This is the Spot Where ESA’s Schiaparelli Crashed Into Mars

Credit: HiRISE/LPL/University of Arizona

On October 19th, 2016, the NASA/ESA ExoMars mission arrived at the Red Planet to begin its study of the surface and atmosphere. While the Trace Gas Orbiter (TGO) successfully established orbit around Mars, the Schiaparelli Lander crashed on its way to the surface. At the time, the Mars Reconnaissance Orbiter (MRO) acquired images of the crash site using its High Resolution Imaging Science Experiment (HiRISE) camera.

In March and December of 2019, the HiRISE camera captured images of this region once again to see what the crash site looked like roughly three years later. The two images show the impact crater that resulted from the crash, which was partially-obscured by dust clouds created by the recent planet-wide dust storm. This storm lasted throughout the summer of 2019 and coincided with Spring in Mars’ northern hemisphere.

Continue reading “This is the Spot Where ESA’s Schiaparelli Crashed Into Mars”

Weekly Space Hangout – November 25, 2016: Dean Regas and his “Facts from Space”

Host: Fraser Cain (@fcain)

Special Guest:
Dean Regas has been the Astronomer for the Cincinnati Observatory since 2000. He is the co-host of Star Gazers (airing on PBS stations around the world), a Contributing Editor to Sky and Telescope Magazine, and a contributor to Astronomy Magazine. Dean is the author of the new book, “Facts from Space! From Super-Secret Spacecraft to Volcanoes in Outer Space, Extraterrestrial Facts to Blow Your Mind!”

Guests:

Paul M. Sutter (pmsutter.com / @PaulMattSutter)
Yoav Landsman (@MasaCritit)

Their stories this week:
Cause of Schiaparelli’s crash: 1 second glitch

Let me tell you what I think of the EM Drive

We use a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

If you would like to sign up for the AstronomyCast Solar Eclipse Escape, where you can meet Fraser and Pamela, plus WSH Crew and other fans, visit our site linked above and sign up!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Universe Today, or the Universe Today YouTube page<

Schiaparelli’s One Second Of Terror

Artist's impression of the ExoMars Schiaparelli lander passing into Mars' atmosphere. Credit: ESA

The European Space Agency (ESA) and Roscomos (the Russian federal space agency) had high hopes for the Schiaparelli lander, which crashed on the surface of Mars on October 19th. As part of the ExoMars program, its purpose was to test the technologies that will be used to deploy a rover to the Red Planet in 2020.

However, investigators are making progress towards determining what went wrong during the lander’s descent. Based on their most recent findings, they concluded that an anomaly took place with an on-board instrument that led to the lander detaching from its parachute and backshell prematurely. This ultimately caused it to land hard and be destroyed.

According to investigators, the data retrieved from the lander indicates that for the most part, Schiaparelli was functioning normally before it crashed. This included the parachute deploying once it had reached an altitude of 12 km and achieved a speed of 1730 km/h. When it reached an altitude of 7.8 km, the lander’s heatshield was released, and it radar altimeter provided accurate data to the lander’s on-board guidance, navigation and control system.

Schiaparelli lander descent sequence. Image: ESA/ATG medialab
Schiaparelli lander descent sequence. According to their investigation, the ESA has determined that an error led the parachute and backshell to be jettisoned prematurely, causing the lander to crash. Credit: ESA/ATG medialab

All of this happened according to plan and did not contribute to the fatal crash. However, an anomaly then took place with the Inertial Measurement Unit (IMU), which is there to measure the rotation rates of the vehicle. Apparently, the IMU experienced saturation shortly after the parachute was deployed, causing it to persist for one second longer than required.

This error was then fed to the navigation system, which caused it to generate an estimate altitude that was below Mars’ actual ground level. In essence, the lander thought it was closer to the ground than it actually was. As such, the the parachute and backshell of the Entry and Descent Module (EDM) were jettisoned and the braking thrusters fired prematurely – at an altitude of 3.7 km instead of 1.2 km, as planned.

This briefest of errors caused the lander to free-fall for one second longer than it was supposed to, causing it to land hard and be destroyed. The investigators have confirmed this assessment using multiple computer simulations, all of which indicate that the IMU error was responsible. However, this is still a tentative conclusion that awaits final confirmation from the agency.

Schiaparelli on Mars. Credit: ESA/ATG medialab
Artist’s impression of the Schiaparelli lander on Mars. Credit: ESA/ATG medialab

As David Parker, the ESA’s Director of Human Spaceflight and Robotic Exploration, said on on Wednesday, Nov. 23rd in a ESA press release:

“This is still a very preliminary conclusion of our technical investigations. The full picture will be provided in early 2017 by the future report of an external independent inquiry board, which is now being set up, as requested by ESA’s Director General, under the chairmanship of ESA’s Inspector General. But we will have learned much from Schiaparelli that will directly contribute to the second ExoMars mission being developed with our international partners for launch in 2020.”

