The International Space Station will have to look out for new debris from an exploded Russian rocket (NASA image)
Traveling through low-Earth orbit just got a little more dangerous; a drifting Russian Breeze M (Briz-M) rocket stage that failed to execute its final burns back on August 6 has recently exploded, sending hundreds of shattered fragments out into orbit.
Russia and the U.S. Defense Department (JFCC-Space) have stated that they are currently tracking 500 pieces of debris from the disintegrated Breeze M, although some sources are saying there are likely much more than that.
After a successful liftoff via Proton rocket on August 6 from the Baikonur Cosmodrome, the Breeze M upper stage’s engines shut off after only 7 seconds as opposed to the normal 18 minutes, leaving its fuel tanks filled with 10 to 15 tons of hydrazine and nitrogen tetroxide propellants. Its payloads, the Indonesian Telkom 3 and the Russian Express-MD2 communications satellites, were subsequently deployed into the wrong orbits as the Breeze M computer continued functioning.
Although originally expected to remain intact for at least another year, the rocket stage “violently disintegrated” on October 16. Evidence of the explosion was first observed by astronomer Robert McNaught at Australia’s Siding Springs Observatory, who counted 70 fragments visible within the narrow field-of-view telescope he was using for near-Earth asteroid observations.
The exact cause of the explosion isn’t known — it may have been sparked by an impact with another piece of space junk or the result of stresses caused by the Breeze M’s eccentric orbit, which varied in altitude from 265 to 5,015 kilometers (165 miles to 3,118 miles) with an inclination of 49.9 degrees.
This was the third such breakup of a partially-full Breeze M upper stage in orbit, the previous events having occurred in 2007 and 2010, and yet another Breeze M still remains in orbit after a failed burn in August 2011.
Most of the latest fragments are still in orbit at altitudes ranging from 250 to 5,000 km (155 to 3,100 miles), where they are expected to remain.
“Although some of the pieces have begun to re-enter, most of the debris will remain in orbit for an extended period of time.”
– Jamie Mannina, US State Department spokesperson
According to NASA the debris currently poses no immediate threat to the Space Station although the cloud is “believed not to be insignificant.” Still, according to a post on Zarya.com the Station’s course will periodically take it within the Breeze M debris cloud, and “will sometimes spend several days at a time with a large part of its orbit within the cloud.”
Source: RT.com and SpaceflightNow.com. Inset image: the Breeze M (Briz-M) upper stage which disintegrated on Oct. 16. (Khrunichev)
At 9:40 p.m. CDT a Soyuz TMA-05M rocket lifted off from the Baikonur Cosmodrome in Kazakhstan carrying Expedition 32 Commander Yuri Malenchenko, NASA Flight Engineer Sunita “Suni” Williams and JAXA Flight Engineer Akihiko Hoshide to the International Space Station. It was a beautiful launch on a hot summer day at the Cosmodrome — watch the video after the jump:
(My favorite part was when the Soyuz punched a hole in the clouds!)
Exact time of the launch was 9:40:3.91 CDT, docking with the ISS will occur on Monday at 11:52 p.m. CDT. Read more about the crew of Expedition 32 here.
Of historical note, the Expedition 32 launch occurred on the same day that the Apollo-Soyuz Test Project launched in 1975. Designed to test the compatibility of rendezvous and docking systems and the possibility of an international space rescue, the nine-day Apollo-Soyuz mission brought together two former spaceflight rivals: the United States and the Soviet Union. Without the success of that project, we might not have had an International Space Station in orbit today.
Images: NASA/Carla Cioffi. Video: NASA HD TV/Ustream
After a six-week delay, the crew of Expedition 31 successfully launched aboard a Soyuz TMA-04M rocket on Tuesday, May 15 at 0301 GMT (11:01 p.m. EDT May 14) from Russia’s historic Baikonur Cosmodrome, located in the steppes of Kazakhstan.
The rocket will deliver NASA astronaut Joe Acaba and Russian cosmonauts Gennady Padalka and Sergei Revin to the International Space Station. After a two-day journey, their Soyuz capsule will dock with the ISS at 11:38 p.m. CDT on Wednesday.
The launch was aired live by NASA HD TV. The full launch can be viewed below:
The crew was originally slated to launch on March 30, but problems with a pressure test forced a delay until a new Soyuz rocket could be brought into service. In the meantime ISS crew members Don Pettit, ESA astronaut Andre Kuipers and cosmonaut Oleg Kononenko have had the station to themselves since April 27.
The three new crew members will remain on Space Station until mid-September, serving as flight engineers under Expedition 31 commander Oleg Kononenko until July 1, when the current crew will depart and Padalka will assume command, marking the beginning of Expedition 32.
For more news on Expedition 31, visit NASA’s ISS website here. Also, you can follow NASA astronaut Joe Acaba on Twitter @AstroAcaba.
Unlike most satellite images of Earth, this one was not assembled from multiple swath scans or digitally projected onto a globe model — it’s the full disk of our planet in captured as a single, enormous 121 megapixel image, acquired by Russia’s Elektro-L weather-forecasting satellite.
Like NASA’s GOES satellites, Elektro-L is parked in a geostationary orbit approximately 36,000 km (22,300 miles) above our planet. Unlike NASA’s satellites, however, Elektro-L captures images in near-infrared as well as visible wavelengths, providing detail about not only cloud movement but also vegetation variations. Its wide-angle Multichannel Scanning Unit (MSU) takes images every 15-30 minutes, showing the same viewpoint of Earth across progressive times of the day.
At a resolution of 0.62 miles per pixel, full-size Elektro-L images are some of the most detailed images of Earth acquired by a weather satellite.
Download the full-size image here (100+ megabytes).
Launched aboard a Zenit rocket on January 20, 2011, Elektro-L was the first major spacecraft to be developed in post-Soviet Russia. Parked over Earth at 76 degrees east longitude, Elektro-L provides local and global weather forecasting and analysis of ocean conditions, as well as “space weather” monitoring — measurements of solar radiation and how it interacts with Earth’s magnetic field. Its initial lifespan is projected to be ten years.
A second Elektro-L satellite is anticipated to launch in 2013.
Image credit: Russian Federal Space Agency / Research Center for Earth Operative Monitoring (NTS OMZ). See more images and video from Elektro-L on James Drake’s Planet Earth here. (Tip of the geostationary hat to Jesus Diaz at Gizmodo.)
Tracing a bright star upon the Earth, the lights of Russia’s capital city blaze beyond the solar panels of the International Space Station in this photo, captured by the Expedition 30 crew on the night of March 28, 2012.
As an electric-blue dawn flares around Earth’s northeastern limb, the green and purple fire of the Aurora Borealis shimmers and stretches away to the northwest above a pale yellow line of airglow.
Traveling at 17,500 miles an hour (28,163 km/hr), the ISS was approximately 240 miles (386 km) above the Russian city of Volgograd (formerly Stalingrad) when this photo was taken.
America’s hugely successful Mars Exploration program is apparently about to be gutted by Obama Administration officials wielding a hefty budget axe in Washington, D.C. Consequently, Russia has been invited to join the program to replace American science instruments and rockets being scrapped.
NASA’s Fiscal 2013 Budget is due to be announced on Monday, February 13 and its widely reported that the Mars science mission budget will be cut nearly in half as part of a significant decline in funding for NASA’s Planetary Science Division.
The proposed deep slash to the Mars exploration budget would kill NASA’s participation in two new missions dubbed “ExoMars” set to launch in 2016 and 2018 as a joint collaboration with the European Space Agency (ESA).
The ESA/NASA partnership would have dispatched the Trace Gas Orbiter to the Red Planet in 2016 to search for atmospheric methane, a potential signature for microbial life, and an advanced Astrobiology rover to drill deeper into the surface in 2018. These ambitious missions had the best chance yet to determine if Life ever evolved on Mars.
The 2016 and 2018 ExoMars probes were designed to look for evidence of life on Mars and set the stage for follow on missions to retrieve the first ever soil samples from the Red Planet’s surface and eventually land humans on Mars.
The proposed Mars budget cuts will obliterate these top priority science goals for NASA.
The BBC reports that “ a public announcement by NASA of its withdrawal from the ExoMars program will probably come once President Obama’s 2013 Federal Budget Request is submitted.”
A Feb. 9 article in ScienceInsider, a publication of the journal Science, states that “President Barack Obama will propose a $300 million cut in NASA’s planetary science programs as part of his 2013 request for the agency.”
This would amount to a 20% cut from $1.5 Billion in 2012 to $1.2 Billion in 2013. The bulk of that reduction is aimed squarely at purposefully eliminating the ExoMars program. And further deep cuts are planned in coming years !
The Mars budget of about $580 million this year would be radically reduced by over $200 million, thereby necessitating the end of NASA’s participation in ExoMars. These cuts will have a devastating impact on American scientists and engineers working on Mars missions.
The fallout from the looming science funding cuts also caused one longtime and top NASA manager to resign.
According to ScienceInsider, Ed Weiler, NASA’s science mission chief, says he “quit NASA Over Cuts to Mars Program.”
“The Mars program is one of the crown jewels of NASA,” said Ed Weiler to ScienceInsider.
“In what irrational, Homer Simpson world would we single it out for disproportionate cuts?”
“This is not about the science mission directorate, this is not even about NASA. This is about the country. We are the only country in the world that has demonstrated the capability to land anything on Mars. How can we allow that to be undermined?”
Weiler’s resignation from NASA on Sept. 30, 2011 was sudden and quick, virtually from one day to the next. And it came shortly after the successful launch of NASA’s GRAIL lunar probes, when I spoke to Weiler about Mars and NASA’s Planetary Science missions and the gloomy future outlook. Read my earlier Universe Today story about Weiler’s retirement.
Ed Weiler was the Associate Administrator for NASA’s Science Mission Directorate (SMD) and his distinguished career spanned almost 33 years.
The dire wrangling over NASA’s 2013 budget has been ongoing for many months and some of the funding reductions had already leaked out. For example NASA had already notified ESA that the US could not provide funding for the Atlas V launchers in 2016 and 2018. Furthermore, Weiler and other NASA managers told me the 2018 mission was de-scoped from two surface rovers down to just one to try and save the Mars mission program.
ESA is now inviting Russian participation to replace the total American pullout, which will devastate the future of Red Planet science in the US. American scientists and science instruments would be deleted from the 2016 and 2018 ExoMars missions.
The only approved US mission to Mars is the MAVEN orbiter due to blastoff in 2013 – and there are NO cameras aboard MAVEN.
NASA is caught in an inescapable squeeze between rising costs for ongoing and ambitious new missions and an extremely tough Federal budget environment with politicians of both political affiliations looking to cut what they can to rein in the deficit, no matter the consequences of “killing the goose that laid the golden egg”.
NASA Watch Editor Keith Cowing wrote; “Details of the FY 2013 NASA budget are starting to trickle out. One of the most prominent changes will be the substantial cut to planetary science at SMD [NASA’s Science Mission Directorate]. At the same time, the agency has to eat $1 billion in Webb telescope overruns – half of which will come out of SMD.”
The cost of the James Webb Space Telescope (JWST) has skyrocketed to $8.7 Billion.
To pay for JWST, NASA is being forced to gut the Mars program and other science missions funded by the same Science Mission Directorate that in the past and present has stirred the public with a mindboggling payoff of astounding science results from many missions that completely reshaped our concept of humankinds place in the Universe.
Meanwhile, China’s space program is rapidly expanding and employing more and more people. China’s scientific and technological prowess and patent applications are increasing and contributing to their fast growing economy as American breakthroughs and capabilities are diminishing.
Under the budget cutting scenario of no vision, the Curiosity Mars Science Laboratory rover will be America’s last Mars rover for a long, long time. Curiosity will thus be the third and last generation of US Mars rovers – 4th generation to be Axed !
Russia says “eish odin ras”* for its Mars moon lander mission, according to Roscomos chief Vladimir Popovkin.
