The Moon has been around since the earliest days of the Solar System. To human beings, there has never been a time when we couldn’t look up in the night sky and either see the Moon hanging there, or know that it would be back the very next night (i.e. a New Moon). And thanks to the development of modern astronomy and space exploration, our understanding of the Moon has grown immensely.
For instance, we know that the Moon formed early in Earth’s history, and that it may have played an important role in the development of life here on Earth. We’ve also learned that Moon is tidally-locked with Earth, which means that one side is constantly facing towards it. But how long is a day on the Moon? With one side facing the Earth and the other side facing out, what constitutes a single day on the lunar surface?
To break it down simply, a day on the Moon lasts as long as 29.5 Earth days. In other words, if you were standing on the surface of the Moon, it would take 29.5 days for the Sun to move all the way across the sky and return to its original position again. However, as with all bodies in the Solar System, distinguishing between different types of days (based on different types of periods) is necessary.
Orbit and Rotation:
Since ancient times, lunar calendars have been based on thirteen months of 28 days each, reflecting the lunar cycle. But as astronomers have discovered from centuries of studying the Moon’s behavior, the Moon’s orbital period (i.e. the time it takes for the Moon to complete a single orbit around the Earth) is actually the equivalent of about 27.3 Earth days – or 27 days 7 hours 43 minutes and 11.5 seconds, to be precise.
And while the Moon rotates on its own axis, the speed at which it rotates (aka. it’s sidereal rotation) is very slow. In fact, it takes the Moon the equivalent of 27.3 Earth days to complete a single rotation on its axis, the same amount of time it takes to complete a single orbit around Earth. What this means is that the Moon is tidally-locked with Earth.
In other words, the Moon always points the same face towards the Earth, which is why human beings are so familiar with the “face” of the Moon, and refer to the side that faces away from us as the “the dark side”. Therefore, if you were standing on the surface of the Moon, you would always see the Earth in exactly the same position, while the stars and the Sun would continue to move around in the sky.
Sidereal vs. Synodic Day:
However, the Moon’s sidereal rotation is not where we get a the value of a single lunar day from. While it takes 27.3 days for it to orbit the Earth, we have to keep in mind that the Earth is also orbiting the Sun. The Earth returns to its same position in orbit every 365 days. So in order for the Sun to catch up to its same position in the sky from the perspective of the Moon, it has to turn a little more.
The extra 2.2 days is the time for the Moon to catch up in its rotation. And while the amount of time the Moon takes to complete one turn on its axis with respect to the stars is 27.3 days (a sidereal day), the amount of time it takes for the Sun to return to the same position in the sky is called a synodic day, and that’s what takes 29.5 days.
Ergo, a single day on the Moon, with respect to the Sun returning to the same position in the sky, is actually about as long as an average month here on Earth. So if people are planning on living there someday, and aren’t living in the permanently shadowed craters that exist in the southern and norther polar regions, that’s something they might have to get used to.
As with all the bodies of the Solar System, it all comes down to a matter of perspective. And if you’re living on the Moon, your perspective on what constitutes a day will be vastly different from that of a person who was born on Earth.
You may have heard the saying at some point in your life: “The Sun will still rise in the east and set in the west tomorrow.” You get the point, it means it’s not the end of the world. But have you ever wondered why the Sun behaves this way? Why does – and always has, for that matter – the Sun rise in the east and set in the west? What mechanics are behind this?
Naturally, ancient people took the passage of the Sun through the sky as a sign that it was revolving around us. With the birth of modern astronomy, we have come to learn that its actually the other way around. The Sun only appears to be revolving around us because our planet not only orbits it, but also rotates on its axis as it is doing so. From this, we get the familiar passage of the Sun through the sky, and the basis for our measurement of time.
Earth’s Rotation:
As already noted, the Earth rotates on its axis as it circles the Sun. If viewed from above the celestial north, the Earth would appear to be rotating counter-clockwise. Because of this, to those standing on the Earth’s surface, the Sun appears to be moving around us in a westerly direction at a rate of 15° an hour (or 15′ a minute). This is true of all celestial objects observed in the sky, with an “apparent motion” that takes them from east to west.
This is also true of the majority of the planets in the Solar System. Venus is one exception, which rotates backwards compared to its orbit around the Sun (a phenomena known as retrograde motion). Uranus is another, which not only rotates westward, but is inclined so much that it appears to be sitting on its side relative to the Sun.