In other words, this accident has not deterred the ESA and Roscosmos from pursuing the next stage in the ExoMars program – which is the deployment of the ExoMars rover in 2020. When it reaches Mars in 2021, the rover will be capable of navigating autonomously across the surface, using a on-board laboratory suite to search for signs of biological life, both past and present.

In the meantime, data retrieved from Schiaparelli’s other instruments is still being analyzed, as well as information from orbiters that observed the lander’s descent. It is hoped that this will shed further light on the accident, as well as salvage something from the mission. The Trace Gas Orbiter is also starting its first series of observations since it made its arrival in orbit on Oct. 19th, and will reach its operational orbit towards the end of 2017.

Further Reading: ESA

Best Photos Yet of the Mars Lander’s Demise

Credit: Schiaparelli lander protected by its heat shield as it enters the Martian atmosphere. Credit: ESA

A closeup of the dark, approximately circular crater about 7.9 feet (2.4 meters) in diameter marking the crash of the Schiaparelli test lander on Mars. The photo was taken on October 25 by NASA's Mars Reconnaissance Lander (MRO). Credit:
A closeup of the dark, approximately circular crater about 7.9 feet (2.4 meters) in diameter that marks the crash of the Schiaparelli test lander on Mars. The new, higher-resolution photo was taken on October 25 by NASA’s Mars Reconnaissance Lander (MRO). A hint of an upraised rim is visible along the crater’s lower left side. The tiny white specks may be pieces of the lander that broke away on impact. The odd dark curving line has yet to be explained.  Credit: NASA/JPL-Caltech

What’s the most powerful telescope for observing Mars? A telephoto lens on the HiRise camera on the Mars Reconnaissance Orbiter that can resolve features as small as 3 feet (1-meter) across. NASA used that camera to provide new details of the scene near the Martian equator where Europe’s Schiaparelli test lander crashed to the surface last week.

The Schiaparelli test lander was protected by its heat shield as it descended through the Martian atmosphere at high speed. Credit: ESA
The Schiaparelli test lander was protected by its heat shield as it descended through the Martian atmosphere at high speed. Credit: ESA

During an October 25 imaging run HiRise photographed three locations where hardware from the lander hit the ground all within about 0.9 mile (1.5 kilometers) of each other. The dark crater in the photo above is what you’d expect if a 660-pound object (lander) slammed into dry soil at more than 180 miles an hour (300 km/h). The crater’s about a foot and a half (half a meter) deep and haloed by dark rays of fresh Martian soil excavated by the impact.

But what about that long dark arc northeast of the crater?  Could it have been created by a piece of hardware jettisoned when Schiaparelli’s propellant tank exploded? The rays are curious too. The European Space Agency says that the lander fell almost vertically when the thrusters cut out, yet the asymmetrical nature of the streaks — much longer to the west than east — would seem to indicate an oblique impact. It’s possible, according to the agency, that the hydrazine propellant tanks in the module exploded preferentially in one direction upon impact, throwing debris from the planet’s surface in the direction of the blast, but more analysis is needed. Additional white pixels in the image could be lander pieces or just noise.

This Oct. 25, 2016, image shows the area where the European Space Agency's Schiaparelli test lander reached the surface of Mars, with magnified insets of three sites where components of the spacecraft hit the ground. It is the first view of the site from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter taken after the Oct. 19, 2016, landing event and our highest resolution of the scene to date. Annotations by the author. Click for a full-resolution image. Credit: NASA/JPL-Caltech
This Oct. 25, 2016, image shows the area where the European Space Agency’s Schiaparelli test lander reached the surface of Mars, with magnified insets of three sites where components of the spacecraft hit the ground. It is the first view of the site from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter taken after the Oct. 19, 2016, landing event and our highest resolution of the scene to date. Click for a full-resolution image. Credit: NASA/JPL-Caltech

In the wider shot, several other pieces of lander-related flotsam are visible. About 0.8 mile (1.4 km) eastward, you can see the tiny crater dug out when the heat shield smacked the ground. Several bright spots might be pieces of its shiny insulation. About 0.6 mile (0.9 kilometer) south of the lander impact site, two features side-by-side are thought to be the spacecraft’s parachute and the back shell.  NASA plans additional images to be taken from different angle to help better interpret what we see.

The last happy scene for the lander when it still dangled from its chute before dropping and slamming into the surface. Credit: ESA
Schiaparelli dangles from its parachute in this artist’s view. A software error caused the chute to deploy too soon. Credit: ESA

The test lander is part of the European Space Agency’s ExoMars 2016 mission, which placed the Trace Gas Orbiter into orbit around Mars on Oct. 19. The orbiter will investigate the atmosphere and surface of Mars in search of organic molecules and provide relay communications capability for landers and rovers on Mars. Science studies won’t begin until the spacecraft trims its orbit to a 248-mile-high circle through aerobraking, which is expected to take about 13 months.

