Book Review: Vistas of Many Worlds

Vistas of Many Worlds: A Journey Through Space and Time by Erik Anderson (Ashland Astronomy Studio)

While many astronomy books are based around images that show us how the Universe appears to us right now, as seen through the sensitive electronic eyes of powerful space telescopes and observatories around the world, Erik Anderson’s Vistas of Many Worlds: a Journey Through Space and Time takes a different, but no less fascinating, approach and shows us what the night sky used to look like, will one day look like, and how it may look from other much more distant worlds.

The nearby orange dwarf star Epsilon Eridani reveals its circumstellar debris disks in this close-up perspective. (Pages 14-15)
The nearby orange dwarf star Epsilon Eridani reveals its circumstellar
debris disks in this close-up perspective. (Pages 14-15)

Written and illustrated by Erik Anderson of the Ashland Astronomy Studio in Ashland, Oregon, Vistas of Many Worlds first takes us on a tour of our local region of the galaxy, introducing us to some of our Sun’s closest neighbors in space. From Alpha Centauri to Altair, we get scientifically-based renderings of several nearby stars as they’d appear close up, along with a detailed description of each — as well as an accurate depiction of the background stars (including the Sun) as they’d appear from such slightly different vantage points. We soon find out there’s an amazing amount of variety in our own stellar neighborhood alone!

Next we get a tour through time itself with images and detailed descriptions of the night sky as it appeared at various points in Earth’s history. Based on the actual movements of the stars across the galaxy, Anderson is able to accurately show the star-filled sky as it looked when the ocean cascaded over the Strait of Gibraltar to fill in the Mediterranean 5.3 million years ago, when the ancestors of modern humans were first learning to use fire 1.5 million years ago… and also what it will look like when the Solar System eventually dips back down into the galactic plane 25 million years from now — a time when nearly all the stars in the sky will be strangers, unfamiliar to us today.

After that Anderson takes us on a hunt for exoplanets, both known and imagined. We first visit the star systems that have been recently discovered to host planets — some a little like Earth, some a little like Jupiter, and some like nothing we’ve ever seen before. Then it’s off to look for truly Earthlike worlds by looking back at how our own planet became so favorable for life in the first place. From a stable parent star like the Sun to the chance birth of a large, stabilizing moon, from the delivery of life-sustaining liquid water (that stays liquid!) to having a protective “big brother” gas giant ready to take the heavy hits, and eventually what first drew organisms up from the sea onto dry land, Anderson speculates about Earth’s distant exoplanetary twins by reflecting on our planet itself.

The Earth's ancient past is depicted as it looked 4.4 million years ago when an ancient ape, "Ardi" the Ardipithecus, roamed Africa. (Pages 36-37)
The Earth’s ancient past is depicted as it looked 4.4 million years ago
when an ancient ape, “Ardi” the Ardipithecus, roamed Africa. (Pages 36-37)

And all the while showing what stars are where in the sky.

Vistas of Many Worlds is a true gem… it inspires imagination with the turn of each page. Anderson’s photorealistic computer-generated illustrations are lush and intriguing, and he does an excellent job combining speculation with scientific knowledge. It’s science as envisioned by an artist as well as art created by a scientist — truly the best of both many worlds.

The 123-page 9″ x 12″ hardcover book can be purchased on the Ashland Astronomy Studio’s website here, as well as on Amazon.com.

An iBook edition is soon to be announced.

A primordial ocean-world orbited by two moons is depicted in Ptolemy's Cluster (star cluster M7). The scene parallels Earth's own natural history, commemorating the origins of watery oceans out of volcanic steam and infalling comets. (Pages 96-97)
A primordial ocean-world orbited by two moons is depicted in Ptolemy’s
Cluster (star cluster M7). The scene parallels Earth’s own natural history,
commemorating the origins of watery oceans out of volcanic steam and
infalling comets. (Pages 96-97)

All images ©Erik Anderson/Ashland Astronomy Studio. All rights reserved. Used with permission.