Pluto also has a retrograde motion, so for those standing on its surface, the Sun would rise in the west and set in the east. In all cases, a large impact is believed to be the cause. In essence, Pluto and Venus were sent spinning in the other direction by a large impact, while another struck Uranus and knocked it over on its side!
With a rotational velocity of 1,674.4 km/h (1,040.4 mph), the Earth takes 23 hours, 56 minutes and 4.1 seconds to rotate once on its axis. This means, in essence, that a sidereal day is less than 24 hours. But combined with its orbital period (see below), a solar day – that is, the time it takes for the Sun to return to the same place in the sky – works out to 24 hours exactly.
Earth’s Orbit Around the Sun:
With an average orbital velocity of 107,200 km/h (66,600 mph), the Earth takes approximately 365.256 days – aka. a sidereal year – to complete a single orbit of the Sun. This means that every four years (in what is known as a Leap Year), the Earth calendar must include an extra day.
Viewed from the celestial north, the motion of the Earth appears to orbit the Sun in a counterclockwise direction. Combined with its axial tilt – i.e. the Earth’s axis is tilted 23.439° towards the ecliptic – this results in seasonal changes. In addition to producing variations in terms of temperature, this also results in variations in the amount of sunlight a hemisphere receives during the course of a year.
Basically, when the North Pole is pointing towards the Sun, the northern hemisphere experiences summer and the southern hemisphere experiences winter. During the summer, the climate warms up and the sun appears earlier in the morning sky and sets at a later hour in the evening. In the winter, the climate becomes generally cooler and the days are shorter, with sunrise coming later and sunset happening sooner.
Above the Arctic Circle, an extreme case is reached where there is no daylight at all for part of the year – up to six months at the North Pole itself, which is known as a “polar night”. In the southern hemisphere, the situation is exactly reversed, with the South Pole experiencing a “midnight sun” – i.e. a day of 24 hours.
And last, but not least, seasonal changes also result in changes in the Sun’s apparent motion across the sky. During summer in the northern hemisphere, the Sun appears to move from east to west directly overhead, while moving closer to the southern horizon during winter. During summer in the southern hemisphere, the Sun appears to move overhead; while in the winter, it appears to be closer to the northern horizon.
In short, the Sun rises in the east and sets in the west because of our planet’s rotation. During the course of the year, the amount of daylight we experience is mitigated by our planet’s tilted axis. If, like Venus, Uranus and Pluto, a large enough asteroid or celestial object were to strike us just right, the situation might be changed. We too could experience what it is like to watch the Sun rise in the west, and set in the east.
Planet Earth. That shiny blue marble that has fascinated humanity since they first began to walk across its surface. And why shouldn’t it fascinate us? In addition to being our home and the place where life as we know it originated, it remains the only planet we know of where life thrives. And over the course of the past few centuries, we have learned much about Earth, which has only deepened our fascination with it.
But how much does the average person really know about the planet Earth? You’ve lived on Planet Earth all of your life, but how much do you really know about the ground underneath your feet? You probably have lots of interesting facts rattling around in your brain, but here are 10 more interesting facts about Earth that you may, or may not know.
1. Plate Tectonics Keep the Planet Comfortable:
Earth is the only planet in the Solar System with plate tectonics. Basically, the outer crust of the Earth is broken up into regions known as tectonic plates. These are floating on top of the magma interior of the Earth and can move against one another. When two plates collide, one plate will subduct (go underneath another), and where they pull apart, they will allow fresh crust to form.
This process is very important, and for a number of reasons. Not only does it lead to tectonic resurfacing and geological activity (i.e. earthquakes, volcanic eruptions, mountain-building, and oceanic trench formation), it is also intrinsic to the carbon cycle. When microscopic plants in the ocean die, they fall to the bottom of the ocean.
Over long periods of time, the remnants of this life, rich in carbon, are carried back into the interior of the Earth and recycled. This pulls carbon out of the atmosphere, which makes sure we don’t suffer a runaway greenhouse effect, which is what happened on Venus. Without the action of plate tectonics, there would be no way to recycle this carbon, and the Earth would become an overheated, hellish place.
2. Earth is Almost a Sphere:
Many people tend to think that the Earth is a sphere. In fact, between the 6th cenury BCE and the modern era, this remained the scientific consensus. But thanks to modern astronomy and space travel, scientists have since come to understand that the Earth is actually shaped like a flattened sphere (aka. an oblate spheroid).