Everything started out well with Schiaparelli, which successfully transmitted data back to Earth during its descent through the atmosphere, the reason we know that the heat shield separated and the parachute deployed as planned. Unfortunately, the chute and its protective back shell ejected ahead of time followed by a premature firing of the thrusters. And instead of burning for the planned 30 seconds, the rockets shut off after only 3. Why? Scientists believe a software error told the lander it was much closer to the ground than it really was, tripping the final landing sequence too early.

Landing on Mars has never been easy. We’ve done flybys, attempted to orbit the planet or land on its surface 44 times. 15 of those have been landing attempts, with 7 successes: Vikings 1 and 2, Mars Pathfinder, the Spirit and Opportunity rovers, the Phoenix Lander and Curiosity rover. We’ll be generous and call it 8 if you count the 1971 landing of Mars 3 by the then-Soviet Union. It reached the surface safely but shut down after just 20 seconds.

Mars can be harsh, but it forces us to get smart.

**** Want to learn more about Mars and how to track it across the sky? My new book, Night Sky with the Naked Eye, which will be published on Nov. 8, covers planets, satellites, the aurora and much more. You can pre-order it right now at these online stores. Just click an icon to go to the site of your choice – Amazon, Barnes & Noble or Indiebound. It’s currently available at the first two outlets for a very nice discount.

Night Sky book cover Amazon anno
Night Sky book cover BN

Night Sky book cover Indie

What is the Mars Curse?

What is the Mars Curse?
What is the Mars Curse?


Last week, ESA’s Schiaparelli lander smashed onto the surface of Mars. Apparently its descent thrusters shut off early, and instead of gently landing on the surface, it hit hard, going 300 km/h, creating a 15-meter crater on the surface of Mars.

Fortunately, the orbiter part of ExoMars mission made it safely to Mars, and will now start gathering data about the presence of methane in the Martian atmosphere. If everything goes well, this might give us compelling evidence there’s active life on Mars, right now.

It’s a shame that the lander portion of the mission crashed on the surface of Mars, but it’s certainly not surprising. In fact, so many spacecraft have gone to the galactic graveyard trying to reach Mars that normally rational scientists turn downright superstitious about the place. They call it the Mars Curse, or the Great Galactic Ghoul.

Mars eats spacecraft for breakfast. It’s not picky. It’ll eat orbiters, landers, even gentle and harmless flybys. Sometimes it kills them before they’ve even left Earth orbit.

NASA’s Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft celebrated one Earth year in orbit around Mars on Sept. 21, 2015. MAVEN was launched to Mars on Nov. 18, 2013 from Cape Canaveral Air Force Station in Florida and successfully entered Mars’ orbit on Sept. 21, 2014. Credit: NASA
NASA’s Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft celebrated one Earth year in orbit around Mars on Sept. 21, 2015. MAVEN was launched to Mars on Nov. 18, 2013 from Cape Canaveral Air Force Station in Florida and successfully entered Mars’ orbit on Sept. 21, 2014. Credit: NASA

At the time I’m writing this article in late October, 2016, Earthlings have sent a total of 55 robotic missions to Mars. Did you realize we’ve tried to hurl that much computing metal towards the Red Planet? 11 flybys, 23 orbiters, 15 landers and 6 rovers.

How’s our average? Terrible. Of all these spacecraft, only 53% have arrived safe and sound at Mars, to carry out their scientific mission. Half of all missions have failed.

Let me give you a bunch of examples.

In the early 1960s, the Soviets tried to capture the space exploration high ground to send missions to Mars. They started with the Mars 1M probes. They tried launching two of them in 1960, but neither even made it to space. Another in 1962 was destroyed too.

They got close with Mars 1 in 1962, but it failed before it reached the planet, and Mars 2MV didn’t even leave the Earth’s orbit.

Five failures, one after the other, that must have been heartbreaking. Then the Americans took a crack at it with Mariner 3, but it didn’t get into the right trajectory to reach Mars.

Mariner IV encounter with Mars. Image credit: NASA/JPL
Mariner IV encounter with Mars. Image credit: NASA/JPL

Finally, in 1964 the first attempt to reach Mars was successful with Mariner 4. We got a handful of blurry images from a brief flyby.

For the next decade, both the Soviets and Americans threw all kinds of hapless robots on a collision course with Mars, both orbiters and landers. There were a few successes, like Mariner 6 and 7, and Mariner 9 which went into orbit for the first time in 1971. But mostly, it was failure. The Soviets suffered 10 missions that either partially or fully failed. There were a couple of orbiters that made it safely to the Red Planet, but their lander payloads were destroyed. That sounds familiar.

Now, don’t feel too bad about the Soviets. While they were struggling to get to Mars, they were having wild success with their Venera program, orbiting and eventually landing on the surface of Venus. They even sent a few pictures back.

Finally, the Americans saw their greatest success in Mars exploration: the Viking Missions. Viking 1 and Viking 2 both consisted of an orbiter/lander combination, and both spacecraft were a complete success.

View of Mars from Viking 2 lander, September 1976. (NASA/JPL-Caltech)
View of Mars from Viking 2 lander, September 1976. (NASA/JPL-Caltech)

Was the Mars Curse over? Not even a little bit. During the 1990s, the Russians lost a mission, the Japanese lost a mission, and the Americans lost 3, including the Mars Observer, Mars Climate Orbiter and the Mars Polar Lander.

There were some great successes, though, like the Mars Global Surveyor and the Mars Pathfinder. You know, the one with the Sojourner Rover that’s going to save Mark Watney?

The 2000s have been good. Every single American mission has been successful, including Spirit and Opportunity, Curiosity, the Mars Reconnaissance Orbiter, and others.

But the Mars Curse just won’t leave the Europeans alone. It consumed the Russian Fobos-Grunt mission, the Beagle 2 Lander, and now, poor Schiaparelli. Of the 20 missions to Mars sent by European countries, only 4 have had partial successes, with their orbiters surviving, while their landers or rovers were smashed.

Is there something to this curse? Is there a Galactic Ghoul at Mars waiting to consume any spacecraft that dare to venture in its direction?

ExoMars 2016 lifted off on a Proton-M rocket from Baikonur, Kazakhstan at 09:31 GMT on 14 March 2016. Copyright ESA–Stephane Corvaja, 2016
ExoMars 2016 lifted off on a Proton-M rocket from Baikonur, Kazakhstan at 09:31 GMT on 14 March 2016. Copyright ESA–Stephane Corvaja, 2016

Flying to Mars is tricky business, and it starts with just getting off Earth. The escape velocity you need to get into low-Earth orbit is about 7.8 km/s. But if you want to go straight to Mars, you need to be going 11.3 km/s. Which means you might want a bigger rocket, more fuel, going faster, with more stages. It’s a more complicated and dangerous affair.

Your spacecraft needs to spend many months in interplanetary space, exposed to the solar winds and cosmic radiation.

Arriving at Mars is harder too. The atmosphere is very thin for aerobraking. If you’re looking to go into orbit, you need to get the trajectory exactly right or crash onto the planet or skip off and out into deep space.

And if you’re actually trying to land on Mars, it’s incredibly difficult. The atmosphere isn’t thin enough to use heatshields and parachutes like you can on Earth. And it’s too thick to let you just land with retro-rockets like they did on the Moon.

Schiaparelli lander descent sequence. Image: ESA/ATG medialab
Schiaparelli lander’s planned descent sequence. Image: ESA/ATG medialab

Landers need a combination of retro-rockets, parachutes, aerobraking and even airbags to make the landing. If any one of these systems fails, the spacecraft is destroyed, just like Schiaparelli.

If I was in charge of planning a human mission to Mars, I would never forget that half of all spacecraft ever sent to the Red Planet failed. The Galactic Ghoul has never tasted human flesh before. Let’s put off that first meal for as long as we can.

Schiaparelli is Gone. Smashed on the surface of Mars

Mars Reconnaissance Orbiter view of Schiaparelli landing site before and after the lander arrived. The images have a resolution of 6 meters per pixel and shows two new features on the surface when compared to an image from the same camera taken in May this year. The black dot appears to be the lander impact site and the smaller white dot below the paw-shaped cluster of craters, the parachute. Credit: NASA

Mars Reconnaissance Orbiter view of Schiaparelli landing site before and after the lander arrived. The images have a resolution of 6 meters per pixel and shows two new features on the surface when compared to an image from the same camera taken in May this year. The black dot appears to be the lander impact site and the smaller white dot below the paw-shaped cluster of craters, the parachute. Credit: NASA
Mars Reconnaissance Orbiter view of Schiaparelli landing site before and after the lander arrived. The images have a resolution of 6 meters per pixel and shows two new features on the surface when compared to an image from the same camera taken in May this year. The black dot appears to be the lander impact site and the smaller white dot below the paw-shaped cluster of craters, the parachute. Credit: NASA

Instead of a controlled descent to the surface using its thrusters, ESA’s Schiaparelli lander hit the ground hard and may very well have exploded on impact.  NASA’s Mars Reconnaissance Orbiter then-and-now photos of the landing site have identified new markings on the surface of the Red Planet that are believed connected to the ill-fated lander.

Schiaparelli entered the martian atmosphere at 10:42 a.m. EDT (14:42 GMT) on October 19 and began a 6-minute descent to the surface, but contact was lost shortly before expected touchdown seconds after the parachute and back cover were discarded. One day later, the Mars Reconnaissance Orbiter took photos of the expected touchdown site as part of a planned imaging run.

