quantity of water to Earth. They may have also seeded Earth with organic molecules.

ESA’s Rosetta spacecraft on final approach to Comet 67P/Churyumov-Gerasimenko in early August 2014. This collage of navcam imagery from Rosetta was taken on Aug. 1, 2, 3 and 4 from distances of 1026 km, 500 km, 300 km and 234 km. Not to scale.  Credit: ESA/Rosetta/NAVCAM - Collage/Processing: Marco Di Lorenzo/Ken Kremer- kenkremer.com
ESA’s Rosetta spacecraft on final approach to Comet 67P/Churyumov-Gerasimenko in early August 2014. This collage of navcam imagery from Rosetta was taken on Aug. 1, 2, 3 and 4 from distances of 1026 km, 500 km, 300 km and 234 km. Not to scale. Credit: ESA/Rosetta/NAVCAM – Collage/Processing: Marco Di Lorenzo/Ken Kremer- kenkremer.com

Stay tuned here for Ken’s continuing Rosetta, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, commercial space, MAVEN, MOM, Mars and more Earth and Planetary science and human spaceflight news.

Ken Kremer

…….

Read my Rosetta series here:

Rosetta Arrives at ‘Scientific Disneyland’ for Ambitious Study of Comet 67P/Churyumov-Gerasimenko after 10 Year Voyage

Rosetta on Final Approach to Historic Comet Rendezvous – Watch Live Here

Rosetta Probe Swoops Closer to Comet Destination than ISS is to Earth and Reveals Exquisite Views

Rosetta Orbiter less than 500 Kilometers from Comet 67P Following Penultimate Trajectory Burn

Rosetta Closing in on Comet 67P/Churyumov-Gerasimenko after Decade Long Chase

ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA   Collage/Processing: Marco Di Lorenzo/Ken Kremer
ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA Collage/Processing: Marco Di Lorenzo/Ken Kremer

Rosetta Arrives at ‘Scientific Disneyland’ for Ambitious Study of Comet 67P/Churyumov-Gerasimenko after 10 Year Voyage

The image of Comet 67P/Churyumov-Gerasimenko was taken by Rosetta’s OSIRIS narrow-angle camera on 3 August 2014 from a distance of 285 km. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

The image of Comet 67P/Churyumov-Gerasimenko was taken by Rosetta’s OSIRIS narrow-angle camera on 3 August 2014 from a distance of 285 km. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Story updated[/caption]

“We’re at the comet! Yes,” exclaimed Rosetta Spacecraft Operations Manager Sylvain Lodiot, confirming the spacecraft’s historic arrival at Comet 67P/Churyumov-Gerasimenko during a live webcast this morning, Aug. 6, from mission control at ESA’s spacecraft operations centre (ESOC) in Darmstadt, Germany.

The European Space Agency’s (ESA) Rosetta comet hunter successfully reached its long sought destination after a flawless orbital thruster firing at 11 AM CEST to become the first spacecraft in history to rendezvous with a comet and enter orbit aimed at an ambitious long term quest to produce ground breaking science.

“Ten years we’ve been in the car waiting to get to scientific Disneyland and we haven’t even gotten out of the car yet and look at what’s outside the window,” Mark McCaughrean, senior scientific adviser to ESA’s Science Directorate, said during today’s webcast. “It’s just astonishing.”

“The really big question is where did we and the solar system we live in come from? How did water and the complex organic molecules that build up life get to this planet? Water and life. These are the questions that motivate everybody.”

“Rosetta is indeed the ‘rosetta stone’ that will unlock this treasure chest to all comets.”

Today’s rendezvous climaxed Rosetta’s decade long and 6.4 billion kilometers (4 Billion miles) hot pursuit through interplanetary space for a cosmic kiss with Comet 67P while speeding towards the inner Solar System at nearly 55,000 kilometers per hour.

The probe is sending back spectacular up close high resolution imagery of the mysterious binary, two lobed comet, merged at a bright band at the narrow neck of the celestial wanderer that looks like a ‘rubber ducky.’