Dry Ice Drives Dramatic Changes on Mars

Mars may not be tectonically active but that doesn’t mean there’s nothing happening on the Red Planet’s surface. This video from NASA’s Jet Propulsion Laboratory shows the dramatic seasonal changes that take place in Mars’ polar regions when the frozen carbon dioxide — called “dry ice”  — coating the basalt sand dunes begins to thaw and cracks, releasing jets of sublimating CO2 gas that carry dark material upwards and outwards, staining the frozen surface of the dunes. Imagine what it would be like to be standing nearby when these jets erupt!

This process occurs around the upper latitudes of Mars every spring and is responsible for the dark (and sometimes light) mottled discolorations observed across sandy and dune-covered terrain.

Bright fans are created when surface conditions cause escaping CO2 gas to condense back onto the surface. (NASA/JPL/University of Arizona)

If a prevailing wind happens to be blowing when the gases are escaping the cracks in the ice, whatever material they are carrying will be spread by the wind across the dunes in long streaks and fans. Read more about this process here.

“It’s an amazingly dynamic process. We had this old paradigm that all the action on Mars was billions of years ago. Thanks to the ability to monitor changes with the Mars Reconnaissance Orbiter, one of the new paradigms is that Mars has many active processes today.”

– Candice Hansen, Planetary Science Institute

The images in the video were acquired by the HiRISE camera aboard the Mars Reconnaissance Orbiter, which has been orbiting and observing Mars in unprecedented detail for over six years. See more HiRISE images of the Martian surface here.

Video: NASA/JPL

NASA’s Lunar Orbiter Gets an Art Lesson with Lasers

In the ultimate example of science imitating art, engineers working with NASA’s Lunar Reconnaissance Orbiter recently beamed an image of the Mona Lisa to the LRO and back via laser beam in order to measure the rate of transmission between the spacecraft and Earth. This allowed them to then calibrate their software to correct for any discrepancies between the image sent and the one received, resulting in a picture-perfect result.

Leonardo would definitely have approved.

From NASA’s Goddard Space Flight Center:

As part of the first demonstration of laser communication with a satellite at the moon, scientists with NASA’s Lunar Reconnaissance Orbiter (LRO) beamed an image of the Mona Lisa to the spacecraft from Earth.

The iconic image traveled nearly 240,000 miles in digital form from the Next Generation Satellite Laser Ranging (NGSLR) Station at NASA’s Goddard Space Flight Center in Greenbelt, MD, to the Lunar Orbiter Laser Altimeter (LOLA) instrument on the spacecraft. By transmitting the image piggyback on laser pulses that are routinely sent to track LOLA’s position, the team achieved simultaneous laser communication and tracking.

“This test, and the data obtained from it, sets the stage for future high data-rate laser communications demonstrations that will be an essential feature of NASA’s next Moon mission: the Lunar Atmosphere and Dust Environment Explorer.

Video: NASA/GSFC

The Face of Creation

The latest autotuned installment in John D. Boswell’s Symphony of Science series waxes melodic about the particle-smashing science being done with the Large Hadron Collider at CERN, in particular its search for the Higgs boson, a.k.a. the… ok, ok, I won’t say it…

“We can recreate the conditions that were present just after the beginning of the Universe.”
– Prof. Brian Cox, “The Face of Creation”


John has been entertaining science fans with his Symphony mixes since 2009, when his first video in the series — “A Glorious Dawn” featuring Carl Sagan — was released. Now John’s videos are eagerly anticipated by fans, who follow him on YouTube and on Twitter as @melodysheep.

I’d have to say my all-time favorite is “Onward to the Edge”, featuring astrophysicist Neil deGrasse Tyson, Professor Brian Cox and Carolyn Porco from the Cassini imaging team.

Terra LuminaThanks to some help from Kickstarter, John has recently released an original album, Terra Lumina, a “collection of folk/rock songs with themes including gravity, geology, photons, and the Doppler effect.” It’s a unique musical take on some of science’s most amazing discoveries, from John D. Boswell and vocalist William Crowley. Check out the video trailer here.

The album can be found on Amazon and on iTunes.