If the European Space Agency does not include Russia in its ExoMars program, a two-mission plan to explore Mars via orbiter and lander and then with twin rovers (slated to launch in 2016 and 2018, respectively), Roscosmos will try for a “take-two” on their failed Phobos-Grunt mission.
“We are holding consultations with the ESA about Russia’s participation in the ExoMars project… if no deal is reached, we will repeat the attempt,” said Popovkin on Tuesday.
Phobos-Grunt, an ambitious mission to land on the larger of Mars’ two moons, collect samples and return them to Earth, launched successfully on November 9, 2011. It became caught in low-Earth orbit shortly afterwards, its upper-stage engines having failed to ignite.
After many attempts to communicate with the stranded spacecraft, Phobos-Grunt re-entered the atmosphere and impacted on January 15. Best estimates place the impact site in the Pacific Ocean off the coast of southern Chile.
The failed mission also included a Chinese orbiter and a life experiment from The Planetary Society.
Russia is offering ESA the use of a Proton launch vehicle for inclusion into the ExoMars mission, now that the U.S. has canceled its joint participation and Atlas carrier. Roscomos and ESA are scheduled to discuss the potential partnership in February.
The stakes could not be higher for the Russian Soyuz rocket now poised at the launch pad at Baikonur in Kazakhstan and which will loft the next trio of space flyers to the International Space Station on Sunday, Nov. 13. This is the first flight of a manned Soyuz rocket since the Space Shuttle was retired in July and the subsequent failure of an unmanned Soyuz booster in August of this year.
The booster was rolled out to the pad on Friday (Nov. 11) and the very fate of the Space Station and the partners $100 Billion investment hinges on a successful blastoff of the venerable Soyuz – which dates back to cosmonaut Yuri Gagarin and the inauguration of human spaceflight 50 years ago. This launch must succeed in order to keep a human presence aboard the ISS and comes in the wake of an upper stage failure days ago that left Russia’s ambitious Phobos-Grunt Mars mission stranded in Earth orbit and potentially doomed. See the Soyuz rollout video and pictures below
The Soyuz rocket and spacecraft were rolled out on a rail car at Baikonur
Video Caption – Rollout of Soyuz TMA-22 spacecraft and booster to Baikonur launch pad in Kazahkstan.
Following the August 24 launch failure and crash of a Soyuz rocket carrying the Progress 44 cargo resupply vehicle to the ISS, Russia’s manned space program was grounded because the third stage of the Soyuz rocket which malfunctioned is virtually identical for both the manned and unmanned versions.
Since NASA was forced to shut down the Space Shuttle program, the Russian Soyuz rocket and capsule are the sole method of transport to the ISS. Thus, American astronauts have no choice but to hitch a ride with the Russians.
No American replacement spacecraft will be ready for humans until 2014 at the very earliest. And significant NASA budget cuts are likely to delay the introduction of the proposed “space taxis” by several more years.
Liftoff off the three man crew aboard the Soyuz-TMA 22 capsule from the Baikonur Cosmodrome in Kazakhstan is slated for 11:14 p.m. EST Sunday Nov. 13 (11:14 a.m. Baikonur time Monday, Nov. 14) aboard the Soyuz TMA-22 spacecraft.
Originally, the launch of the Soyuz TMA-22 crew had been scheduled for September 22 but was immediately put on indefinite hold following the August 24 crash.
Russia promptly announced the formation of a special state commission to investigate the failure, which rapidly traced the malfunction to a clogged fuel line and instituted fixes and stricter quality control measures.
The international trio of new ISS residents consists of Expedition 29 Flight Engineer Dan Burbank from NASA and Anton Shkaplerov and Anatoly Ivanishin from Russia.
After a 2 day chase, they are due to link up with the ISS when their spacecraft docks to the Poisk mini-research module at 12:33 a.m. Wednesday.
When Burbank, Shkaplerov and Anatoly Ivanishin dock they will join the other trio of Expedition 29 crewmembers already aboard the ISS; Expedition 29 crewmates Commander Mike Fossum (NASA) and Flight Engineers Satoshi Furukawa (Japan) and Sergei Volkov (Russia) – and temporarily restore the ISS to a full complement of 6 crewmembers.
But the full ISS staffing will be short-lived, because Fossum, Furukawa and Volkov will hand over all ISS duties to the new crew and undock their Soyuz TMA-02M capsule from the Rassvet research module on Nov. 21 and depart for Earth reentry and landing in Kazakhstan hours later.
The new crew of three must reach the ISS before the current trio departs or the ISS would be left unmanned for the first time in over 11 years.
After an absence of almost two decades, Russia is at last on the cusp of resuming an ambitious agenda of interplanetary science missions on Tuesday Nov. 8 3:16 p.m. EST (Nov. 9, 00:16 a.m. Moscow Time) by taking aim at Mars and scooping up the first ever soil and rocks gathered from the mysterious moon Phobos. Russia’s space program was hampered for many years by funding woes after the breakup of the former Soviet Union and doubts stemming from earlier mission failures. The Russian science ramp up comes just as US space leadership fades significantly due to dire NASA budget cutbacks directed by Washington politicians.
Russia’s daring and highly risky Phobos-Grunt soil sampling robot to the battered Martian moon Phobos now sits poised at the launch pad at the Baikonur Cosmodrome in Kazahkstan atop a specially upgraded booster dubbed the “Zenit-2SB” rocket according to Alexey Kuznetsov, Head of the Roscosmos Press Office in an exclusive interveiw with Universe Today. Roscosmos is the Russian Federal Space Agency. Watch the awesome Mars mission animation in my article here. See Zenit Rocket rollout video and images below.
“The Phobos-Grunt automatic interplanetary station will launch on November 9, 2011 at 00:26 a.m. Moscow time [Nov. 8, 3:36 p.m. EST],” Kuznetsov confirmed to Universe Today.
The Roscosmos video and photos here show the Zenit rocket rollout starting from Building 45 where the final prelaunch processing was conducted late last week mounting the nose cone holding the Phobos-Grunt and companion Yinghuo-1 spacecraft to the upgraded Fregat upper stage.
If successful, Phobos Grunt will complete the Earth to Mars round trip voyage in some 34 months and the history making soil samples will plummet through the Earth’s atmosphere in August 2014 to waiting Russian military helicopters.
Following an 11 month interplanetary journey, the spaceship will enter Mars orbit and spend several months searching for a suitable landing site on Phobos. The probe is due to touchdown very gently on Phobos surface in Feb. 2013 using radar and precision thrusters accounting for the moon’s extremely weak gravity. After gathering samples with two robotic arms, the soil transferred to the Earth return capsule will take off in the ascent vehicle for the trip back home.
“The Zenit can launch spacecraft from Baikonur into LEO, MEO, HEO and elliptical near-Earth orbits (including GTO and geostationary orbit) and to escape trajectories as well,” Kuznetsov explained.
The Zenit-2SB booster with Phobos-Grunt and the piggybacked Yinghuo-1 Mars orbiter from China were rolled out horizontally by train on a railed transporter on Nov. 6, raised and erected vertically into launch position at Launch Pad 45 at Baikonur.
“The ‘Zenit-2SB’ rocket belongs to the rocket family using nontoxic fuel components – liquid oxygen and kerosene,” Kuznetsov elaborated. “The Zenit was manufactured by the A.M. Makarov Yuzhny Machine-Building Plant in Ukraine.”
“This “Zenit-2” rocket modification has significant improvements,” Kuznetsov told me. “The improvements include a new navigation system, a new generation on-board computer, and better performance by mass reduction and increase in thrust of the second stage engine.”
Likewise the upper stage was upgraded for the historic science flight.
“The Zenit’s Fregat upper stage has also been modified. The “Phobos Grunt” automatic interplanetary station cruise propulsion system was built onto the base of the “Fregat-SB” upper stage. Its main task is to insert the automatic interplanetary station onto the Mars flight path and accomplish the escape trajectory.”
“The “Phobos Grunt” automatic interplanetary station mission was constructed by the Russian Academy of Sciences Space Research Institute in Moscow and the spacecraft was manufactured by NPO Lavochkin in Moscow,” Kuznetsov told me.
