The once fanciful dream of rocket recycling is now closer than ever to becoming reality, after successful completion of the static fire test on a test stand in McGregor, Texas, paved the path to relaunch, SpaceX announced via twitter.
The history making first ever reuse mission of a previously flown liquid fueled Falcon 9 first stage booster equipped with 9 Merlin 1D engines could blastoff as soon as March 2017 from the Florida Space Coast with the SES-10 telecommunications satellite, if all goes well.
The booster to be recycled was initially launched in April 2016 for NASA on the CRS-8 resupply mission under contract for the space agency.
“Prepping to fly again — recovered CRS-8 first stage completed a static fire test at our McGregor, TX rocket development facility last week,” SpaceX reported.
The CRS-8 Falcon 9 first stage booster successfully delivered a SpaceX cargo Dragon to the International Space Station (ISS) in April 2016.
The Falcon 9 first stage was recovered about 8 minutes after liftoff via a propulsive soft landing on an ocean going droneship in the Atlantic Ocean some 400 miles (600 km) off the US East coast.
SpaceX, founded by billionaire and CEO Elon Musk, inked a deal in August 2016 with telecommunications giant SES, to refly a ‘Flight-Proven’ Falcon 9 booster.
Luxembourg-based SES and Hawthrone, CA-based SpaceX jointly announced the agreement to “launch SES-10 on a flight-proven Falcon 9 orbital rocket booster.”
Exactly how much money SES will save by utilizing a recycled rocket is not known. But SpaceX officials have been quoted as saying the savings could be between 10 to 30 percent.
The SES-10 launch on a recycled Falcon 9 booster was originally targeted to take place before the end of 2016.
That was the plan until another Falcon 9 exploded unexpectedly on the ground at SpaceX’s Florida launch pad 40 during a routine prelaunch static fire test on Sept. 1 that completed destroyed the rocket and its $200 million Amos-6 commercial payload on Cape Canaveral Air Force Station.
The Sept. 1 launch pad disaster heavily damaged the SpaceX pad and launch infrastructure facilities at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida.
Pad 40 is still out of commission as a result of the catastrophe. Few details about the pad damage and repair work have been released by SpaceX and it is not known when pad 40 will again be certified to resume launch operations.
Therefore SpaceX ramped up preparations to launch Falcon 9’s from the firms other pad on the Florida Space Coast – namely historic Launch Complex 39A which the company leased from NASA in 2014.
Pad 39A is being repurposed by SpaceX to launch the Falcon 9 and Falcon Heavy rockets. It was previously used by NASA for more than four decades to launch Space Shuttles and Apollo moon rockets.
But SES-10 is currently third in line to launch atop a Falcon 9 from pad 39A.
The historic first launch of a Falcon 9 from pad 39A is currently slated for no earlier than Feb. 14 on the CRS-10 resupply mission for NASA to the ISS – as reported here.
The EchoStar 23 comsat is slated to launch next, currently no earlier than Feb 28.
SES-10 will follow – if both flights go well.
SpaceX successfully launched SES-9 for SES in March 2016.
Last July, SpaceX engineers conducted a test firing of another recovered booster as part of series of test examining long life endurance testing. It involved igniting all nine used first stage Merlin 1D engines housed at the base of a used landed rocket.
The Falcon 9 first stage generates over 1.71 million pounds of thrust when all nine Merlin engines fire up on the test stand for a duration of up to three minutes – the same as for an actual launch.
Watch the engine test in this SpaceX video:
Video Caption: Falcon 9 first stage from May 2016 JCSAT mission was test fired, full duration, at SpaceX’s McGregor, Texas rocket development facility on July 28, 2016. Credit: SpaceX
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
CAPE CANAVERAL, FL — The telecommunications giant SES is boldly going where no company has gone before by making history in inking a deal today, Aug. 30, to fly the expensive SES-10 commercial satellite on the first ever launch of a ‘Flight-Proven’SpaceX booster – that’s been used and recovered.
Luxembourg-based SES and Hawthrone, CA-based SpaceX today jointly announced the agreement to “launch SES-10 on a flight-proven Falcon 9 orbital rocket booster” before the end of this year.
“The satellite, which will be in a geostationary orbit and expand SES’s capabilities across Latin America, is scheduled for launch in Q4 2016. SES-10 will be the first-ever satellite to launch on a SpaceX flight-proven rocket booster,” according to a joint statement.