Videos via melodysheep

From Eternity to Here: The Amazing Origin of our Species (in 90 Seconds)

From the initial expansion of the Big Bang to the birth of the Moon, from the timid scampering of the first mammals to the rise — and fall — of countless civilizations, this fascinating new video by melodysheep (aka John D. Boswell) takes us on a breathless 90-second tour through human history — starting from the literal beginnings of space and time itself. It’s as imaginative and powerful as the most gripping Hollywood trailer… and it’s even inspired by a true story: ours.

Enjoy!

(Video by melodysheep, creator of the Symphony of Science series.)

CINEMA and the Cube-Shaped Future of Space Science

Caption: Jerry Kim, a former student and systems engineer, holds the CINEMA nanosatellite before it was packaged up and sent to NASA in January 2012. Credit: Robert Sanders.

We all will be biting our nails on August 5th as Curiosity makes its perilous descent to the surface of Mars. We have put all our eggs in the biggest, heaviest, most expensive basket, with one of the the most complex science packages and landing procedures. But there is another mission that launches this Friday that likes to keep things small, simple, cheap and accessible!

Scheduled to launch Friday, Aug. 3 from Space Launch Complex-3 at Vandenberg Air Force Base, at 12:27 a.m. PDT CINEMA (CubeSat for Ions, Neutrals, Electrons, & MAgnetic fields) is only one of 11 tiny cubesat satellites that are hitching a lift on an Atlas V rocket alongside the main payload, classified satellite
NROL-36.

ESA included seven Cubesats in the payload for Vega’s maiden flight back in February, but this will be the first time for NASA. Cubesats are modular, cheap, nanosatellites, measuring 10 cm per side, with a maximum mass of 1 kg. CINEMA is comprised of three such cubes, forming a shoebox-sized package weighing 3.15 kg and was developed by students at the University of California, Berkeley, Kyung Hee University in Korea, Imperial College London, Inter-American University of Puerto Rico, and University of Puerto Rico, Mayaguez.

CINEMA is designed to obtain images of the electrical ring current that encircles the Earth and which, during large magnetic storms can knock out our power grids. It carries the STEIN (Suprathermal Electrons, Ions, and Neutrons) Sensor, which will produce an image of the high-energy charged particles in Earth’s atmosphere, mostly ionized hydrogen and oxygen, by detecting energetic neutral atoms (ENAs) As ionized particles spiral around magnetic field lines surrounding Earth, they occasionally hit a neutral particle and grab an electron, transforming into ENAs that travel in a straight line. These can reveal the energy and location of the charged particles from which they came. CINEMA will be joined next year by three identical satellites, two launched by Korea and another by NASA, together they will monitor the 3-dimensional structure of the ring current. Also on board is the MAGIC (MAGnetometer from Imperial College) instrument, provided by Imperial College London, to measure changes in Earth’s magnetic field caused by magnetic storms.

CINEMA is only one of five university-built CubeSats aboard the Atlas V rocket. As they can be bought for only around $1,000 and can then fitted with sensors, transmitters, cameras etc, being able to include multiple satellites in a single launch keeps costs down. Universities can use cubesats to give students hands-on experience of designing, planning, building, running and monitoring a real scientific space mission.

CINEMA principal investigator Robert Lin, professor emeritus of physics and former director of UC Berkeley’s Space Sciences Laboratory, explained some of the pros and cons of cubesats. “There is more risk with these projects, because we use off-the-shelf products, 90 percent of the work is done by students, and the parts are not radiation-hard,” he said. “But it is cheaper and has the latest hardware. I will be very impressed if it lasts more than a year in orbit.”

Additionally, being small means that these satellites pose no threat as space junk either, burning up harmlessly in Earth’s atmosphere when they reach the end of their lifespan.

Find out more about CINEMA at the UC Berkley News Center

Fish in Space: Space Station Gets an Aquarium

Caption: The Aquatic Habitat will enable the study of fish aboard the International Space Station. Credit: JAXA.

How does microgravity impact marine life? One of the more unique experiments on board the Japanese HTV-3 supply ship, scheduled to be berthed to the International Space Station’s Harmony node at 12:00 UTC on July 27, 2012, is the Aquatic Habitat, or AQH. It is basically an aquarium designed to function in space, complete with fish called Medaka. While there are several experiments planned for the AQH, surely the astronauts will enjoy watching their newest “pets” on the ISS.

Sponsored by the Japanese Space Agency, or JAXA, the AQH is a closed-water circulatory system, which provides a new facility option for station research. Scientists will use the habitat to study small, freshwater fish on orbit, the Medaka (Oryzias latipes).

This is not the first time fish have been part of a space mission. Versions of the AQH flew on space shuttle missions STS-47, STS-65, and STS-90. The current system’s design upgrades are based on lessons learned from these missions.

Scientists have multiple studies planned to look at the impacts of radiation, bone degradation, muscle atrophy, and developmental biology. The investigations could last up to 90 days and provide data that may lead to a better understanding of related human health concerns here on Earth.

“We think studies on bone degradation mechanisms and muscle atrophy mechanisms are applicable to human health problems, especially for the aging society,” said Nobuyoshi Fujimoto, associate senior engineer at JAXA’s Space Environment Unitization Center.

Fujimotoe said the Medaka fish are ideal specimens for many reasons. They are transparent, making it easy to view the inner workings of their organs. They also breed quickly and easily in microgravity environments, enabling multi-generation studies. Researchers can take advantage of a variety of genetic modifications to these fish, as well. Finally, scientists already have all of the Medaka genome identified, which makes it easier to recognize any alterations to the fishes’ genes, due to factors like space radiation.

The AQH will reside in the Japanese Experiment Module, or JEM, which is also known as Kibo, or “hope” in Japanese. It will attach to a multipurpose small payload rack for power and housing.

This habitat will provide automatic feeding for the fish, air-water interface, temperature control, and a specimen sampling mechanism. There will be two chambers for habitation, each sized at 15 by 7 by 7 cm, holding about 700 cc water and a stabilized area for oxygen that will enable fish to “peck” air. LED lights will simulate day and night cycles, while two video cameras record images of the fish to downlink to the ground, upon request.

This facility includes an improved water circulation system that monitors water conditions, removing waste while ensuring proper pressure and oxygen flow rates.

“In order to keep water quality in good condition for the health of the fish, we had to do many tests on the filtration system, especially the bacteria filter,” said Fujimoto. “The special bacteria filter purifies waste materials, such as ammonia, so that we can keep fish for up to 90 days. This capability will make it possible for egg-to-egg breeding aboard station, which means up to three generations may be born in orbit. This would be a first for fish in space.”

Hopefully the crew will enjoy viewing and monitoring the fish, and those of us on Earth look forward to some live views of the fish in microgravity.

Source: NASA

Independent Filmmaker Wants to Kickstart America’s Space Program

“If Kennedy said ‘we will go to the Moon…some time before the century ends,’ what is… what is that? That’s not ambition. That’s pandering.”
– Neil deGrasse Tyson, Fight for Space

Here we are on the 43rd anniversary of the Apollo Moon landing, with no more shuttles flying, slashed space program budgets and no real targeted plan to get people off this world and onto another. American students score abysmally in science and math, and the general public thinks NASA is dead. What’s happened to America’s drive? What’s happened to the nation’s sense of wonder, its devotion to science, engineering, education and its man-on-the-Moon motivation?

Film producer Paul Hildebrandt wants to find out. But he needs your help.

Hildebrandt and his team from Eventide Visuals in Chico, CA, are creating an independent feature-length documentary about America’s space program, called “Fight for Space”. It’s not a collection of launch videos and CGI solar system shots, though; Hildebrandt is digging deeper into what originally made the U.S. space program great — and what has happened to it since then.

“We are producing a documentary that will examine the reasons why our space program is not all it can be. We are also going to show that space IS worth the time, money, and energy that it needs, not for only exploration and scientific reasons but for economic, planetary security, and cultural reasons as well,” writes Hildebrandt.

Hildebrandt has been attending space symposiums and traveling to interview key figures in science and space outreach, like Neil deGrasse Tyson, Bill Nye, Robert Zubrin and Congressman Dana Rohrabacher. He’s talked with scientists, astronauts, educators and regular everyday Americans about the importance of the space program. But in order for the Fight to continue, he needs our help.