This shape is similar to a sphere, but where the poles are flattened and the equator bulges. In the case of the Earth, this bulge is due to our planet’s rotation. This means that the measurement from pole to pole is about 43 km less than the diameter of Earth across the equator. Even though the tallest mountain on Earth is Mount Everest, the feature that’s furthest from the center of the Earth is actually Mount Chimborazo in Ecuador.
3. Earth is Mostly Iron, Oxygen and Silicon:
If you could separate the Earth out into piles of material, you’d get 32.1 % iron, 30.1% oxygen, 15.1% silicon, and 13.9% magnesium. Of course, most of this iron is actually located at the core of the Earth. If you could actually get down and sample the core, it would be 88% iron. And if you sampled the Earth’s crust, you’d find that 47% of it is oxygen.
When astronauts first went into the space, they looked back at the Earth with human eyes for the first time. Based on their observations, the Earth acquired the nickname the “Blue Planet:. And it’s no surprise, seeing as how 70% of our planet is covered with oceans. The remaining 30% is the solid crust that is located above sea level, hence why it is called the “continental crust”.
5. The Earth’s Atmosphere Extends to a Distance of 10,000 km:
Earth’s atmosphere is thickest within the first 50 km from the surface or so, but it actually reaches out to about 10,000 km into space. It is made up of five main layers – the Troposphere, the Stratosphere, the Mesosphere, the Thermosphere, and the Exosphere. As a rule, air pressure and density decrease the higher one goes into the atmosphere and the farther one is from the surface.
The bulk of the Earth’s atmosphere is down near the Earth itself. In fact, 75% of the Earth’s atmosphere is contained within the first 11 km above the planet’s surface. However, the outermost layer (the Exosphere) is the largest, extending from the exobase – located at the top of the thermosphere at an altitude of about 700 km above sea level – to about 10,000 km (6,200 mi). The exosphere merges with the emptiness of outer space, where there is no atmosphere.
The exosphere is mainly composed of extremely low densities of hydrogen, helium and several heavier molecules – including nitrogen, oxygen and carbon dioxide. The atoms and molecules are so far apart that the exosphere no longer behaves like a gas, and the particles constantly escape into space. These free-moving particles follow ballistic trajectories and may migrate in and out of the magnetosphere or with the solar wind.
Want more planet Earth facts? We’re halfway through. Here come 5 more!
6. The Earth’s Molten Iron Core Creates a Magnetic Field:
The Earth is like a great big magnet, with poles at the top and bottom near to the actual geographic poles. The magnetic field it creates extends thousands of kilometers out from the surface of the Earth – forming a region called the “magnetosphere“. Scientists think that this magnetic field is generated by the molten outer core of the Earth, where heat creates convection motions of conducting materials to generate electric currents.
Be grateful for the magnetosphere. Without it, particles from the Sun’s solar wind would hit the Earth directly, exposing the surface of the planet to significant amounts of radiation. Instead, the magnetosphere channels the solar wind around the Earth, protecting us from harm. Scientists have also theorized that Mars’ thin atmosphere is due to it having a weak magnetosphere compared to Earth’s, which allowed solar wind to slowly strip it away.
7. Earth Doesn’t Take 24 Hours to Rotate on its Axis:
It actually takes 23 hours, 56 minutes and 4 seconds for the Earth to rotate once completely on its axis, which astronomers refer to as a Sidereal Day. Now wait a second, doesn’t that mean that a day is 4 minutes shorter than we think it is? You’d think that this time would add up, day by day, and within a few months, day would be night, and night would be day.
But remember that the Earth orbits around the Sun. Every day, the Sun moves compared to the background stars by about 1° – about the size of the Moon in the sky. And so, if you add up that little motion from the Sun that we see because the Earth is orbiting around it, as well as the rotation on its axis, you get a total of 24 hours.
This is what is known as a Solar Day, which – contrary to a Sidereal Day – is the amount of time it takes the Sun to return to the same place in the sky. Knowing the difference between the two is to know the difference between how long it takes the stars to show up in the same spot in the sky, and the it takes for the sun to rise and set once.
8. A year on Earth isn’t 365 days:
It’s actually 365.2564 days. It’s this extra .2564 days that creates the need for a Leap Year once ever four years. That’s why we tack on an extra day in February every four years – 2004, 2008, 2012, etc. The exceptions to this rule is if the year in question is divisible by 100 (1900, 2100, etc), unless it divisible by 400 (1600, 2000, etc).