The landing site is shown within the Schiaparelli landing ellipse (top) along with before and after images below. Copyright Main image: NASA/JPL-Caltech/MSSS, Arizona State University; inserts: NASA/JPL-Caltech/MSSS
The landing site is shown within the Schiaparelli landing ellipse (top) along with before and after images below. Copyright Main image: NASA/JPL-Caltech/MSSS, Arizona State University; inserts: NASA/JPL-Caltech/MSSS

One of the features is bright and can be associated with the 39-foot-wide (12-meter) diameter parachute used in the second stage of Schiaparelli’s descent. The parachute and the associated back shield were released from Schiaparelli prior to the final phase, during which its nine thrusters should have slowed it to a standstill just above the surface.

The other new feature is a fuzzy dark patch or crater roughly 50 x 130 feet (15 x 40 meters) across and about 0.6 miles (1 km) north of the parachute. It’s believed to be the impact crater created by the Schiaparelli module following a much longer free fall than planned after the thrusters were switched off prematurely.

Artist's concept of Schiaparelli deploying its parachute. The parachute may also have played a role in the crash. It may have deployed too soon, causing the thrusters to fire up too soon and run out of fuel. Or the thrusters may have simply cut out after firing. Credit: ESA
Artist’s concept of Schiaparelli deploying its parachute. The parachute may also have played a role in the crash. It may have deployed too soon, causing the thrusters to fire too soon. The thrusters may also have simply cut out too soon after firing. Credit: ESA

Mission control estimates that Schiaparelli dropped from between 1.2 and 2.5 miles (2 and 4 km) altitude, striking the Martian surface at more than 186 miles an hour (300 km/h). The dark spot is either disturbed surface material or it could also be due to the lander exploding on impact, since its thruster propellant tanks were likely still full. ESA cautions that these findings are still preliminary.

Something went wrong with Schiaparelli's one or more sets of thrusters during the descent. Credit: ESA
Something went wrong with Schiaparelli’s one or more sets of thrusters during the descent, causing the lander to crash on the surface at high speed. Credit: ESA

Since the module’s descent trajectory was observed from three different locations, the teams are confident that they will be able to reconstruct the chain of events with great accuracy. Exactly what happened to cause the thrusters to shut down prematurely isn’t yet known.

Watch Live: ExoMars Arrival and Landing

Artist's view of the Schiaparelli lander descending to Mars on October 19. Credit: ESA

After a seven month flight, ESA’s ExoMars mission arrives at the Red Planet today, October 19. You can watch live here as the Trace Gas Orbiter (TGO) and Schiaparelli lander make their historic entry into orbit and landing.

The action starts at 9:09am ET (1:09pm GMT) when TGO fires its main engines for 134 minutes for its Mars Orbit Insertion. That burn should put the orbiter in a highly elliptical orbit which will be refined over the next few months.

Then, at 10:42am EDT (2:42pm GMT), the Schiaparelli lander will begin its six-minute entry, descent and landing through Mars’ atmosphere, coming at about 13,000 mph (21,000 kph). The aeroshell will slow the craft enough for a parachute to deploy, and at about 1 km above the surface, three hydrazine thrusters will ignite and slow Schiaparelli until it is about 6.5 feet (2 meters) above the surface. The lander will then be dropped to the Martian surface.

ESA has put together a video of what a successful landing looks like:

The ExoMars 2016 mission is a collaboration between the European Space Agency (ESA) and Roscosmos. ExoMars will continue the search for biological and geologic activity on Mars, which may have had a much warmer, wetter climate in the past. The TGO orbiter is equipped with a payload of four science instruments supplied by European and Russian scientists that will investigate the source and precisely measure the quantity of the methane and other trace gases.

Artist's impression depicting the separation of the ExoMars 2016 entry, descent and landing demonstrator module, named Schiaparelli, from the Trace Gas Orbiter, and heading for Mars. Credit: ESA/ATG medialab
Artist’s impression depicting the separation of the ExoMars 2016 entry, descent and landing demonstrator module, named Schiaparelli, from the Trace Gas Orbiter, and heading for Mars. Credit: ESA/ATG medialab

Methane is interesting because it can be produced by biology, volcanoes, natural gas and hydrothermal activity. TGO will investigate how methane is produced on Mars, as well as make follow up on measurements from NASA’s Curiosity rover and other instruments and telescopes that have detected methane on Mars.

The 2016 lander will carry an international suite of science instruments and test European entry, descent and landing (EDL) technologies for the 2nd ExoMars mission, which will bring an advanced lander to Mars in 2018.

The battery powered Schiaparelli lander is expected to operate for up to eight days until the battery is depleted.

Schiaparelli lander descent sequence. Image: ESA/ATG medialab
Schiaparelli lander descent sequence. Image: ESA/ATG medialab

Bold Euro-Russian Expedition Blasts Free of Earth En Route to Mars in Search of Life’s Indicators

Artists concept of ExoMars spacecraft separation from Breeze M fourth stage. Credit: ESA

Artists concept of ExoMars spacecraft separation from Breeze M fourth stage. Credit: ESA
Artists concept of ExoMars spacecraft separation from Breeze M fourth stage after launch atop Proton rocket on March 14, 2016. Credit: ESA

The cooperative Euro-Russian ExoMars 2016 expedition is now en route to the Red Planet after successfully firing its upper stage booster one final time on Monday evening, March 15, to blast free of the Earth’s gravitational tug and begin a 500 million kilometer interplanetary journey in a bold search of indications of life emanating from potential Martian microbes.

The vehicle is in “good health” with the solar panels unfurled, generating power and on course for the 500 Million kilometer (300 million mile) journey to Mars.

“Acquisition of signal confirmed. We have a mission to Mars!” announced Mission Control from the European Space Agency.

The joint European/Russian ExoMars spacecraft successfully blasted off from the Baikonur Cosmodrome in Kazakhstan atop a Russian Proton-M rocket at 5:31:42 a.m. EDT (0931:42 GMT), Monday, March 14, with the goal of searching for possible signatures of life in the form of trace amounts of atmospheric methane on the Red Planet.

Video caption: Blastoff of Russian Proton rocket from the Baikonur Cosmodrome carrying ExoMars 2016 mission on March 14, 2016. Credit: Roscosmos

The first three stages of the 191-foot-tall (58-meter) Russian-built rocket fired as scheduled over the first ten minutes and lofted the 9,550-pound (4,332-kilogram) ExoMars to orbit.

Three more firings from the Breeze-M fourth stage quickly raised the probe into progressively higher temporary parking orbits around Earth.

But the science and engineering teams from the European Space Agency (ESA) and Roscosmos had to keep their fingers crossed and endure an agonizingly long wait of more than 10 hours before the fourth and final ignition of the Proton’s Breeze-M upper stage required to break the bonds of Earth.

The do or die last Breeze-M upper stage burn with ExoMars still attached was finally fired exactly as planned.

The probe was released at last from the Breeze at 20:13 GMT.

However, it took another long hour to corroborate the missions true success until the first acquisition of signal (AOS) from the spacecraft was received at ESA’s control centre in Darmstadt, Germany via the Malindi ground tracking station in Africa at 5:21:29 p.m. EST (21:29 GMT), confirming a fully successful launch with the spacecraft in good health.

It was propelled outwards to begin a seven-month-long journey to the Red Planet to the great relief of everyone involved from ESA, Roscosmos and other nations participating. An upper stage failure caused the total loss of Russia’s prior mission to Mars; Phobos-Grunt.

“Only the process of collaboration produces the best technical solutions for great research results. Roscosmos and ESA are confident of the mission’s success,” said Igor Komarov, General Director of the Roscosmos State Space Corporation, in a statement.

The ExoMars 2016 mission is comprised of a joined pair of European-built spacecraft consisting of the Trace Gas Orbiter (TGO) plus the Schiaparelli entry, descent and landing demonstrator module, built and funded by ESA.

“It’s been a long journey getting the first ExoMars mission to the launch pad, but thanks to the hard work and dedication of our international teams, a new era of Mars exploration is now within our reach,” says Johann-Dietrich Woerner, ESA’s Director General.

“I am grateful to our Russian partner, who have given this mission the best possible start today. Now we will explore Mars together.”

ExoMars 2016 Mission to the Red Planet.  It consists of two spacecraft -  the Trace Gas Orbiter (TGO) and the Entry, Descent and Landing Demonstrator Module (EDM) which will land.  Credit: ESA
ExoMars 2016 Mission to the Red Planet. It consists of two spacecraft – the Trace Gas Orbiter (TGO) and the Entry, Descent and Landing Demonstrator Module (EDM) which will land. Credit: ESA

The cooperative mission includes significant participation from the Russian space agency Roscosmos who provided the Proton-M launcher, part of the science instrument package, the surface platform and ground station support.

The Trace Gas Orbiter (TGO) and Schiaparelli lander are speeding towards Mars joined together, on a collision course for the Red Planet. They will separate on October 16, 2016 at distance of 900,000 km from the planet, three days before arriving on October 19, 2016.
TGO will fire thrusters to alter course and enter an initial four-day elliptical orbit around the fourth planet from the sun ranging from 300 km at its perigee to 96 000 km at its apogee, or furthest point.

Over the next year, engineers will command TGO to fire thrusters and conduct a complex series of ‘aerobraking’ manoeuvres that will gradually lower the spacecraft to circular 400 km (250 mi) orbit above the surface.

The science mission to analyse for rare gases, including methane, in the thin Martian atmosphere at the nominal orbit is expected to begin in December 2017.

ExoMars 2016: Trace Gas Orbiter and Schiaparelli. Credit:  ESA/ATG medialab
ExoMars 2016: Trace Gas Orbiter and Schiaparelli. Credit:
ESA/ATG medialab

As TGO enters orbit, the Schiaparelli lander will smash into the atmosphere and begin a harrowing six minute descent to the surface.

The main purpose of Schiaparelli is to demonstrate key entry, descent, and landing technologies for the follow on 2nd ExoMars mission in 2018 that will land the first European rover on the Red Planet.

The battery powered lander is expected to operate for perhaps four and up to eight days until the battery is depleted.

It will conduct a number of environmental science studies such as “obtaining the first measurements of electric fields on the surface of Mars that, combined with measurements of the concentration of atmospheric dust, will provide new insights into the role of electric forces on dust lifting – the trigger for dust storms,” according to ESA.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Countdown Begins for Blastoff of ExoMars 2016 Spacecraft on March 14 – Watch Live

Proton rocket and ExoMars 2016 spacecraft rolled out to launch pad at the Baikonur cosmodrome, Kazakhstan Copyright: ESA - B. Bethge

Proton rocket and ExoMars 2016 spacecraft rolled out to launch pad at the Baikonur cosmodrome, Kazakhstan Copyright: ESA - B. Bethge
Proton rocket and ExoMars 2016 spacecraft rolled out to launch pad at the Baikonur cosmodrome, Kazakhstan
Copyright: ESA – B. Bethge

The countdown has begun for blastoff of the ambitious European/Russian ExoMars 2016 spacecraft from the Baikonur Cosmodrome in Kazakhstan on March 14. Its goal is to search for minute signatures of methane gas that could possibly be an indication of life or of nonbiologic geologic processes ongoing today.

Final launch preparations are now in progress. Liftoff of the powerful Russian Proton booster from Baikonur carrying the ExoMars spacecraft is slated for 5:31:42 a.m. EDT (0931:42 GMT), Monday morning, March 14.

You can watch the launch live courtesy of a European Space Agency (ESA) webcast:

http://www.esa.int/Our_Activities/Space_Science/ExoMars/Watch_ExoMars_launch

The prelaunch play by play begins with live streaming at 4:30 a.m. EDT (08:30 GMT).

The first acquisition of signal from the spacecrft is expected at 21:29 GMT

As launch and post launch events unfold leading to spacecraft separation, ESA plans additional live streaming events at 7:00 a.m. EDT (11:00 GMT) and 5:10 p.m. (21:10 GMT)

Spacecraft separation from the Breeze upper stage is expected at about 10 hours, 41 minutes.

Artists concept of ExoMars spacecraft separation from Breeze fourth stage. Credit: ESA
Artists concept of ExoMars spacecraft separation from Breeze fourth stage. Credit: ESA

The ExoMars 2016 mission is comprised of a pair of European spacecraft named the Trace Gas Orbiter (TGO) and the Schiaparelli entry, descent and landing demonstration lander, built and funded by the European Space Agency (ESA).

Russian is providing the Proton booster and part of the science instrument package.

“The main objectives of this mission are to search for evidence of methane and other trace atmospheric gases that could be signatures of active biological or geological processes and to test key technologies in preparation for ESA’s contribution to subsequent missions to Mars,” says ESA.

Proton rocket and ExoMars 2016 spacecraft stand vertical at the launch pad at the Baikonur cosmodrome, Kazakhstan Copyright: ESA - B. Bethge
Proton rocket and ExoMars 2016 spacecraft stand vertical at the launch pad at the Baikonur cosmodrome, Kazakhstan
Copyright: ESA – B. Bethge

ExoMars is Earth’s lone mission to the Red Planet following the two year postponement of NASA’s InSight lander from 2016 to 2018 to allow time to fix a defective French-built seismometer.

ESA reported late today , March 13, that at T-minus 12 hours the Trace Gas Orbiter has been successfully switch on, a telemetry link was established and the spacecrft battery charging has been completed.

The Proton rocket with the encapsulated spacecraft bolted atop were rolled out to the Baikonur launch pad on Friday, March 11 and the launcher was raised into the vertical position.

ESA mission controller then completed a full launch dress rehearsal on Saturday, March 12.

The ExoMars 2016 TGO orbiter is equipped with a payload of four science instruments supplied by European and Russian scientists. It will investigate the source and precisely measure the quantity of the methane and other trace gases.