That first launch of a flight-proven Falcon 9 first stage will use the CRS-8 booster that delivered a SpaceX Dragon to the International Space Station in April 2016. The reflight could happen as soon as October 2016.
The deal marks a major milestone and turning point in SpaceX CEO and billionaire founder Elon Musk’s long sought endeavor to turn the science fictionesque quest of rocket reusability into the scientific fact of reality.
“Thanks for the longstanding faith in SpaceX,” tweeted SpaceX CEO Elon Musk after today’s joint SES/SpaceX announcement.
“We very much look forward to doing this milestone flight with you.”
Elon Musk’s goal is to radically slash the cost of launching rockets and access to space via rocket recycling – in a way that will one day lead to his vision of a ‘City on Mars.’
Over just the past 8 months, SpaceX has successfully recovered 6 of the firms Falcon 9 first stage boosters intact – by land and by sea since December 2015 – in hopes of recycling and reusing them with new payloads from paying customers daring enough to take the risk of stepping into the unknown!
SES is that daring company and has repeatedly shown faith in SpaceX. They were the first commercial satellite operator to launch with SpaceX with SES-8 back in October 2013. Earlier this year the firm also launched SES-9 on the recently upgraded full thrust version of Falcon 9 in March 2016.
“Having been the first commercial satellite operator to launch with SpaceX back in 2013, we are excited to once again be the first customer to launch on SpaceX’s first ever mission using a flight-proven rocket. We believe reusable rockets will open up a new era of spaceflight, and make access to space more efficient in terms of cost and manifest management,” said Martin Halliwell, Chief Technology Officer at SES, in the statement.
“This new agreement reached with SpaceX once again illustrates the faith we have in their technical and operational expertise. The due diligence the SpaceX team has demonstrated throughout the design and testing of the SES-10 mission launch vehicle gives us full confidence that SpaceX is capable of launching our first SES satellite dedicated to Latin America into space.”
But the company first has to prove that the used vehicle can survive the extreme and unforgiving stresses of the violent spaceflight environment before they can relaunch it. So they have been carefully inspecting it for structural integrity, checking all the booster systems, plumbing, avionics, etc and retesting the first stage Merlin 1D engines.
Multiple full duration hot fire tests of the fully integrated booster have been conducted at the SpaceX test facility in McGregor, Texas as part of long life endurance testing. This includes igniting all nine used first stage Merlin 1D engines housed at the base of a landed rocket for approximately three minutes.
For the SES-10 launch, SpaceX plans to use the Falcon 9 booster that landed on an ocean going drone ship from NASA’s CRS-8 space station mission launched in April 2016, said Hans Koenigsmann, SpaceX vice president of Flight Reliability, to reporters recently at the Kennedy Space Center during NASA’s CRS-9 cargo launch to the ISS.
SpaceX has derived many lessons learned on how to maximize the chances for a successful rocket recovery, Koenigsmann explained to Universe Today at KSC when I asked for some insight.
“We learned a lot … from the landings,” Hans Koenigsmann, SpaceX vice president of Flight Reliability, told Universe Today during the media briefings for the SpaceX CRS-9 space station cargo resupply launch on July 18.
“There are no structural changes first of all.”
“The key thing is to protect the engines- and make sure that they start up well [in space during reentry],” Koenigsmann elaborated, while they are in flight and “during reentry.”
“And in particular the hot trajectory, so to speak, like the ones that comes in after a fast payload, like the geo-transfer payload basically.”
“Those engines need to be protected so that they start up in the proper way. That’s something that we learned.”
The SpaceX Falcon 9 first stage is outfitted with four landing legs at the base and four grid fins at the top to conduct the landing attempts.
“In general I think the landing concept with the legs, and the number of burns and the way we perform those seems to work OK,” Koenigsmann told me.
“Re-launching a rocket that has already delivered spacecraft to orbit is an important milestone on the path to complete and rapid reusability,” said Gwynne Shotwell, President and Chief Operating Officer of SpaceX.
“SES has been a strong supporter of SpaceX’s approach to reusability over the years and we’re delighted that the first launch of a flight-proven rocket will carry SES-10.”
How much money will SES save by using a spent, recycled first stage Falcon 9 booster?
SpaceX says the price of a completely new Falcon 9 booster is approximately $60 million.
Shotwell has said SpaceX will reduce the cost about 30%. So SES might be saving around $20 million – but there are no published numbers regarding this particular launch contract.
