Small Moon Makes Big Waves

A Cassini image of the moon Daphnis making waves in Saturn's rings. Credit: NASA/JPL/Space Science Institute

[/caption]

Saturn’s moon Daphnis is only 8 kilometers wide, but it has a fairly substantial effect on the A ring, making waves on the ring’s edge. According to Carolyn Porco on Twitter, this is the closest look yet at this mini, moving moon. Daphnis resides in the Keeler Gap, which is about 42 km wide, but the moon’s eccentric orbit causes its distance from Saturn to vary by almost 9 km, and its inclination causes it to move up and down by about 17 km. That may not sound like much, but within a small gap, this variability causes the waves seen in the edges of the gap. We’ve only known about Daphnis’ existence since 2005, one of the many discoveries made by the Cassini spacecraft, and this is the first image where Daphnis is more than just a little dot. Click on the image to get a closer look.

This image is hot off the presses, as it was taken on July 5, 2010, and sent to Earth just yesterday (July 6). See below for a great new look at Saturn’s ring.


New raw image of Saturn's rings. Credit: NASA/JPL/Space Science Institute

Click the image for a larger version, and prepare to be wowed!

Source: CICLOPS, with a hat tip to Stu Atkinson!

Titan + Dione = New Desktop

Titan and Dione as seen by Cassini. Credit: NASA/JPL/Space Science Institute

[/caption]

Another stunning image from the Cassini spacecraft, suitable for wallpaper on your desktop. Click image for larger version, or click here for a large 1.125 MB version.

This is Saturn’s moon Dione, in crisp detail, against a hazy, ghostly Titan. Simply stunning.

The “wispy” terrain on Dione is visible, and on Titan are hints of atmospheric banding around Titan’s north pole. This view looks toward the Saturn-facing hemisphere of Dione (1123 kilometers, 698 miles across) and Titan (5150 kilometers, 3200 miles across), and was taken on April 10, 2010.

No images available yet from Cassini’s extremely close flyby of Titan over the weekend where it buzzed the hazy moon at an altitude of just 880 kilometers (547 miles) above the surface.

That is 70 kilometers (43 miles) lower than it has ever been at Titan before. The reason for attempting such a close pass is to try and establish if Titan has a magnetic field of its own. But the Cassini team went through hours and hours of calculations for this close flyby, as Titan’s atmosphere applies torque to objects flying through it, much the same way the flow of air would wiggle your hand around if you stuck it outside a moving car window. According to the Cassini website, when engineers calculated the most stable and safe angle for the spacecraft to fly, they found it was almost the same as the angle that would enable Cassini to point its high-gain antenna to Earth. So they cocked the spacecraft a fraction of a degree, enabling them to track the spacecraft in real-time during its closest approach. They set up the trajectory with thrusters firing throughout the flyby to maintain pointing automatically.

The images and data gathered should be amazing, as if everything went as planned, the flyby ended with the ultra violet imaging spectrograph (UVIS) instrument capturing a stellar occultation outbound from Titan. We’ll keep you posted!

Source: CICLOPS, Carolyn Porco on Twitter

Latest Wall Art from Cassini

Rhea poses with Saturn's rings; Janus and Prometheus are off in the distance. Credit: NASA/JPL/Space Science Institute. Click for larger version

[/caption]

Oh, wow — what a gorgeous image! Just the latest from our resident artist in space, the Cassini spacecraft. Rhea, saturn’s second largest moon sits in front of the rings, joined by two smaller moons in the background. Rhea (1528 kilometers, 949 miles across) is in the center foreground. Janus (179 kilometers, 111 miles across) can be seen beyond the rings on the right of the image. Prometheus (86 kilometers, 53 miles across) is visible orbiting between the main rings and the thin F ring on the left of the image. Lit terrain seen on Rhea is on the area between that moon’s trailing hemisphere and anti-Saturn side. This view looks toward the northern, sunlit side of the rings from just above the ringplane.

If you like contrast images, there’s a great one below.

Saturn's rings contrast with the blackness of space. Credit: NASA/JPL/Space Science Institute

This image is a beautiful contrast between dark and light. Atlas can be seen just above the center of this Cassini spacecraft image as the moon orbits in the Roche Division between Saturn’s A ring and thin F ring.

Sources: CICLOPS, Cassini

Incredible Images of Enceladus From Cassini’s Latest Flyby

Titan, Saturn's rings and Enceladus. Credit: NASA/JPL/SSI

[/caption]

Wow. Cassini the artist has struck again, this time with amazing images from the close flyby of Enceladus that we wrote a preview about earlier this week. Cassini flew by Enceladus during the early hours of May 18 UTC, coming within about 435 kilometers (270 miles) of the moon’s surface. The raw images came in late last night, and in my inbox this morning was an email from Stuart Atkinson, (no relation, but great name) alerting me to the treasures. Stu himself has called this image “the new iconic image of the space age,” and Emily Lakdawalla of the Planetary Blog has called these images “some of the most amazing Cassini has captured yet.”

What you’re seeing here is hazy Titan, backlit by the Sun, with Saturn’s rings in the foreground– plus, at the way bottom is the limb of the night side of Enceladus’ south pole. Emily has created a flipped, annotated image (plus there’s more Enceladus jaw-droppers below:

nceladus, Titan, and the rings of Saturn (explained) Credit: NASA/JPL/SSI/annotated by Emily Lakdawa. Click for larger version.

The 'fountains' of Enceladus. Credit: NASA/JPL/SSI

Three huge “fountains” of Enceladus geysers are visible in this raw image taken by Cassini on May 18, 2010. The camera was pointing toward Enceladus at approximately 14,972 kilometers away, and the image was taken using the CL1 and CL2 filters. Emily, with her photo editing prowess, has created a movie from four different images as Cassini cruised closer to the moon.

Astro0 on UnmannedSpaceflight.com has put the two different images together to create a collage of what it would have looked like if the plumes were visible in the image with Titan. Gorgeous! Plus, here’s a color version Astro0 created.

Plus there’s this very interesting raw image from Cassini:

Raw image from Cassini on May 18. Credit: NASA/JPL/SSI

Explanations anyone?

Cassini will be flying by Titan in the early hours of May 20 UTC, coming within 1,400 kilometers (750 miles) of the surface. Although Cassini will primarily be doing radio science during this pass to detect subtle variations in the gravitational tug on the spacecraft by Titan, hopefully we’ll see some new visible light images of Titan, as well.

For more images from Cassini, see the Cassini website, and the section for the raw images.

Incredible! Cassini as Houdini Cuts Titan in Half

Saturn's rings, made dark in part as the planet casts its shadow across them, cut a striking figure before Saturn's largest moon, Titan. Credit: NASA/JPL/Space Science Institute

[/caption]

There’s nothing up the sleeves of the Cassini imaging team in this image; it is real! Is the moon Titan being cut in half by Saturn’s rings? What is actually happening here is that the middle part of the rings are made dark as Saturn casts its shadow across them. Cassini was just in the right place at the right time, making it appear as though Titan is being sliced in half! The night side of the planet is to the left, out of the frame of the image. Illuminated Titan can be seen above, below and through gaps in the rings. Click the image for a larger version.

As an added benefit in this shot, Mimas (396 kilometers, 246 miles across) is near the bottom of the image, and Atlas (30 kilometers, 19 miles across) can barely be detected near the thin F ring just above the center right of the image. Lit terrain seen here is the area between the leading hemisphere and Saturn-facing side of Titan (5,150 kilometers, 3,200 miles across). This view looks toward the northern, sunlit side of the rings from just above the ringplane.

Below are a few more magical images from Cassini:

Here the moon Enceladus appears strung along a wispy ring of Saturn, likely the G ring. Look close and Enceladus’ plumes are visible, too.

Enceladus and a wispy ring. Credit: NASA/JPL/Space Science Institute
Pandora and Epimetheus sit on Saturn's rings. Credit: NASA/JPL/Space Science Institute

Two of Saturn’s small moons appear to be sitting on Satun’s thin F ring in this image.

From the CICLOPS website:

Pandora (81 kilometers, 50 miles across) is on the left, and Epimetheus (113 kilometers, 70 miles across) is on the right. This view looks toward the northern, sunlit side of the rings from just above the ringplane. Both moons are closer to Cassini than the rings are. Pandora is slightly closer to Cassini than Epimetheus here.

The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Nov. 23, 2009. The view was acquired at a distance of approximately 1.3 million kilometers (808,000 miles) from Pandora and Epimetheus. Image scale is 8 kilometers (5 miles) per pixel.

For more great images from Cassini (which I contend is actually an artist and not a magician!) go to the CICLOPS website and NASA’s Cassini website.

Enceladus is Blowing Bubbles

Artist's impression of the Cassini spacecraft making a close pass by Saturn's inner moon Enceladus to study plumes from geysers that erupt from giant fissures in the moon's southern polar region. Copyright 2008 Karl Kofoed/NASA. Click for full size version.