Fortunately, that’s what Kickstarter is here for. Fight for Space is looking to get a little backing from interested and like-minded space fans to keep the process moving, and hopefully see the film become a fully produced, publicized, and possibly broadcasted reality.

“With your help we can bring awareness to this issue and come closer to making our space program a priority for this country once again.”

You can pledge any amount, from $10 to $10,000 or more (and see the incremental rewards of doing so) on the Fight for Space Kickstarter page here, and visit the Fight for Space website here.

“Please, support our film by donating above and share this project with your friends, family, and anyone you know who cares about space exploration or cares about the future economic and national security of this country.”
– Paul Hildebrandt, Fight for Space producer

Case Closed on the Pioneer Anomaly

Caption: An artist’s view of a Pioneer spacecraft heading into interstellar space. Both Pioneer 10 and 11 are on trajectories that will eventually take them out of our solar system. Image credit: NASA

The case of the Pioneer Anomaly has intrigued and perplexed scientists, engineers and the space-savvy public since 1980, when analysis of tracking data from the twin Pioneer spacecraft showed a small, unexplained slowing of the duo. The answer to this puzzle — now firmly found — lies not in weird physics or mysterious dark matter, but simply the effect of heat pushing back on the spacecraft – heat from the spacecraft itself, emanating from electrical current flowing through instruments and the thermoelectric power supply.

If you’re thinking, “hasn’t this mystery been solved before?” – you’d be right.

Slava Turyshev from the Jet Propulsion Laboratory has laboriously worked on the project since 2004, recovering files from back corners of NASA closets and boxes that were on their way to the trash, converting 1970s punch card data to today’s digital format, and poring over all the data that the spacecraft have beamed back to Earth from billions of miles away.

Along the way, Turyshev has published a couple of papers on his work (here’s one from 2011), and in April of this year, The Planetary Society – who was supporting in part Turyshev’s research – claimed victory that the Pioneer Anomaly was solved.

But now, Turyshev has officially published his findings in the journal Physical Review Letters, and JPL saw fit to put out a press release.

However, over the years other scientists figured out that the culprit might be the heat coming from the spacecraft’s components. In 2001, for example, a scientist named Louis K. Sheffer published a paper, “Conventional Forces can Explain the Anomalous Acceleration of Pioneer 10” and with some good number crunching, determined that “non-isotropic radiation of spacecraft heat” could account for the slowing and “that the entire effect can be explained without the need for new physics.”

Why Sheffer’s paper wasn’t considered more seriously is uncertain, but perhaps at that time the “new physics” idea – that we may have to revise our understanding of gravitational physics — was more intriguing than a mundane effect like heat from the spacecraft’s systems.

But nonetheless, it appears everyone is satisfied with the explanation dutifully resolved by Turyshev and his team of mostly volunteer helpers. And Turyshev’s description of the effect is beautiful in its simplicity:

“The effect is something like when you’re driving a car and the photons from your headlights are pushing you backward,” he said. “It is very subtle.”

Launched in 1972 and 1973 respectively, Pioneer 10 and 11 are still heading on an outward trajectory from our Sun. In the early 1980s, navigators saw a deceleration on the two spacecraft, in the direction back toward the Sun, as the spacecraft were approaching Saturn. They dismissed it as the effect of small amounts of leftover propellant still in the fuel lines. But by 1998, as the spacecraft kept traveling on their journey and were over 13 billion kilometers (8 billion miles) away from the Sun, a group of scientists led by John Anderson of JPL realized there was an actual deceleration of about 300 inches per day squared (0.9 nanometers per second squared). They were the ones who raised the possibility that this could be some new type of physics that contradicted Einstein’s general theory of relativity.

After that, all sorts of theories surfaced, some fairly wacky, some more serious.

In 2004, Turyshev decided to really dig into the matter and started gathering records stored all over the country to analyze the data to see if he could definitively figure out the source of the deceleration. In part, according to JPL, Turyshev and his colleagues were contemplating a deep space physics mission to investigate the anomaly, and he wanted to be sure there was one before asking NASA for a spacecraft.

And so they went searching for Doppler data, telemetry data, and anything they could find about the spacecraft, including picking the brains of navigators who worked with the spacecraft over the years.

They collected more than 43 gigabytes of data, which may not seem like a lot now, but is quite a lot of data for the 1970s. He also managed to save a vintage tape machine that was about to be discarded, so he could play the magnetic tapes. Viktor Toth from Canada, heard about the effort and helped create a program that could read the telemetry tapes and clean up the old data.

They saw that what was happening to Pioneer wasn’t happening to other spacecraft, mostly because of the way the spacecraft were built. For example, the Voyager spacecraft are less sensitive to the effect seen on Pioneer, because its thrusters align it along three axes, whereas the Pioneer spacecraft rely on spinning to stay stable.

Turyshev and his colleagues were able to calculate the heat put out by the electrical subsystems and the decay of plutonium in the Pioneer power sources, which matched the anomalous acceleration seen on both Pioneers.

“The story is finding its conclusion because it turns out that standard physics prevail,” Turyshev said. “While of course it would’ve been exciting to discover a new kind of physics, we did solve a mystery.”

Turyshev’s paper: Finding the Origin of the Pioneer Anomaly.

Source: JPL

Wishing the Zooniverse a Happy 5th Birthday!

Galaxy Zoo was a project set up in July 2007 by astronomers Chris Lintott and Kevin Schawinski asking members of the public to help classify a million galaxy images produced by the Sloan Digital Sky Survey. Five years on and Galaxy Zoo has grown into an entire Zooniverse of projects allowing members to contribute to real science across a range of disciplines. Join us to celebrate the giant of citizen science, mark its achievements and look forward to the future.

Modern science can produce huge amounts of data and making sense of it all can take years and often needs a human eye to pick out the fine details. The Zooniverse unleashes an army of willing volunteers to pore over images and data sets. Galaxy Zoo members have now classified over 250 million galaxies. At the time of writing there are currently 656,773 people taking part in Zooniverse projects across the globe. Galaxy Zoo participants alone have contributed to more than 30 published scientific papers. One of the Zooniverse’s great strengths is the ability to throw up some unexpected discoveries like the now famous Hanny’s Voorwerp, named after Dutch school teacher Hanny van Arkel, the Galaxy Zoo volunteer who spotted it. Such a serendipitous discovery is possible when data is exposed to large numbers of users who are encouraged to flag up anything they think looks out of the ordinary.

To mark Galaxy Zoo’s 5th birthday there will be a relaunch of the project which will compare images using a new dataset from Hubble’s CANDELS survey of distant, early galaxies to what we see today.

The range of projects now available to members is extensive. Users of the Solar Stormwatch project analyse interactive diagrams produced by NASA’s Solar Terrestrial Relations Observatory (STEREO). Planet Hunters use data from Kepler to search for transiting exoplanets. The Milky Way Project users have access to image data from the Spitzer Space Telescope to identify infrared bubbles in the interstellar medium to help us understand how stars form. SETI Live searches for interesting signals coming from the Kepler Field. Moon Zoo participants use data from NASA’s Lunar Reconnaissance Orbiter (LRO) to catalogue features on the Moon down to the size of a wastepaper basket.

Away from space there are also projects involved in climate, nature and humanities. Old Weather is a project that models Earth’s climate using wartime shipping logs and Whale FM members listen to, and catagorize, the songs of Orcas to help understand what the whales are saying, while Ancient Lives gives participants the chance to decipher and study the Oxyrhynchus collection of papyri. The NEEMO project analyzes images of marine life and features taken from the underwater base at the National Marine Sanctuary in Key Largo, Florida. What’s the Score asks people to help describe over four thousand digitised musical scores made available by the Bodleian Libraries. With a global posse of citizen scientists eager to study real data at their disposal, the range of projects will likely grow over the coming years. So happy 5th Birthday Zooniverse and here’s to many more!

To find out more and how you can get involved visit the Zooniverse website

Lead image caption: Galaxies gone wild. Source NASA, ESA, the Hubble Heritage (STScI/AURA) ESA/Hubble Collaboration, and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University)