“This is the best comet nucleus ever resolved in space with the sharpest ever views of the nucleus, with 5.5.meter pixel resolution,” said Holger Sierks, principal investigator for Rosetta’s OSIRIS camera from the Max Planck Institute for Solar System Research in Gottingen, Germany, during the webcast.

Back side view of Comet 67P/Churyumov-Gerasimenko was taken by Rosetta’s OSIRIS narrow-angle camera on 3 August 2014 from a distance of 285 km.   The image resolution is 5.3 metres/pixel. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Back side view of Comet 67P/Churyumov-Gerasimenko was taken by Rosetta’s OSIRIS narrow-angle camera on 3 August 2014 from a distance of 285 km. The image resolution is 5.3 metres/pixel. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

“We now see lots of structure and details. Lots of topography is visible on the surface. We see the nucleus and outgassing activity. The outbursts are seen with overexposed images. It’s really fantastic”

“There is a big depression on the head and 150 meter high cliffs, rubble piles, and also we see smooth areas and plains. The neck is about 1000 meters deep and is a cool area. There is outgassing visible from the neck.”

“We see a village of house size boulders. Some about 10 meters in size and bigger they vary in brightness. And some with sharp edges. We don’t know their composition yet.”

“We don’t understand how its created yet. That’s what we’ll find out in coming months as we get closer.”

“Rosetta has arrived and will get even closer. We’ll get ten times the resolution compared to now.”

“The comet is a story about us. It will be the key in cometary science. Where did it form? What does it tell us about the water on Earth and the early solar system and where it come from?”

Following the blastoff on 2 March 2004 tucked inside the payload fairing of an Ariane 5 G+ rocket from Europe’s spaceport in Kourou, French Guiana, Rosetta traveled on a complex trajectory.

It conducted four gravity assist speed boosting slingshot maneuvers, three at Earth and one at Mars, to gain sufficient velocity to reach the comet, Lodiot explained.

The 1.3 Billion euro robotic emissary from Earth is now orbiting about 100 kilometers (62 miles) above the comet’s surface, some 405 million kilometers (250 million mi.) from Earth, about half way between the orbits of Jupiter and Mars.

The main event today, Aug. 6, was to complete an absolutely critical thruster firing which was the last of 10 orbit correction maneuvers (OCM’s). It started precisely on time at 11:00 AM CEST/09:00 GMT/5:00 AM EST, said Lodiot. The signal was one of the cleanest of the entire mission.

The orbital insertion engine firing dubbed the Close Approach Trajectory – Insertion (CATI) burn was scheduled to last about 6 minutes 26 seconds. Confirmation of a successful burn came some 28 minutes later.

“We’re at the comet! Yes,” Lodiot excitedly announced live whereupon the crowd of team members, dignitaries and journalists at ESOC erupted in cheers.

For the next 17 months, the probe will escort comet 67P as it loops around the Sun towards perihelion in August 2015 and then continue along on the outbound voyage towards Jupiter.

ESA’s incredibly bold mission will also deploy the three-legged piggybacked Philae lander to touch down and drill into and sample its incredibly varied surface a little over three months from now.

Together, Rosetta and Philae are equipped with a suite of 21 science instruments to conduct an unprecedented investigation to characterize the 4 km wide (2.5 mi.) comet and study how the pristine frozen body composed of ice and rock is transformed by the warmth of the Sun.

Comets are believed to have delivered a vast quantity of water to Earth. They may have also seeded Earth with organic molecules.

Close-up detail of comet 67P/Churyumov-Gerasimenko. The image was taken by Rosetta’s OSIRIS narrow-angle camera and downloaded today, 6 August. The image shows the comet’s ‘head’ at the left of the frame, which is casting shadow onto the ‘neck’ and ‘body’ to the right.  The image was taken from a distance of 120 km and the image resolution is 2.2 metres per pixel. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Close-up detail of comet 67P/Churyumov-Gerasimenko. The image was taken by Rosetta’s OSIRIS narrow-angle camera and downloaded today, 6 August. The image shows the comet’s ‘head’ at the left of the frame, which is casting shadow onto the ‘neck’ and ‘body’ to the right.
The image was taken from a distance of 120 km and the image resolution is 2.2 metres per pixel. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Rosetta and Philae will also search for organic molecules, nucleic acids and amino acids, the building blocks for life as we know it by sampling and analyzing the comets nucleus and coma cloud of gas and dust.

“The first coma sampling could happen as early as next week,” said Matt Taylor, ESA’s Rosetta project scientist on the webcast.

“Is this double-lobed structure built from two separate comets that came together in the Solar System’s history, or is it one comet that has eroded dramatically and asymmetrically over time? Rosetta, by design, is in the best place to study one of these unique objects.”

After thoroughly mapping the comet, the team will command Rosetta to move even lower to 50 km altitude and then even lower to 30 km and less.

The scientists and engineers will search for up to five possible landing sites for Philae to prepare for the touchdown in mid-November 2014.

“We want to characterize the nucleus so we can land in November,” said Taylor. “We will have a ringside along with the comet as it moves inwards to the sun and then further out.”

Comet 67P/Churyumov-Gerasimenko activity on 2 August 2014. The IMAGE was taken by Rosetta’s OSIRIS wide-angle camera from a distance of 550 km. The exposure time of the image was 330 seconds and the comet nucleus is saturated to bring out the detail of the comet activity. Note there is a ghost image to the right. The image resolution is 55 metres per pixel. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Comet 67P/Churyumov-Gerasimenko activity on 2 August 2014. The IMAGE was taken by Rosetta’s OSIRIS wide-angle camera from a distance of 550 km. The exposure time of the image was 330 seconds and the comet nucleus is saturated to bring out the detail of the comet activity. Note there is a ghost image to the right. The image resolution is 55 metres per pixel. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Studying comets will shed light on the history of water and life on Earth.

“We are going to places we have never been to before,” said Jean-Jacques Dordain, ESA’s Director General during the webcast.

“We want to get answers to questions to the origin to water and complex molecules on Earth. This opens up even more new questions than answers.”

ESA’s Rosetta spacecraft on final approach to Comet 67P/Churyumov-Gerasimenko in early August 2014. This collage of navcam imagery from Rosetta was taken on Aug. 1, 2, 3 and 4 from distances of 1026 km, 500 km, 300 km and 234 km. Not to scale.  Credit: ESA/Rosetta/NAVCAM - Collage/Processing: Marco Di Lorenzo/Ken Kremer- kenkremer.com
ESA’s Rosetta spacecraft on final approach to Comet 67P/Churyumov-Gerasimenko in early August 2014. This collage of navcam imagery from Rosetta was taken on Aug. 1, 2, 3 and 4 from distances of 1026 km, 500 km, 300 km and 234 km. Not to scale. Credit: ESA/Rosetta/NAVCAM – Collage/Processing: Marco Di Lorenzo/Ken Kremer- kenkremer.com

Watch for updates.

Stay tuned here for Ken’s continuing Rosetta, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, commercial space, MAVEN, MOM, Mars and more Earth and Planetary science and human spaceflight news.

Ken Kremer

……..

Read my Rosetta series here:

Rosetta on Final Approach to Historic Comet Rendezvous – Watch Live Here

Rosetta Probe Swoops Closer to Comet Destination than ISS is to Earth and Reveals Exquisite Views

Rosetta Orbiter less than 500 Kilometers from Comet 67P Following Penultimate Trajectory Burn


Rosetta Closing in on Comet 67P/Churyumov-Gerasimenko after Decade Long Chase

ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA   Collage/Processing: Marco Di Lorenzo/Ken Kremer
ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA Collage/Processing: Marco Di Lorenzo/Ken Kremer