[/caption]

Observations from two instruments on the Cassini spacecraft shows the moon Enceladus leaves a complex pattern of ripples and bubbles in its wake as it orbit Saturn. The ringed planet’s magnetosphere is filled with electrically charged particles (plasma) originating from both the planet and its moons, and as Enceladus plows through the plasma “spiky” features form that represent bubbles of low energy particles, said Sheila Kanani who led a team of scientists from University College, London who discovered the phenomenon.

Cassini has made nine flybys of the icy, geyser-filled moon Enceladus (Saturn’s sixth-largest moon) since 2005. The closest of these have taken the spacecraft’s suite of instruments just 25 km from Enceladus’s surface, which scientists believe conceals a saline ocean. Heated vents at the south pole of the moon release a plume of material, consisting mainly of icy grains and water vapour, into space.

Measurements from the Cassini Plasma Spectrometer (CAPS) and the Magnetospheric IMaging Instrument (MIMI) show that both the moon and its plume are continuously soaking up the plasma, which rushes past at around 30 kilometers per second, leaving a cavity downstream. In addition, the most energetic particles which zoom up and down Saturn’s magnetic field lines are swept up, leaving a much larger void in the high energy plasma. Material from Enceladus, both dust and gas, is also being charged and forming new plasma.

The mysterious spiky features in the CAPS data shows a complex picture of readjustment downstream from Enceladus.

“Eventually the plasma closes the gap downstream from Enceladus but our observations show that this isn’t happening in a smooth, orderly fashion. We are seeing spiky features in the plasma that last between a few tens of seconds and a minute or two. We think that these might represent bubbles of low energy particles formed as the plasma fills the gap from different directions,” said Kanani. Since Cassini arrived at Saturn, it has been building up a picture of the vital and unexpected role that Enceladus plays in Saturn’s magnetosphere.

“Enceladus is the source of most of the plasma in Saturn’s magnetosphere, with ionised water and oxygen originating from the vents forming a big torus of plasma that surrounds Saturn. We may see these spiky features in the wake of Saturn’s other moons as they interact with the plasma but, to date, we have only studied Enceladus in sufficient detail,” said Kanani.

She presented her results at the Royal Astronomical Society’s National Astronomy Meeting in Glasgow, Scotland this week.

Source: RAS NAM

News Flash: Cassini Captures First Movie of Lightning on Saturn

NASA’s Cassini spacecraft has captured images of lightning on Saturn, allowing the scientists to create the first movie showing lightning flashing on another planet. “Ever since the beginning of the Cassini mission, a major goal of the Imaging Team has been the detection of Saturnian lightning,” said team leader Carolyn Porco in an email. Porco said the ability to capture the lightning was a direct result of the dimming of the ringshine on the night side of the planet during last year’s Saturn equinox. “And these flashes have been shown to be coincident in time with the emission of powerful electrostatic discharges intercepted by the Cassini Radio and Plasma Wave experiment,” Porco added.

The sound in the video approximates the electrostatic discharge signals detected by the instrument.
Continue reading “News Flash: Cassini Captures First Movie of Lightning on Saturn”

Cassini the Artist: Shadows, Ringshine, Double Crescent Moons

Cassini art. Credit: NASA/JPL/Space Science Institute

[/caption]
I often ponder whether the Cassini spacecraft is a better scientist or artist. I found three recent images from Cassini that definitely give the nod to artist, but surely there’s lots of great science here as well. In this image, Saturn casts its shadow on the rings, but it also shows how the rings reflect sunlight onto the dark side of the planet. Here Saturn appears dimly illuminated by this ringshine. This view looks toward the southern, unilluminated side of the rings from about 10 degrees below the ringplane, and was taken on Jan. 2, 2010 when Cassini was about 2.3 million kilometers (1.4 million miles) from Saturn. Below: beautiful moons.

Two moons, with Saturn's rings. Image Credit: NASA/JPL/Space Science Institute

While this image is stunningly gorgeous, perhaps the most amazing thing is that it was snapped by Cassini’s cameras just yesterday (March 15, 2010) and beamed back to Earth today! This is a raw, uncalibrated image and the only details posted about it is that the camera was pointing toward Tethys at approximately 2,410,546 kilometers away. Can anyone guess what the second moon is?

Double crescent moons. Credit: NASA/JPL/Space Science Institute.

Another beauty, Dione and Titan make a smiling pair of crescent moons. This image was taken on March 12, 2010 and received on Earth March 13, 2010. The camera was pointing toward Dione at approximately 2,211,699 kilometers away.

For more great images see the Cassini website, or the CICLOPS website

More Jaw-Droppers from Cassini

The small moon Janus is almost hidden between the planet's rings and the larger moon Rhea.Credit: NASA/JPL/Space Science Institute

[/caption]
The Cassini mission keeps churning out the hits, and here’s a collection of some of the latest stunning images released by the CICLOPS (Cassini Imaging for Central Operations) team. Above, the small moon Janus is almost hidden between the planet’s rings and the larger moon Rhea. The northern part of Janus can be seen peeking above the rings in this image of a “mutual event” where Janus (179 kilometers, 111 miles across) moved past Rhea (1,528 kilometers, 949 miles across). Mutual event observations such as this one, in which one moon passes close to or in front of another, help scientists refine their understanding of the orbits of Saturn’s moons. Click here to see a movie of the event.

Saturn's potato-shaped moon Prometheus is rendered in three dimensions in this close-up from Cassini. Credit: NASA/JPL/Space Science Institute

Grab your 3-D glasses for this one! This 3-D view is a close-up of Saturn’s potato-shaped moon Prometheus, showing the moon’s leading hemisphere. The image was created by combining two different black and white images that were taken from slightly different viewing angles. The images are combined so that the viewer’s left and right eye, respectively and separately, see a left and right image of the black and white stereo pair when viewed through red-blue glasses.

Saturn and Enceladus. Credit: NASA/JPL/Space Science Institute

At first glance, you might think this scene simply shows a bright chunk of Saturn, along with a crescent of the moon Enceladus at top right. But a closer look at the center of the image reveals a dramatic surprise: plumes of water ice spew out from the famed fractures known as “tiger stripes” near the south pole of the moon. And one other surprise: Although it may appear that Enceladus (504 kilometers, 313 miles across) is in the background here, the moon actually is closer to the spacecraft than Saturn is. This view looks most directly toward the side of Enceladus that faces away from Saturn. North on Enceladus is up and rotated 1 degree to the left.

For more great images, check out the CICLOPS website, or NASA’s Cassini website.

On New Year’s Eve, Cassini Will Stare at the Death Star’s Superlaser

Saturn's moon Mimas. Image credit: NASA/JPL/SSI

OK, it’s actually the Herschel crater on Mimas, a smallish moon of Saturn (and it’s the eve of Chinese New Year, February 13th, 2010), but it’s a cool headline, don’t you think?

Cassini will be very busy that day, which begins with a rare sunrise – the Sun goes behind Saturn (from Cassini’s perspective) – followed by a rare blackout, as the Earth goes behind Saturn. Then there’s three “Forward shields up!” moments, as Cassini tries to dodge a Klingon missile flies through regions of “increased ring particle concentration”, a couple of distant flybys (Epimetheus, Janus; ~100,000 km each), a ring-plane crossing, another “Shields up!” moment, and a 9,500 km close approach to Death Star Mimas. And the day ends with a distant (112,000 km) flyby of Tethys. Whew!

“Mimas bears the mark of a violent, giant impact from the past – the 140-kilometer-wide Herschel Crater – and scientists hope the encounter will help them explain why the moon was not blown to smithereens when the impact happened. They will also be trying to count smaller dings inside the basin of Herschel Crater so they can better estimate its age,” JPL’s Jia-Rui C. Cook said, “The Mimas flyby involves a significant amount of skill because the spacecraft will be passing through a dusty region to get there. Mission managers have planned for the Cassini spacecraft to lead with its high-gain antenna to provide a barrier of protection.”

To date, the best images of Mimas – and its Herschel crater – were obtained on August 2nd, 2005, during Cassin’s distant flyby.

Mimas is an inner moon of Saturn that averages 396 kilometers in diameter. The diameter of Herschel Crater is about one-third that of the entire moon. The walls of the crater are about 5 kilometers high, and parts of the floor are approximately 10 kilometers deep.

Map of Mimas (Credit: NASA/JPL/Space Science Institute )

Mimas would have beaten another of Saturn’s moons, Rhea, for the record of “most battered moon”, but for the fact that it was warmer – and so softer – for longer than Rhea (because it’s closer to Saturn), so many of the earliest craters were more degraded.

Have you heard of the “Mimas paradox”? Mimas’ orbit is more eccentric than Enceladus’, and is in resonance with Dione and Enceladus – so it should be heated, tidally, more than Enceladus – but its surface has not, apparently, changed for a very long time (while geysers on Enceladus show that it is still quite active). Further, the two moons seem to have similar compositions.

On this flyby, Cassini’s composite infrared spectrometer will be working to determine the thermal signature of the moon, and other instruments will be making measurements to learn more about the surface composition. Perhaps that will shed some light on the Mimas paradox.

Sources: Cassini Set to Do Retinal Scan of Saturnian Eyeball, Mimas (NASA/JPL)