The ExoMars 2016 spacecraft composite, comprised of the Trace Gas Orbiter and Schiaparelli, seen during the encapsulation within the launcher fairing  at the Baikonur cosmodrome in Kazakhstan. Launch to Mars is slated for March 14, 2016.  Copyright: ESA - B. Bethge
The ExoMars 2016 spacecraft composite, comprised of the Trace Gas Orbiter and Schiaparelli, seen during the encapsulation within the launcher fairing at the Baikonur cosmodrome in Kazakhstan. Launch to Mars is slated for March 14, 2016. Copyright: ESA – B. Bethge

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

ExoMars 2016 Spacecraft Encapsulated for Red Planet Launch in One Week

The ExoMars 2016 spacecraft composite, comprised of the Trace Gas Orbiter and Schiaparelli, seen during the encapsulation within the launcher fairing at the Baikonur cosmodrome in Kazakhstan. Launch to Mars is slated for March 14, 2016. Copyright: ESA - B. Bethge

The ExoMars 2016 spacecraft composite, comprised of the Trace Gas Orbiter and Schiaparelli, seen during the encapsulation within the launcher fairing  at the Baikonur cosmodrome in Kazakhstan. Launch to Mars is slated for March 14, 2016.  Copyright: ESA - B. Bethge
The ExoMars 2016 spacecraft composite, comprised of the Trace Gas Orbiter and Schiaparelli, seen during the encapsulation within the launcher fairing at the Baikonur cosmodrome in Kazakhstan. Launch to Mars is slated for March 14, 2016. Copyright: ESA – B. Bethge

Final launch preparations are now in full swing for the ambitious European/Russian ExoMars 2016 spacecraft which has been encapsulated inside its payload launcher fairing and is slated to blast off for the Red Planet one week from now on March 14, 2016 from Kazakhstan.

On March 2, technicians working at the Baikonur Cosmodrome in Kazakhstan completed the complex multiday mating and enclosure operations of the composite ExoMars 2016 spacecraft to the launch vehicle adapter and the Breeze upper stage inside the nose cone.

The ExoMars 2016 mission is comprised of a pair of European spacecraft named the Trace Gas Orbiter (TGO) and the Schiaparelli lander, built and funded by the European Space Agency (ESA).

“The main objectives of this mission are to search for evidence of methane and other trace atmospheric gases that could be signatures of active biological or geological processes and to test key technologies in preparation for ESA’s contribution to subsequent missions to Mars,” says ESA.

2016’s lone mission to the Red Planet will launch atop a Russian Proton rocket.

The individual orbiter and lander spacecraft were recently mated at Baikonur on February 12.

To prepare for the encapsulation, engineers first tilted the spacecraft horizontally. Then they rolled the first fairing half underneath the spacecraft and Breeze on a track inside the Baikonur cleanroom.

Then they used an overhead crane to carefully lower the second fairing half and maneuver it into place from above to fully encapsulate the precious payload.

Tilting the ExoMars 2016 spacecraft and Breeze upper stage into the horizontal position in preparation of encapsulation within the launcher fairing at the Baikonur cosmodrome in Kazakhstan. Launch to Mars is slated for March 14, 2016.  Copyright: ESA - B. Bethge
Tilting the ExoMars 2016 spacecraft and Breeze upper stage into the horizontal position in preparation of encapsulation within the launcher fairing at the Baikonur cosmodrome in Kazakhstan. Launch to Mars is slated for March 14, 2016. Copyright: ESA – B. Bethge

The 13.5 foot (4.1-meter) diameter payload fairing holding the ExoMars 2016 spacecraft and Breeze upper stage will next be mated to the Proton rocket and rolled out to the Baikonur launch pad.

The launch window extends until March 25.

The ExoMars 2016 TGO orbiter is equipped with a payload of four science instruments supplied by European and Russian scientists. It will investigate the source and precisely measure the quantity of the methane and other trace gases.

ExoMars 2016 Mission to the Red Planet.  It consists of two spacecraft -  the Trace Gas Orbiter (TGO) and the Entry, Descent and Landing Demonstrator Module (EDM) which will land.  Credit: ESA
ExoMars 2016 Mission to the Red Planet. It consists of two spacecraft – the Trace Gas Orbiter (TGO) and the Entry, Descent and Landing Demonstrator Module (EDM) which will land. Credit: ESA

The 2016 lander will carry an international suite of science instruments and test European entry, descent and landing (EDL) technologies for the 2nd ExoMars mission in 2018.

The battery powered lander is expected to operate for up to eight days.

The 2018 ExoMars mission will deliver an advanced rover to the Red Planet’s surface.

It is equipped with the first ever deep driller that can collect samples to depths of 2 meters where the environment is shielded from the harsh conditions on the surface – namely the constant bombardment of cosmic radiation and the presence of strong oxidants like perchlorates that can destroy organic molecules.

ExoMars was originally a joint NASA/ESA project.

But thanks to hefty cuts to NASA’s budget by Washington DC politicians, NASA was forced to terminate the agencies involvement after several years of extremely detailed work and withdraw from participation as a full partner in the exciting ExoMars missions.

Thereafter Russia agreed to take NASA’s place and provide the much needed funding and rockets for the pair of launches in March 2016 and May 2018.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer