Astronomers Find Dozens of Massive Stars Fleeing the Milky Way

This is Zeta Ophiuchi, a runaway star observed by Spitzer. The star is creating a bow shock as it travels through an interstellar dust cloud. A new study found dozens of new runaway stars in the Milky Way. Image Credit: NASA/JPL-Caltech

The Milky Way can’t hold onto all of its stars. Some of them get ejected into intergalactic space and spend their lives on an uncertain journey. A team of astronomers took a closer look at the most massive of these runaway stars to see what they could find out how they get ejected.

Continue reading “Astronomers Find Dozens of Massive Stars Fleeing the Milky Way”

These are the Fastest Stars in the Galaxy

Artist concept showing a hypervelocity star escaping our galaxy. Credit: NASA, ESA, and G. Bacon (STScI)

Until recently, there were only ten known stars on trajectories that will allow them to escape the Milky Way Galaxy, thrown astray by powerful supernova explosions. A new study using data from ESA’s Gaia survey this June has revealed an additional six runaways, two of which break the record for the fastest radial velocity of any runaway star ever seen: 1694 km/s and 2285 km/s.

Continue reading “These are the Fastest Stars in the Galaxy”

Globular Star Clusters are Constantly Kicking Stars out of the Galaxy

Omega Centauri is the brightest globular cluster in the night sky. It holds about 10 million stars and is the most massive globular cluster in the Milky Way. It's possible that globulars and nuclear star clusters are related in some way as a galaxy evolves. Image Credit: ESO.
Omega Centauri is the brightest globular cluster in the night sky. It holds about 10 million stars and is the most massive globular cluster in the Milky Way. It's possible that globulars and nuclear star clusters are related in some way as a galaxy evolves. Image Credit: ESO.

All the stars we can see with the naked eye are part of the Milky Way. The gravitational power of the galaxy’s combined mass binds the stars to the galaxy. But sometimes stars are evicted from the galaxy.

These stars are called hypervelocity stars, and some of them are born from powerful gravitational interactions in globular clusters.

Continue reading “Globular Star Clusters are Constantly Kicking Stars out of the Galaxy”

A Star had a Partial Supernova and Kicked Itself Into a High-Speed Journey Across the Milky Way

The material ejected by the supernova will initially expand very rapidly, but then gradually slow down, forming an intricate giant bubble of hot glowing gas. Eventually, the charred remains of the white dwarf that exploded will overtake these gaseous layers, and speed out onto its journey across the Galaxy. Credit: University of Warwick/Mark Garlick

Supernovae are some of the most powerful events in the Universe. They’re extremely energetic, luminous explosions that can light up the sky. Astrophysicists have a pretty good idea how they work, and they’ve organized supernovae into two broad categories: they’re the end state for massive stars that explode near the end of their lives, or they’re white dwarfs that draw gas from a companion which triggers runaway fusion.

Now there might be a third type.

Continue reading “A Star had a Partial Supernova and Kicked Itself Into a High-Speed Journey Across the Milky Way”

This Star has been Kicked Out of the Milky Way. It Knows What It Did.

Researchers from the University of Michigan confirm that a runaway star was ejected from the Milky Way's disk rather than the galactic core. Image Credit: Kohei Hattori
Researchers from the University of Michigan confirm that a runaway star was ejected from the Milky Way's disk rather than the galactic core. Image Credit: Kohei Hattori

Every once in a while, the Milky Way ejects a star. The evicted star is typically ejected from the chaotic area at the center of the galaxy, where our Super Massive Black Hole (SMBH) lives. But at least one of them was ejected from the comparatively calm galactic disk, a discovery that has astronomers rethinking this whole star ejection phenomenon.

Continue reading “This Star has been Kicked Out of the Milky Way. It Knows What It Did.”

This Star Killed its Companion and is now Escaping the Milky Way

Tauris argues that a lopsided supernova explosion may be the source of certain hypervelocity stars (image credit: IsiacDaGraca).

Our universe is capable of some truly frightening scenarios, and in this case we have an apparent tragedy: two stars, lifelong companions, decide to move away from the Milky Way galaxy together. But after millions of years of adventure into intergalactic space, one star murders and consumes the other. It now continues its journey through the universe alone, much brighter than before, surrounded by a shell of leftover remnants.

At least, we think. All we have to go on right now is a crime scene.

Let’s investigate.

Continue reading “This Star Killed its Companion and is now Escaping the Milky Way”

Runaway Star Creates Quite a Shock

A fast-moving star, Alpha Camelopardalis, creates a stunning bow shock in this new image from WISE. Credit: NASA/JPL-Caltech/WISE Team

[/caption]

Faster than a speeding bullet, this supergiant star looks like it might be wearing a red cape. Alpha Camelopardalis, the bright star in the middle of this image, is a runaway star, moving at incredible speeds – astronomers believe could be zooming along at somewhere between 680 and 4,200 kilometers per second (between 1.5 and 9.4 million miles per hour). The speed of this star is so fast, a huge bow shock is being created as the star moves through space. Alpha Cam’s bow shock can’t be seen in visible light, but WISE’s infrared detectors allow us to see this arc of heated gas and dust around the star.

Runaway stars are kicked into motion either through the supernova explosion of a companion star or through gravitational interactions with other stars in a cluster. The WISE team explains the bow shock:

“Because Alpha Cam is a supergiant star, it gives off a very strong wind. The speed of the wind is boosted in the forward direction the star is moving in space. When this fast-moving wind slams into the slower-moving interstellar material, a bow shock is created, similar to the wake in front of the bow of a ship in water. The stellar wind compresses the interstellar gas and dust, causing it to heat up and glow in infrared.”

Just as astronomers aren’t quite sure about the speed Alpha Cam is traveling, its distance is also somewhat uncertain, but it is probably somewhere between 1,600 and 6,900 light-years away. It is located in the constellation Camelopardis, near Ursa Major. (Right ascension: 4h 54m 03.0113s, declination: +66° 20′ 33.641”)

The colors used in this image represent specific wavelengths of infrared light. Stars are seen primarily in blue and cyan (blue-green), because they are emitting light brightly at 3.4 and 4.6 microns. Green represents 12-micron light, primarily emitted by dust. The red of the blow shock represents light emitted at 22 microns.

Source: WISE