Life on Other Planets

Mars. Credit: NASA

[/caption]
For centuries, men have pondered the possibility of life on other planets and tried to prove its existence. Even before the first shuttle or probe was launched, stories of life on other planets and life invading our own planet, were published prolifically. Whether it’s a desire to connect with others or a burning curiosity to know whether we are truly alone, the question of life on other planets fascinates people from every walk of life.

An article on extraterrestrial life would not be complete without discussing Mars. Mars has been the biggest focus of the ongoing search for life on other planets for decades. This is not just a wild assumption or fancy; there are several reasons why scientists consider Mars the best place to look for extraterrestrial life. One reason why many people, including scientists, look to Mars as a possible source of life is because they believe there may be water on the planet. Since the telescope was first invented, astronomers have been able to see the channels in the terrain that look like canals or canyons. Finding water on a planet is vitally important to proving that life exists there because it acts as a solvent in chemical reactions for carbon-based life.

Another reason astronomers consider Mars as a likely location for life is because there is a good possibility that Mars is in the habitable zone. The habitable zone is a theoretical band of space a certain distance from the Sun in which conditions are optimal for the existence of carbon-based life. Unsurprisingly, Earth is in the middle of the habitable zone. Although astronomers do not know how far this zone could extend, some think that Mars could be in it.

Most astronomers are looking for life that is carbon-based and similar to life on Earth. For instance, the habitable zone only applies to favorable conditions for supporting carbon-based life, and it is definitely possible for forms of life that do not need water to exist.

Astronomers do not limit themselves to our Solar System either, suggesting that we should look at different solar systems. Scientists are planning to use interferometry–an investigative technique that implements lasers, which is used in astronomy as well as other fields– to find planets in the habitable zones of other solar systems. Astronomers believe that there are hundreds of solar systems and thousands of planets, which means that statistically the odds are favorable for finding another planet that supports life. While NASA develops better probes, the search for life continues.

There are a number of sites with more information including life on other planets from Groninger Kapteyn Institute astronomy students and NASA predicts non-green plants on other planets from NASA.

Universe Today has a number of articles concerning life on other planets including searching for life on non-Earth like planets and single species ecosystem gives hope for life on other planets.

Take a look at this podcast from Astronomy Cast on the search for water on Mars.

The Odds of Intelligent Life in the Universe

Tropical Saturn. Image credit: Columbia University

When it comes to contemplating the state of our universe, the question likely most prevalent on people’s minds is, “Is anyone else like us out there?” The famous Drake Equation, even when worked out with fairly moderate numbers, seemingly suggests the probable amount of intelligent, communicating civilizations could be quite numerous. But a new paper published by a scientist from the University of East Anglia suggests the odds of finding new life on other Earth-like planets are low, given the time it has taken for beings such as humans to evolve combined with the remaining life span of Earth.

Professor Andrew Watson says that structurally complex and intelligent life evolved relatively late on Earth, and in looking at the probability of the difficult and critical evolutionary steps that occurred in relation to the life span of Earth, provides an improved mathematical model for the evolution of intelligent life.

According to Watson, a limit to evolution is the habitability of Earth, and any other Earth-like planets, which will end as the sun brightens. Solar models predict that the brightness of the sun is increasing, while temperature models suggest that because of this the future life span of Earth will be “only” about another billion years, a short time compared to the four billion years since life first appeared on the planet.

“The Earth’s biosphere is now in its old age and this has implications for our understanding of the likelihood of complex life and intelligence arising on any given planet,” said Watson.

Some scientists believe the extreme age of the universe and its vast number of stars suggests that if the Earth is typical, extraterrestrial life should be common. Watson, however, believes the age of the universe is working against the odds.

“At present, Earth is the only example we have of a planet with life,” he said. “If we learned the planet would be habitable for a set period and that we had evolved early in this period, then even with a sample of one, we’d suspect that evolution from simple to complex and intelligent life was quite likely to occur. By contrast, we now believe that we evolved late in the habitable period, and this suggests that our evolution is rather unlikely. In fact, the timing of events is consistent with it being very rare indeed.”

Watson, it seems, takes the Fermi Paradox to heart in his considerations. The Fermi Paradox is the apparent contradiction between high estimates of the probability of the existence of extraterrestrial civilizations and the lack of evidence for, or contact with, such civilizations.

Watson suggests the number of evolutionary steps needed to create intelligent life, in the case of humans, is four. These include the emergence of single-celled bacteria, complex cells, specialized cells allowing complex life forms, and intelligent life with an established language.

“Complex life is separated from the simplest life forms by several very unlikely steps and therefore will be much less common. Intelligence is one step further, so it is much less common still,” said Prof Watson.

Watson’s model suggests an upper limit for the probability of each step occurring is 10 per cent or less, so the chances of intelligent life emerging is low — less than 0.01 per cent over four billion years.

Each step is independent of the other and can only take place after the previous steps in the sequence have occurred. They tend to be evenly spaced through Earth’s history and this is consistent with some of the major transitions identified in the evolution of life on Earth.

Here is more about the Drake Equation.

Here is more information about the Fermi Paradox.

Original News Source: University of East Anglia Press Release

Meteor Shower Throws Over 100 Meteors per Hour

quawolf4-thumb1.thumbnail.jpg

With over 100 meteors per hour, the Quadrantid Meteor Shower is one of the latest mergers between Google and NASA, a major asset to space research due to their successful combination of ideas and plans. This peak shower began around 0200 UTC on Friday morning, January 4th, with the jet owned by the founders of Mountain View-based Google flying amongst big science players, such as the SETI research team.

To see this spectacular sight and to partake in a scientific mission, Google carried a team of NASA scientists and their high-technology instruments on board the Google owned Gulfstream V jet, which left the Mineta San Jose International Airport on Thursday late afternoon about 4:30 p.m. Plans were made for a ten-hour flight over the Arctic, returning to home base when the meteor shower mission was accomplished with the resulting data.

The GOOG Google.com Stock Message Board is full of the things that Google has been doing to improve the world—a real biggie was to develop a cheaper solar, wind power for Earth—excellent idea from a company whose corporate motto is to “do not be evil.â€? That plan involved the creation of a research group to develop energy sources that was a cheaper renewable alternative which focuses on solar, wind and any other forms of power through the Renewable Energy “Cheaper Than Coalâ€? project. And of course, lowering Google’s power bill was top of the list before anyone else as a huge incentive.

Last September, as most are aware of, NASA and Google had launched a $2.6 million dollar agreement to let the Google co-founders house their aircraft at Moffett Field while NASA was to be allowed to use it for their science work, such as that of the Quadrantid Meteor Shower. Other prospective plans for Google are to hand out $30 million dollars to any company that successfully comes up with a plan to bring people to the moon. Another plan is to fund a space race through Google’s Lunar X Prize competition.

Original Source: NASA News Release

SETI@home Needs You!

arecibo_naic.thumbnail.gif

If your New Year’s resolutions include trying something new, expanding your horizons, or doing something to benefit humanity, this is for you: SETI@home needs more volunteers to help crunch data in the search for extraterrestrial intelligence (SETI). And the easy part is that your desktop computer does all the work.

SETI uses radio telescopes to listen for narrow band-width radio signals from space. Since these signals don’t occur naturally, a detection of such a signal would indicate technology from an extraterrestrial source.

The SETI project at the University of California-Berkley gets data from world’s largest radio telescope in Arecibo, Puerto Rico, which has recently been updated with seven new and more sensitive receivers. The improved frequency coverage for the telescope is now generating 500 times more data for the SETI project than before, and more volunteers are needed to handle the increase in data.

According to project scientist Eric Korpela, the new data amounts to 300 gigabytes per day, or 100 terabytes (100,000 gigabytes) per year, about the amount of data stored in the U.S. Library of Congress. “That’s why we need all the volunteers,” he said. “Everyone has a chance to be part of the largest public participation science project in history.”

The SETI@home premise is simple but brilliant: Instead of using a monstrously huge and expensive supercomputer to analyze all the data, it uses lots of small computers, all working simultaneously on different parts of the analysis. Participants download a special screensaver for their home computers, and when the computer is idle, the screensaver kicks in to grab data from UC Berkley, analyze the data and send back a report. SETI@home was launched in May of 1999.

The SETI@home software has now been upgraded to deal with all the new data generated by the updated Arecibo telescope. The telescope can now record radio signals from seven regions of the sky simultaneously instead of just one. It also has greater sensitivity and 40 times more frequency coverage.

So, if the phrase “to search out new life and new civilizations” inspires you, her’s your chance to be part of the largest community of dedicated users of any internet computing project. Currently SETI@home has 170,000 individuals donating time on 320,000 computers.

“Earthlings are just getting started looking at the frequencies in the sky; we’re looking only at the cosmically brightest sources, hoping we are scanning the right radio channels,” said project chief scientist Dan Werthimer. “The good news is, we’re entering an era when we will be able to scan billions of channels. Arecibo is now optimized for this kind of search, so if there are signals out there, we or our volunteers will find them.”

Check out SETI@home here.
Original News Source: UC Berkley Press Release