SES-10 will be the first SES satellite wholly dedicated to Latin America.
“The satellite will provide coverage over Mexico, serve the Spanish speaking South America in one single beam, and cover Brazil with the ability to support off-shore oil and gas exploration,” according to SES.
It will replace capacity currently provided by two other satellites, namely AMC-3 and AMC-4, and will “provide enhanced coverage and significant capacity expansion over Latin America – including Mexico, Central America, South America and the Caribbean. The high-powered, tailored and flexible beams will provide direct-to-home broadcasting, enterprise and mobility services.”
It is equipped with a Ku-band payload of 55 36MHz transponder equivalents, of which 27 are incremental. It will be stationed at 67 degrees West.
SES-10 was built by Airbus Defence and Space and is based on the Eurostar E3000 platform. Notably it will use “an electric plasma propulsion system for on-orbit manoeuvres and a chemical system for initial orbit raising and some on-orbit manoeuvres.”
The most recent SpaceX Falcon 9 booster to be recovered followed the dramatic overnight launch of the Japanese JCSAT-16 telecom satellite on Aug. 14.
It was towed back into port on atop the diminutive OCISLY ocean landing platform that measures only about 170 ft × 300 ft (52 m × 91 m). SpaceX formally dubs it an ‘Autonomous Spaceport Drone Ship’ or ASDS.
The 6 successful Falcon upright first stage landings are part of a continuing series of SpaceX technological marvels/miracles rocking the space industry to its core.
SpaceX had already successfully recovered first stages three times in a row at sea earlier this year on the ocean going drone ship barge using the company’s OCISLY Autonomous Spaceport Drone Ship (ASDS) on April 8, May 6 and May 27, prior to JCSAT-16 on Aug. 14.
Two land landings back at Cape Canaveral Landing Zone-1 were accomplished on Dec. 21, 2015 and July 18, 2016.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
CAPE CANAVERAL AIR FORCE STATION, FL – SpaceX’s Falcon 9 finally put on a dazzling sky show after the commercial booster at last took flight on the fifth launch attempt, shortly after sunset on Friday, March 4, 2014.
Launches around sunset are often the most beautiful. And the coincident clear blue and darkening skies did not disappoint, affording photographers the opportunity to capture dramatic photos and videos with brilliant hues as the accelerating rocket sped skywards to sunlight.
The primary mission for the SpaceX Falcon 9 mission was to carry the SES-9 commercial communications satellite payload to orbit providing services used by everyone 24/7, such as cable TV, high speed internet, voice and data transmissions.
SES-9 is the largest satellite dedicated to serving the Asia-Pacific region for the Luxembourg based SES. With its payload of 81 high-powered Ku-band transponder equivalents, SES-9 will be the 7th SES satellite providing unparalleled coverage to over 20 countries in the region, says SES.
Enjoy the gorgeous and expanding collection of launch photos and videos herein from myself, colleagues and friends. The view was so clear that we could see the separation of the first and second stages, and opening and jettisoning of the payload fairing halves.
Strong high altitude winds, difficulties loading the super chilled liquid oxygen propellant and boaters who apparently ignored warnings forced a total of four postponements from the originally intended launch date nearly two weeks earlier on Tuesday Feb. 25, 2016.
But with a forecast of 90 percent GO weather and moderating upper altitude wind, the SpaceX Falcon 9 soared aloft right at the opening of the launch window.
See the ignition and liftoff and initial powerful puff of exhaust up close – from my remote launch pad 40 camera above as pyros fire and the umbilicals separate and fly away from rocket.
Here’s a pair of time lapse streak shots as the rocket arcs over eastwards to Africa:
Check out these pair of launch videos taken by Mobius wide angle remote cameras set up close around the SpaceX pad at Space Launch Complex 40 on Cape Canaveral Air Force Station, FL.
Video caption: Sunset launch of the SES-9 communication satellite by a SpaceX Falcon 9 rocket on March 4, 2016 from Pad 40 of the CCAFS. Credit: Jeff Seibert/AmericaSpace
Video caption: Spectacular blastoff of SpaceX Falcon 9 rocket carrying SES-9 communications satellite from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL shortly after sunset at 6:35 p.m. EST on March 4, 2016. Up close movie captured by Mobius remote video camera placed at launch pad. Credit: Ken Kremer/kenkremer.com
This video is a focused up close view showing the umbilicals flying away moments after blastoff:
Video caption: Time lapse, SpaceX Falcon 9 strong back and upper umbilical motion before and during the launch of the SES9 telecommunication satellite launch on March 4, 2016. Credit: Jeff Seibert/AmericaSpace
The SES-9 launch marked the second successful Falcon-9 launch in a row during 2016, and the first of this year from Cape Canaveral.