9. Earth has 1 Moon and 2 Co-Orbital Satellites:
As you’re probably aware, Earth has 1 moon (aka. The Moon). Plenty is known about this body and we have written many articles about it, so we won’t go into much detail there. But did you know there are 2 additional asteroids locked into a co-orbital orbits with Earth? They’re called 3753 Cruithne and 2002 AA29, which are part of a larger population of asteroids known as Near-Earth Objects (NEOs).
The asteroid known as 3753 Cruithne measures 5 km across, and is sometimes called “Earth’s second moon”. It doesn’t actually orbit the Earth, but has a synchronized orbit with our home planet. It also has an orbit that makes it look like it’s following the Earth in orbit, but it’s actually following its own, distinct path around the Sun.
Meanwhile, 2002 AA29 is only 60 meters across and makes a horseshoe orbit around the Earth that brings it close to the planet every 95 years. In about 600 years, it will appear to circle Earth in a quasi-satellite orbit. Scientists have suggested that it might make a good target for a space exploration mission.
10. Earth is the Only Planet Known to Have Life:
We’ve discovered past evidence of water and organic molecules on Mars, and the building blocks of life on Saturn’s moon Titan. We can see amino acids in nebulae in deep space. And scientists have speculated about the possible existence of life beneath the icy crust of Jupiter’s moon Europa and Saturn’s moon Titan. But Earth is the only place life has actually been discovered.
But if there is life on other planets, scientists are building the experiments that will help find it. For instance, NASA just announced the creation of the Nexus for Exoplanet System Science (NExSS), which will spend the coming years going through the data sent back by the Kepler space telescope (and other missions that have yet to be launched) for signs of life on extra-solar planets.
Giant radio dishes are currently scan distant stars, listening for the characteristic signals of intelligent life reaching out across interstellar space. And newer space telescopes, such as NASA’s James Webb Telescope, the Transiting Exoplanet Survey Satellite (TESS), and the European Space Agency’s Darwin mission might just be powerful enough to sense the presence of life on other worlds.
But for now, Earth remains the only place we know of where there’s life. Now that is an interesting fact!
Here on Earth, we tend to take time for granted, never suspected that the increments with which we measure it are actually quite relative. The ways in which we measure our days and years, for example, are actually the result of our planet’s distance from the Sun, the time it takes to orbit, and the time it takes to rotate on its axis. The same is true for the other planets in our Solar System.
While we Earthlings count on a day being about 24 hours from sunup to sunup, the length of a single day on another planet is quite different. In some cases, they are very short, while in others, they can last longer than years – sometimes considerably! Let’s go over how time works on other planets and see just how long their days can be, shall we?
A Day On Mercury:
Mercury is the closest planet to our Sun, ranging from 46,001,200 km at perihelion (closest to the Sun) to 69,816,900 km at aphelion (farthest). Since it takes 58.646 Earth days for Mercury to rotate once on its axis – aka. its sidereal rotation period – this means that it takes just over 58 Earth days for Mercury to experience a single day.
However, this is not to say that Mercury experiences two sunrises in just over 58 days. Due to its proximity to the Sun and rapid speed with which it circles it, it takes the equivalent of 175.97 Earth days for the Sun to reappear in the same place in the sky. Hence, while the planet rotates once every 58 Earth days, it is roughly 176 days from one sunrise to the next on Mercury.
What’s more, it only takes Mercury 87.969 Earth days to complete a single orbit of the Sun (aka. its orbital period). This means a year on Mercury is the equivalent of about 88 Earth days, which in turn means that a single Mercurian (or Hermian) year lasts just half as long as a Mercurian day.
What’s more, Mercury’s northern polar regions are constantly in the shade. This is due to it’s axis being tilted at a mere 0.034° (compared to Earth’s 23.4°), which means that it does not experience extreme seasonal variations where days and nights can last for months depending on the season. On the poles of Mercury, it is always dark and shady. So you could say the poles are in a constant state of twilight.
A Day On Venus:
Also known as “Earth’s Twin”, Venus is the second closest planet to our Sun – ranging from 107,477,000 km at perihelion to 108,939,000 km at aphelion. Unfortunately, Venus is also the slowest moving planet, a fact which is made evident by looking at its poles. Whereas every other planet in the Solar System has experienced flattening at their poles due to the speed of their spin, Venus has experienced no such flattening.
Venus has a rotational velocity of just 6.5 km/h (4.0 mph) – compared to Earth’s rational velocity of 1,670 km/h (1,040 mph) – which leads to a sidereal rotation period of 243.025 days. Technically, it is -243.025 days, since Venus’ rotation is retrograde. This means that Venus rotates in the direction opposite to its orbital path around the Sun.