The 12,000 kg Phobos-Grunt automatic interplanetary station is equipped with a powerful 50 kg payload of some 20 science instruments provided by a wide ranging team of international scientists and science institutions from Europe and Asia.
The audacious goal is to bring back up to 200 grams of pristine regolith and rocks that help unlock the mysteries of the origin and evolution of Phobos, Mars and the Solar System
Join me in wishing all the best to Roscosmos and NASA for this duo of fabulous Mars missions in 2011 that will help unravel our place in the Universe – like never before!
Phobo-Grunt, Russia’s first interplanetary mission in nearly two decades, has now been encapsulated inside the payload fairing and sealed to the payload adapter for mating to the upper stage of the Zenit booster rocket that will propel the probe to Mars orbit and carry out history’s first ever landing on the petite Martian moon Phobos and eventually return pristine samples to Earth for high powered scientific analysis.
“Phobos-Grunt will launch on November 9, 2011 at 00:16 a.m. Moscow time [Nov. 8 3:16 p.m. EST],” said Alexey Kuznetsov, Head of the Roscosmos Press Office in an exclusive interview with Universe Today. Roscosmos is the Russian Federal Space Agency, equivalent to NASA and ESA.
“The launch window extends until November 25.”
“At this moment we are preparing the “Zenit-2SB” launch vehicle, the cruise propulsion system and the “Phobos Grunt” automatic interplanetary station at the Baikonur Cosmodrome,” Kuznetzov told me. Phobos-Grunt translates as Phobos-Soil.
China’s first ever mission to Mars, the Yinghuo-1 micro-satellite, is also encased inside the nose cone and is tucked in a truss segment between the lander and interplanetary propulsion stage.
Yinghuo-1 follows closely on the heels of China’s stunning success in demonstrating the nation’s first ever docking in space between two Chinese spacecraft earlier this week on November 3.
Technicians completed the two vehicles enclosure inside the protective fairing at Building 31 at the Baikonur Cosmodrome and have now transported the spaceships to Building 41 where the payload is now being stacked to the upgraded “Fregat-SB” upper stage atop the Zenit-2SB rocket.
The payload fairing protects the Phobos-Grunt and Yinghuo-1 spacecraft during the first few minutes of flight from the intense frictional heating and buildup of aerodynamic pressures. After the rocket soars through the discernable atmosphere the fairing splits in half and is jettisoned and falls back to Earth.
The nose cone sports a beautiful mission logo painted on the side of the fairing along with the logos of various Russian and International partner agencies and science institutes.
Propellants have already been loaded aboard the cruise stage, Phobos-Grunt lander and Earth return vehicle.
“The Phobos Grunt automatic interplanetary station was built, prepared and tested at NPO Lavochkin [near Moscow]. They were also responsible for inspection of the devices, instruments and systems integration,” Kuzntezov explained.
“Significant improvements and modifications and been made to both the “Fregat-SB” upper stage and the “Zenit-2SB” rocket,” said Kuznetzov.
Phobos-Grunt will blastoff from Launch Pad 45 at Baikonur,
Following an 11 month journey, the spaceship will enter Mars orbit in October 2012, spend several months investigating Phobos and then land around February 2013.
The goal is to snatch up to 200 grams of soil and rock from Phobos and fly them back to Earth in a small capsule set to plummet through the atmosphere in August 2014.
ESA, the European Space Agency, is assisting Russia determine a safe landing site by targeting their Mars Express Orbiter to collect high resolution images of Phobos. Look at 2 D and 3 D images and an animation here.
The regolith samples will help teach volumes about the origin and evolution of Phobos, Mars and the Solar System. Scientists would be delighted if miniscule bits of Martian soil were mixed in with Phobos soil.
Phobos-Grunt , Earth’s next mission to Mars, is equipped with an advanced 50 kg payload array of some 20 science instruments.
NASA’s Curiosity Mars rover was also enclosed in her payload fairing a few days ago and is on course for liftoff on November 25.