The Boeing built SES-9 satellite has a dry mass of 2,835 kg and a fueled mass of 5,271 kg. The huge satellite sports a wingspan of 48 meters with two solar wings. In addition each wing is outfitted with six additional solar panels on each wing.
Watch for Ken’s onsite launch reports direct from Cape Canaveral Air Force Station in Florida.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
CAPE CANAVERAL AIR FORCE STATION, FL – Following a pair of back to back launch scrubs this week on Wednesday and Thursday due to rocket fueling issues with the liquid oxygen propellant, SpaceX has reset the blast off of their upgraded Falcon 9 rocket – carrying the commercial SES-9 television and communications satellite – to coincidentally coincide with a serene sunset on Sunday, Feb. 28.
Spectators have flocked to the Florida space coast in hopes of catching a glimpse of what could prove to be a spectacular evening streak to orbit after miserable mid-week weather finally departed the sunshine state in favor of glorious blue skies – to the delight of everyone!
SpaceX engineers are now targeting liftoff of the Cape’s first Falcon 9 launch of 2016 for 6:46 p.m. EST from SpaceX’s seaside Space Launch Complex 40 on Cape Canaveral Air Force Station, Fla. at the opening of a 97-minute launch window.
The first launch scrub on Wednesday was called some 45 minutes before launch.
“Out of an abundance of caution, the team opted to hold launch for today to ensure liquid oxygen temperatures are as cold as possible in an effort to maximize performance of the vehicle,” SpaceX said in a statement.”
The rocket and spacecraft were otherwise nominal.
“The Falcon 9 remains healthy in advance of SpaceX and SES’s mission to deliver the SES-9 satellite to Geostationary Transfer Orbit.”
The second scrub was called at 1 minute forty seconds before T zero when engineers were concerned about aspects of the liquid oxygen fuel loading and internal temperatures.
“Countdown held for the day. Teams are reviewing the data and next available launch date,” tweeted SpaceX post scrub.
SpaceX is cooling the liquid oxygen propellant in the upgraded Falcon 9 to lower temperatures compared to the rockets prior version, in order to increase its density and provide more fuel aboard the rocket for the engines to burn.
Both stages of the 229 foot tall Falcon 9 are fueled by liquid oxygen and RP-1kerosene which burn in the Merlin engines.
Air Force meteorologists are predicting an almost unheard of >95% percent chance of favorable weather conditions at launch time Sunday – which could result in an absolutely spectacular view as Falcon roars off the launch pad thunders to space, if all goes well.
The only potential concern at this time is for cumulus clouds associated with onshore flow.
A live webcast will be available at SpaceX.com/webcast beginning about 20 minutes before liftoff, at approximately 6:26 p.m. EST on Sunday, Feb. 28.
The launch window closes at approximately 8:23 p.m. EST.
The weather prognosis changes only slightly to 90 percent GO on Monday, again with a concern for cumulus clouds.
If needed, SpaceX has a backup launch opportunity reserved on the Eastern range for Monday, Feb. 29 at approximately the same time at 6:46 p.m. EST.
The goal of Sunday’s launch is to boost the commercial SES-9 television and communications satellite to a Geostationary Transfer Orbit (GTO). The satellite will be deployed approximately 31 minutes after liftoff.
The commercial launch was contracted by the Luxembourg based SES, a world-leading satellite operator. SES provides satellite-enabled communications services to broadcasters, Internet service providers, mobile and fixed network operators, and business and governmental organizations worldwide using its fleet of more than 50 geostationary satellites.
Watch for Ken’s onsite launch reports direct from Cape Canaveral Air Force Station in Florida.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Learn more about SpaceX Falcon 9 rocket, ULA Atlas rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:
Feb 27/28: “SpaceX, ULA, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings
CAPE CANAVERAL AIR FORCE STATION, FL – Final preparations are underway for SpaceX’s first launch of a Falcon 9 rocket from Cape Canaveral during 2016 with the commercial SES-9 television and communications satellite on Wednesday evening Feb. 24, following a smooth static fire engine test on Monday. Update: Technical issue postponed launch to Feb 25 at 6:46 pm.