So if you were above Venus’ north pole and watched it circle around the Sun, you would see it is moving clockwise, whereas its rotation is counter-clockwise. Nevertheless, this still means that Venus takes over 243 Earth days to rotate once on its axis. However, much like Mercury, Venus’ orbital speed and slow rotation means that a single solar day – the time it takes the Sun to return to the same place in the sky – lasts about 117 days.
So while a single Venusian (or Cytherean) year works out to 224.701 Earth days, it experiences less than two full sunrises and sunsets in that time. In fact, a single Venusian/Cytherean year lasts as long as 1.92 Venusian/Cytherean days. Good thing Venus has other things in common With Earth, because it is sure isn’t its diurnal cycle!
A Day On Earth:
When we think of a day on Earth, we tend to think of it as a simple 24 hour interval. In truth, it takes the Earth exactly 23 hours 56 minutes and 4.1 seconds to rotate once on its axis. Meanwhile, on average, a solar day on Earth is 24 hours long, which means it takes that amount of time for the Sun to appear in the same place in the sky. Between these two values, we say a single day and night cycle lasts an even 24.
At the same time, there are variations in the length of a single day on the planet based on seasonal cycles. Due to Earth’s axial tilt, the amount of sunlight experienced in certain hemispheres will vary. The most extreme case of this occurs at the poles, where day and night can last for days or months depending on the season.
At the North and South Poles during the winter, a single night can last up to six months, which is known as a “polar night”. During the summer, the poles will experience what is called a “midnight sun”, where a day lasts a full 24 hours. So really, days are not as simple as we like to imagine. But compared to the other planets in the Solar System, time management is still easier here on Earth.
A Day On Mars:
In many respects, Mars can also be called “Earth’s Twin”. In addition to having polar ice caps, seasonal variations , and water (albeit frozen) on its surface, a day on Mars is pretty close to what a day on Earth is. Essentially, Mars takes 24 hours 37 minutes and 22 seconds to complete a single rotation on its axis. This means that a day on Mars is equivalent to 1.025957 days.
The seasonal cycles on Mars, which are due to it having an axial tilt similar to Earth’s (25.19° compared to Earth’s 23.4°), are more similar to those we experience on Earth than on any other planet. As a result, Martian days experience similar variations, with the Sun rising sooner and setting later in the summer and then experiencing the reverse in the winter.
However, seasonal variations last twice as long on Mars, thanks to Mars’ being at a greater distance from the Sun. This leads to the Martian year being about two Earth years long – 686.971 Earth days to be exact, which works out to 668.5991 Martian days (or Sols). As a result, longer days and longer nights can be expected last much longer on the Red Planet. Something for future colonists to consider!
A Day On Jupiter:
Given the fact that it is the largest planet in the Solar System, one would expect that a day on Jupiter would last a long time. But as it turns out, a Jovian day is officially only 9 hours, 55 minutes and 30 seconds long, which means a single day is just over a third the length of an Earth day. This is due to the gas giant having a very rapid rotational speed, which is 12.6 km/s (45,300 km/h, or 28148.115 mph) at the equator. This rapid rotational speed is also one of the reasons the planet has such violent storms.
Note the use of the word officially. Since Jupiter is not a solid body, its upper atmosphere undergoes a different rate of rotation compared to its equator. Basically, the rotation of Jupiter’s polar atmosphere is about 5 minutes longer than that of the equatorial atmosphere. Because of this, astronomers use three systems as frames of reference.
System I applies from the latitudes 10° N to 10° S, where its rotational period is the planet’s shortest, at 9 hours, 50 minutes, and 30 seconds. System II applies at all latitudes north and south of these; its period is 9 hours, 55 minutes, and 40.6 seconds. System III corresponds to the rotation of the planet’s magnetosphere, and it’s period is used by the IAU and IAG to define Jupiter’s official rotation (i.e. 9 hours 44 minutes and 30 seconds)
So if you could, theoretically, stand on the cloud tops of Jupiter (or possibly on a floating platform in geosynchronous orbit), you would witness the sun rising an setting in the space of less than 10 hours from any latitude. And in the space of a single Jovian year, the sun would rise and set a total of about 10,476 times.
A Day On Saturn:
Saturn’s situation is very similar to that of Jupiter’s. Despite its massive size, the planet has an estimated rotational velocity of 9.87 km/s (35,500 km/h, or 22058.677 mph). As such Saturn takes about 10 hours and 33 minutes to complete a single sidereal rotation, making a single day on Saturn less than half of what it is here on Earth. Here too, this rapid movement of the atmosphere leads to some super storms, not to mention the hexagonal pattern around the planet’s north pole and a vortex storm around its south pole.
And, also like Jupiter, Saturn takes its time orbiting the Sun. With an orbital period that is the equivalent of 10,759.22 Earth days (or 29.4571 Earth years), a single Saturnian (or Cronian) year lasts roughly 24,491 Saturnian days. However, like Jupiter, Saturn’s atmosphere rotates at different speed depending on latitude, which requires that astronomers use three systems with different frames of reference.
System I encompasses the Equatorial Zone, the South Equatorial Belt and the North Equatorial Belt, and has a period of 10 hours and 14 minutes. System II covers all other Saturnian latitudes, excluding the north and south poles, and have been assigned a rotation period of 10 hr 38 min 25.4 sec. System III uses radio emissions to measure Saturn’s internal rotation rate, which yielded a rotation period of 10 hr 39 min 22.4 sec.
Using these various systems, scientists have obtained different data from Saturn over the years. For instance, data obtained during the 1980’s by the Voyager 1 and 2 missions indicated that a day on Saturn was 10 hours 39 minutes and 24 seconds long. In 2004, data provided by the Cassini-Huygens space probe measured the planet’s gravitational field, which yielded an estimate of 10 hours, 45 minutes, and 45 seconds (± 36 sec).
In 2007, this was revised by researches at the Department of Earth, Planetary, and Space Sciences, UCLA, which resulted in the current estimate of 10 hours and 33 minutes. Much like with Jupiter, the problem of obtaining accurate measurements arises from the fact that, as a gas giant, parts of Saturn rotate faster than others.
A Day On Uranus:
When we come to Uranus, the question of how long a day is becomes a bit complicated. One the one hand, the planet has a sidereal rotation period of 17 hours 14 minutes and 24 seconds, which is the equivalent of 0.71833 Earth days. So you could say a day on Uranus lasts almost as long as a day on Earth. It would be true, were it not for the extreme axial tilt this gas/ice giant has going on.
With an axial tilt of 97.77°, Uranus essentially orbits the Sun on its side. This means that either its north or south pole is pointed almost directly at the Sun at different times in its orbital period. When one pole is going through “summer” on Uranus, it will experience 42 years of continuous sunlight. When that same pole is pointed away from the Sun (i.e. a Uranian “winter”), it will experience 42 years of continuous darkness.
Hence, you might say that a single day – from one sunrise to the next – lasts a full 84 years on Uranus! In other words, a single Uranian day is the same amount of time as a single Uranian year (84.0205 Earth years).
In addition, as with the other gas/ice giants, Uranus rotates faster at certain latitudes. Ergo, while the planet’s rotation is 17 hours and 14.5 minutes at the equator, at about 60° south, visible features of the atmosphere move much faster, making a full rotation in as little as 14 hours.
A Day On Neptune:
Last, but not least, we have Neptune. Here too, measuring a single day is somewhat complicated. For instance, Neptune’s sidereal rotation period is roughly 16 hours, 6 minutes and 36 seconds (the equivalent of 0.6713 Earth days). But due to it being a gas/ice giant, the poles of the planet rotate faster than the equator.
Whereas the planet’s magnetic field has a rotational speed of 16.1 hours, the wide equatorial zone rotates with a period of about 18 hour. Meanwhile, the polar regions rotate the fastest, at a period of 12 hours. This differential rotation is the most pronounced of any planet in the Solar System, and it results in strong latitudinal wind shear.
In addition, the planet’s axial tilt of 28.32° results in seasonal variations that are similar to those on Earth and Mars. The long orbital period of Neptune means that the seasons last for forty Earth years. But because its axial tilt is comparable to Earth’s, the variation in the length of its day over the course of its long year is not any more extreme.
As you can see from this little rundown of the different planets in our Solar System, what constitutes a day depends entirely on your frame of reference. In addition to it varying depending on the planet in question, you also have to take into account seasonal cycles and where on the planet the measurements are being taken from.
As Einstein summarized, time is relative to the observer. Based on your inertial reference frame, its passage will differ. And when you are standing on a planet other than Earth, your concept of day and night, which is set to Earth time (and a specific time zone) is likely to get pretty confused!