SDO Wows With ‘First Light’ Images, Videos

A full-disk multiwavelength extreme ultraviolet image of the sun taken by SDO on March 30, 2010. False colors trace different gas temperatures. Reds are relatively cool (about 60,000 Kelvin, or 107,540 F); blues and greens are hotter (greater than 1 million Kelvin, or 1,799,540 F). Credit: NASA
A full-disk multiwavelength extreme ultraviolet image of the sun taken by SDO on March 30, 2010. False colors trace different gas temperatures. Reds are relatively cool (about 60,000 Kelvin, or 107,540 F); blues and greens are hotter (greater than 1 million Kelvin, or 1,799,540 F). Credit: NASA

[/caption]

NASA’s newest solar satellite is officially open for business and all we can say is, “Wow!” The Solar Dynamics Observatory (SDO) released its “first light’ images on Wednesday, showing incredible views of the sun, with extreme close-ups, never-before-seen detail of material streaming outward from sunspots and high-resolution looks at solar flares across a wide range of ultraviolet wavelength.

“These initial images show a dynamic sun that I had never seen in more than 40 years of solar research,” said Richard Fisher, director of the Heliophysics Division at NASA. “SDO will change our understanding of the sun and its processes, which affect our lives and society. This mission will have a huge impact on science, similar to the impact of the Hubble Space Telescope on modern astrophysics.”

SDO launched in February and has been billed as the “Crown Jewel” of NASA’s fleet of solar observatories. This technologically advanced spacecraft is able to take images of the sun every 0.75 seconds and daily send back about 1.5 terabytes of data to Earth — the equivalent of downloading 380 full-length movies every day. The following graphic compares the capabilities of SDO with other missions and resolutions.

This image compares the relative size of SDO's imagery to that of other missions. Credit: NASA

Serendipitously, shortly after the instruments opened their doors, our recently quiet Sun began to get a little more active. The video below was created from data from the Atmospheric Imaging Assembly, a group of four telescopes designed to photograph the sun’s surface and atmosphere. This data is from March 30, 2010, showing a wavelength band that is centered around 304. This extreme ultraviolet emission line is from singly ionized Helium, or He II, and corresponds to a temperature of about 50,000 degrees Celsius.

This movie captures only a fraction of SDO’s imaging capabilities. It shows the Sun’s magnetic field followed by only four of SDO’s 12 imaging wavebands. You’ll see an eruption, flare, and dimming (dark regions evacuated by the eruption) by observing the event in several different layers of the atmosphere. If you’re wondering why the movie doesn’t show all 12 layers at full resolution it’s because at high-res the movie would be nearly a third of a gigabyte in size.

The Helioseismic and Magnetic Imager maps solar magnetic fields and looks beneath the sun’s opaque surface. HMI was undergoing a series of adjustments when it captured an eclipse of sorts. SDO’s view was partially blocked by the Earth. At the edges of the shadow, the Sun’s shape bends, due to the light’s refraction by the Earth’s atmosphere. SDO will have two “eclipse seasons” each year, when the orbit of SDO will intersect the Sun-Earth line.

For more images and a high-res version of the top image, see the SDO website.

Just remember — this is only the beginning of SDO’s mission!

Source: NASA

The Solar Dynamics Observatory Soars to Study the Sun

The Atlas V rocket carrying SDO roars off the launchpad. Credit: Nancy Atkinson

The Solar Dynamics Observatory launched successfully – and beautifully – Thursday morning from Cape Canaveral Launch Complex 41 to begin a 5-year mission that will provide streaming, high-definition views of our sun. It was the 100th launch of the Atlas/Centaur combo, and was a gorgeous sight as it roared and soared into the blue Florida sky. “It was great; a beautiful launch,” said Dean Pesnell, SDO Project Scientist, immediately after the launch. “The rocket rises so slowly off the pad — it is wonderful to see. This is third Atlas launch I’ve seen and this is the best one so far.”

Amazingly, viewers here at Kennedy Space Center saw the Atlas rocket fly close to a sundog just as the spacecraft reached Max-Q, creating a ripple effect around the spacecraft. “We saw this sundog come out and SDO flew right through it. Then the sun dog disappeared,” said Pesnell. “This may be the first time we’ve sent a probe through a sundog, and people will be studying this, so already we are learning things about our atmosphere from SDO.”

See this amazing video shot by a 13-year-old girl in attendance at the KSC VIP site that shows the sundog and shockwave. (as noted by Jon Hanford in the comments).

Today’s countdown was extremely smooth as the high winds that thwarted Wednesday’s launch attempt calmed as the opening of the launch window approached. After counting down to the planned T-4 minute hold, launch managers proceeded directly to launch at the beginning of the window at 10:23 a.m. EST.

Project Scientist Dean Pesnell describing the launch. Image: Nancy Atkinson

“I was a little worried about the clouds coming in,” said Tom Woods, Principal Investigator for the EVE instrument on SDO, the EUV Variability Experiment, which will be studying the extreme ultraviolet radiation of the Sun. “But we were very excited to see SDO launch today, as otherwise it would have been a 10-day delay until the next attempt. It was a wonderful launch!”

“It was so beautiful,” said Lika Guhathakurta, SDO program scientist immediately following the launch as we walked together back to the press building. “I can still feel the rumbling in my stomach!”

SDO science team celebrates after the launch: Dean Pesnell, Jennifer Rumburg, Chris St. Cyr, and Lika Guhathakurta. Image: Nancy Atkinson

Called the “Crown Jewel” of NASA’s fleet of solar observatories, SDO is a technologically advanced spacecraft that will take images of the sun every 0.75 seconds and daily send back about 1.5 terabytes of data to Earth — the equivalent of downloading 380 full-length movies every day.

SDO launch. Credit: Nancy Atkinson

“We’re going to be able to better understand the Sun as a star,” said Guathakurta, “but SDO will also give us a comprehensive view of how it interacts with the Earth and everything else in the solar system.

The sun’s dynamic processes affect everyone and everything on Earth. SDO will explore activity on the sun that can disable satellites, cause power grid failures, and disrupt GPS communications. SDO also will provide a better understanding of the role the sun plays in Earth’s atmospheric chemistry and climate.

Vapor trail from the Atlas rocket after the SDO launch. Image: Nancy Atkinson

A contrail from the launch appeared only in the region of Earth’s atmosphere where conditions were right for cloud formation. “There weren’t any clouds there, but we provided the very fine particles so that a contrail cloud appeared,” said Pesnell.

A later update confirmed that SDO separated from the Centaur and the spacecraft’s solar arrays deployed on time and correctly, and are now generating power.

Here’s the video of the launch from NASA TV: