“Hurricane Matthew caused some damage to the exterior of SpaceX’s payload processing facility [PPF] at Space Launch Complex-40 at Cape Canaveral Air Force Station,” SpaceX spokesman John Taylor told Universe Today.
The payload processing facility (PPF) is the facility where the satellites and payloads are processed to prepare them for flight and launches on the firm’s commercial Falcon 9 rockets.
Some exterior panels were apparently blown out by the storm.
The looming threat of a direct hit by the Category 4 storm Hurricane Matthew on Friday, Oct. 7, on Cape Canaveral and the Kennedy Space Center (KSC) forced the closure of both facilities before the storm hit. They remained closed over the weekend except to emergency personal.
The deadly storm also caused some minor damage to the Kennedy Space Center and USAF facilities on the base.
Meanwhile competitor ULA also told me their facilities suffered only minor damage.
The PPF is located on Cape Canaveral Air Force Station, a few miles south of the Falcon 9 launch pad at Space Launch Complex-40 (SLC-40).
The PPF is inside the former USAF Solid Motor Assembly Building (SMAB) used for the now retired Titan IV rockets.
Fortunately, SpaceX has another back-up facility at pad 40 where technicians and engineers can work to prepare the rocket payload for flight.
“The company has a ready and fully capable back-up for processing payloads at its SLC-40 hangar annex building,” Taylor elaborated.
And except for the minor damage to the PPF facility where payloads are processed, SpaceX says there was no other damage to infrastructure at pad 40 or to Launch Complex 39A at the Kennedy Space Center.
“There was no damage the company’s facilities at Pad 39A at Kennedy Space Center,” Taylor told me.
However SLC-40 is not operational at this time, since it was heavily damaged during the Sept. 1 launch pad disaster when a Falcon 9 topped with the Israeli Amos-9 comsat exploded on the launch pad during a routine prelaunch fueling operation and a planned first stage static fire engine test.
As SpaceX was launching Falcon 9 rockets from pad 40, they have been simultaneously renovating and refurbishing NASA’s former shuttle launch pad at Launch Complex 39A at the Kennedy Space Center (KSC) which they leased from NASA.
SpaceX plans to start launching their new Falcon Heavy booster from pad 39A in 2017 as well as human rated launches of the Falcon 9 with the Crew Dragon to the ISS.
However, following the pad 40 disaster, SpaceX announced plans to press pad 39A into service for commercial Falcon 9 satellite launches as well.
SpaceX President Gwynne Shotwell recently said that the company hoped to resume launches in November while they search for a root cause to the pad 40 catastrophe – as I reported here.
Speaking at the annual meeting of the National Academy of Engineering in Washington, D.C. on Oct. 9 Shotwell indicated that investigators are making progress to determine the cause of the mishap.
“We’re homing in on what happened,” she said, according to a story by Space News. “I think it’s going to point not to a vehicle issue or an engineering design issue but more of a business process issue.”
Space News said that she did not elaborate further.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
The Accident Investigation Team (AIT) is composed of SpaceX, the FAA, NASA, the U.S. Air Force, and industry experts.
“At this stage of the investigation, preliminary review of the data and debris suggests that a large breach in the cryogenic helium system of the second stage liquid oxygen tank took place,” SpaceX reported on the firm’s website in today’s anomaly update dated Sept. 23- the first in three weeks.
The helium system is used to pressurize the liquid oxygen tank from inside.
The explosion took place without warning at SpaceX’s Space Launch Complex-40 launch facility at approximately 9:07 a.m. EDT on Sept. 1 on Cape Canaveral Air Force Station, Fl, during a routine fueling test and engine firing test as liquid oxygen and RP-1 propellants were being loade into the 229-foot-tall (70-meter) Falcon 9. Launch of the AMOS-6 comsat was scheduled two days later.
Indeed the time between the first indication of an anomaly to loss of signal was vanishingly short – only about “93 milliseconds” of elapsed time, SpaceX reported.
93 milliseconds amounts to less than 1/10th of a second. That conclusion is based on examining 3,000 channels of data.
SpaceX reported that investigators “are currently scouring through approximately 3,000 channels of engineering data along with video, audio and imagery.”
Both the $60 million SpaceX rocket and the $200 million AMOS-6 Israeli commercial communications satellite payload were completely destroyed in a massive fireball that erupted suddenly during the planned pre-launch fueling and hot fire engine ignition test at pad 40. There were no injuries since the pad had been cleared.
The Sept. 1 calamity also counts as the second time a Falcon 9 has exploded in 15 months and the second time it originated in the second stage and will call into question the rocket’s reliability.
The first failure involved a catastrophic mid air explosion about two and a half minutes after liftoff, when a strut holding the helium tank inside the liquid oxygen tank failed in flight during the Dragon CRS-7 cargo resupply launch for NASA to the International Space Station on June 28, 2015 – and witnessed by this author.
However SpaceX says that although both incidents involved the second stage, they are unrelated – even as they continue seeking to determine the root cause.
“All plausible causes are being tracked in an extensive fault tree and carefully investigated. Through the fault tree and data review process, we have exonerated any connection with last year’s CRS-7 mishap.”
And they are thoroughly reviewing all rocket components.
“At SpaceX headquarters in Hawthorne, CA, our manufacturing and production is continuing in a methodical manner, with teams continuing to build engines, tanks, and other systems as they are exonerated from the investigation.”
But SpaceX will have to conduct an even more thorough analysis of every aspect of their designs and manufacturing processes and supply chain exactly because the cause of this disaster is different and apparently went undetected during the CRS-7 accident review.
And before Falcon 9 launches are allowed to resume, the root cause must be determined, effective fixes must be identified and effective remedies must be verified and implemented.
Large scale redesign of the second stage helium system may be warranted since two independent failure modes have occurred. Others could potentially be lurking. It’s the job of the AIT to find out – especially because American astronauts will be flying atop this rocket to the ISS starting in 2017 or 2018 and their lives depend on its being reliable and robust.
After the last failure in June 2015, it took nearly six months before Falcon 9 launches were resumed.
Launches were able to recommence relatively quickly because the June 2015 disaster took place at altitude and there was no damage to pad 40.
That’s not the case with the Sept. 1 calamity where pad 40 suffered significant damage and will be out of action for quite a few months at least as the damage is catalogued and evaluated. Then a repair, refurbishment, testing and recertification plan needs to be completed to rebuild and return pad 40 to flight status. Furthermore SpaceX will have to manufacture a new transporter-erector.
Since the explosion showered debris over a wide area, searchers have been prowling surrounding areas and other nearby pads at the Cape and Kennedy Space Center, hunting for evidentiary remains that could provide clues or answers to the mystery of what’s at the root cause this time.
Searchers have recovered “the majority of debris from the incident has been recovered, photographed, labeled and catalogued, and is now in a hangar for inspection and use during the investigation.”
To date they have not found any evidence for debris beyond the immediate area of LC-40, the company said.
SpaceX CEO Elon Musk had previously reported via twitter that the rocket failure originated somewhere in the upper stage near the liquid oxygen (LOX) tank during fueling test operations at the launch pad, for what is known as a hot fire engine ignition test of all nine first stage Merlin 1D engines.
Engineers were in the final stages of loading the liquid oxygen (LOX) and RP-1 kerosene propellants that power the Falcon 9 first stage for the static fire test which is a full launch dress rehearsal. The anomaly took place about 8 minutes before the planned engine hot fire ignition.
And the incident took place less than two days before the scheduled Falcon 9 launch of AMOS-6 on Sept. 3 from pad 40.
The explosion also caused extensive damage to the launch pad as well as to the rockets transporter erector, or strongback, that holds the rocket in place until minutes before liftoff, and ground support equipment (GSE) around the pad – as seen in my recent photos of the pad taken a week after the explosion during the OSIRIS-REx launch campaign.
Fortunately, many other pad areas and infrastructure survived intact or in “good condition.”
“While substantial areas of the pad systems were affected, the Falcon Support Building adjacent to the pad was unaffected, and per standard procedure was unoccupied at the time of the anomaly. The new liquid oxygen farm – e.g. the tanks and plumbing that hold our super-chilled liquid oxygen – was unaffected and remains in good working order. The RP-1 (kerosene) fuel farm was also largely unaffected. The pad’s control systems are also in relatively good condition.”
The rocket disaster was coincidentally captured as it unfolded in stunning detail in a spectacular up close video recorded by my space journalist colleague Mike Wagner at USLaunchReport.
Watch this video:
Video Caption: SpaceX – Static Fire Anomaly – AMOS-6 – 09-01-2016. Credit: USLaunchReport
Even as investigators and teams of SpaceX engineers sift through the data and debris looking for the root cause of the helium tank breach, other SpaceX engineering teams and workers prepare to restart launches from the other SpaceX pad on the Florida Space Coast- namely Pad 39A on the Kennedy Space Center.
So the ambitious aerospace firm is already setting its sights on a ‘Return to Flight’ launch as early as November of this year, SpaceX President Gwynne Shotwell said on Sept. 13 at a French space conference.
“We’re anticipating getting back to flight, being down for about three months, so getting back to flight in November, the November timeframe,” Shotwell announced during a panel discussion at the World Satellite Business Week Conference in Paris, France – as reported here last week.
SpaceX reconfirmed the November target today.
“We will work to resume our manifest as quickly as responsible once the cause of the anomaly has been identified by the Accident Investigation Team.”
“Pending the results of the investigation, we anticipate returning to flight as early as the November timeframe.”
As SpaceX was launching from pad 40, they have been simultaneously renovating and refurbishing NASA’s former shuttle launch pad at Launch Complex 39A at the Kennedy Space Center (KSC) – from which the firm hopes to launch the new Falcon Heavy booster in 2017 as well as human rated launches of the Falcon 9 with the Crew Dragon to the ISS.
So now SpaceX will utilize pad 39A for commercial Falcon 9 launches as well. But much works remains to finish pad work as I recently witnessed.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
“We’re anticipating getting back to flight, being down for about three months, so getting back to flight in November, the November timeframe,” Shotwell announced on Sept. 13, during a panel discussion at the World Satellite Business Week Conference being held in Paris, France.
The catastrophic Sept. 1 launch pad explosion took place without warning at SpaceX’s Space Launch Complex-40 launch facility at approximately 9:07 a.m. EDT on Cape Canaveral Air Force Station, Fl during a routine fueling test.
Both the $60 million SpaceX rocket and the $200 million AMOS-6 Israeli commercial communications satellite payload were completely destroyed in a massive fireball that erupted suddenly during a routine and planned pre-launch fueling and engine ignition test at pad 40 on Sept. 1.
However, SpaceX is still seeking to determine the root cause of the catastrophe, which must be fully determined, corrected and rectified before any new Falcon 9 launches can actually occur.
Indeed nailing down the root cause has thus far confounded SpaceX investigators and was labeled as the “most difficult and complex failure” in its history said SpaceX CEO and Founder Elon Musk in a series of update tweets on Sept. 9. He also sought the public’s help in ascertaining the elusive cause via any audio/video recordings.
The rocket failure originated somewhere in the upper stage near the liquid oxygen (LOX) tank during fueling test operations at the launch pad, for what is known as a hot fire engine ignition test of all nine first stage Merlin 1D engines, said Musk.
Engineers were in the final stages of loading the liquid oxygen (LOX) and RP-1 kerosene propellants that power the Falcon 9 first stage for the static fire test which is a full launch dress rehearsal. The anomaly took place about 8 minutes before the planned engine hot fire ignition.
Shotwell also stated that the launch would occur from SpaceX’s other Florida Space Coast launch pad – namely the former Space Shuttle Launch Complex 39A on the Kennedy Space Center.
SpaceX also operates a third launch pad at Vandenberg Air Force Base in California.
“We would launch from the East Coast on Pad 39A in the November timeframe. And then Vandenberg would be available … for our other assorted customers,” Shotwell stated.
SpaceX has signed a long term lease with NASA to use Pad 39A.
Shotwell did not say which payload would be the first to launch.
The incident took place less than two days before the scheduled Falcon 9 launch of AMOS-6 on Sept. 3 from pad 40.
The Sept. 1 calamity disaster also counts as the second time a Falcon 9 has exploded in 15 months and will call into question the rocket’s reliability. The first failure involved a catastrophic mid air explosion about two and a half minutes after liftoff, during the Dragon CRS-9 cargo resupply launch for NASA to the International Space Station on June 28, 2015 – and witnessed by this author.
While launching from pad 40, SpaceX has simultaneously been renovating and refurbishing NASA’s former shuttle launch at Complex 39A – from which the firm hopes to launch the new Falcon Heavy booster as well as human rated launches of the Falcon 9 with the Crew Dragon to the ISS.
SpaceX will have to finish the pad 39A upgrades soon in order to have any hopes of achieving a November return to flight launch date, and a lot of work remains to be done. For example the shuttle era Rotating Service Structure (RSS) is still standing. The timing for its demolishment has not been announced, according to a source.
Prior to launching from 39A, SpaceX would presumably roll out a Falcon 9 rocket to conduct fit checks and conduct a full launch dress rehearsal and first stage static hot fire engine test to confirm that all the newly installed equipment, gear and fueling lines, pumps, etc. are fully functional, operational and safe.
The rocket disaster was coincidentally captured as it unfolded in stunning detail in a spectacular up close video recorded by my space journalist colleague at USLaunchReport – shown below.
Here is the full video from my space journalist friend and colleague Mike Wagner of USLaunchReport:
Video Caption: SpaceX – Static Fire Anomaly – AMOS-6 – 09-01-2016. Credit: USLaunchReport
The 229-foot-tall (70-meter) SpaceX Falcon 9 had been slated for an overnight blastoff on Saturday, September 3 at 3 a.m. from pad 40 with the 6 ton AMOS-6 telecommunications satellite valued at some $200 million.
The AMOS-6 communications satellite was built by Israel Aerospace Industries for Space Communication Ltd. It was planned to provide communication services including direct satellite home internet for Africa, the Middle East and Europe.
The Falcon 9 rocket and AMOS-6 satellite were swiftly consumed in a huge fireball and thunderous blasts accompanied by a vast plume of smoke rising from the wreckage that was visible for many miles around the Florida Space Coast.
“Loss of Falcon vehicle today during propellant fill operation,” Musk tweeted several hours after the launch pad explosion.
“Originated around upper stage oxygen tank. Cause still unknown. More soon.”
The explosion also caused extensive damage to the rockets transporter erector, or strongback, that holds the rocket in place until minutes before liftoff, and ground support equipment (GSE) around the pad – as seen in my new photos of the pad taken a week after the explosion.
Dangling cables and gear such as pulley’s and more can clearly be seen to still be present as the strongback remains raised at pad 40. The strongback raises the rocket at the pad and also houses multiple umbilical line for electrical power, purge gases, computer communications and more.
One of the four lightning masts is also visibly burnt and blackened – much like what occurred after the catastrophic Orbital ATK Antares rocket exploded moments after liftoff from a NASA Wallops launch pad on Oct 28, 2014 and witnessed by this author.
Black soot also appears to cover some area of the pads ground support equipment in the new photos.
So it’s very likely that repairs to and re-certification of pad 40 will take at least several months.
And Shotwell pointed to the numerous successful SpaceX launches in her conference remarks.
“So now let’s look to the good. We did have an extraordinary launch year. We launched 9 times in just under 8 months, in the past year successfully,” Shotwell elaborated.
Shotwell was referring to the upgraded, full thrust version of the Falcon 9 first launched in Dec. 2015
“We rolled out a new vehicle, which we flew last December. And that vehicle was the vehicle that was designed to land.”
“And so we did recover the first stage six times. Twice back on land. And four times on the droneship. Which I think is an extraordinary move for the industry.”
“I don’t know that everyone appreciates it, but certainly that is a leap forward in launches for our customers.”
CAPE CANAVERAL AIR FORCE STATION, FL – More than a week after the catastrophic launch pad explosion that eviscerated a SpaceX Falcon 9 rocket during a fueling test, the bold and burgeoning aerospace firm is still confounded by the “most difficult and complex failure” in its history, and is asking the public for help in nailing down the elusive cause – says SpaceX CEO and Founder Elon Musk in a new series of tweets, that also seeks the public’s help in the complex investigation.
“Turning out to be the most difficult and complex failure we have ever had in 14 years,” Musk tweeted on Friday, Sept. 9 about the disaster that took place without warning on Space Launch Complex-40 at approximately 9:07 a.m. EDT on Cape Canaveral Air Force Station, Fl. on Sept. 1, 2016.
Both the $60 million SpaceX rocket and the $200 million AMOS-6 Israeli commercial communications satellite payload were completely destroyed in a massive fireball that erupted suddenly during a routine and planned pre-launch fueling and engine ignition test at pad 40 on Wednesday morning Sep. 1.
“Still working on the Falcon fireball investigation,” Musk stated.
Check out my new up close photos of launch pad 40 herein – showing dandling cables and pad damage – taken over the past few days during NASA’s OSIRIS-REx launch campaign which successfully soared to space on Sept 8. from the adjacent pad at Space Launch Complex-41.
The rocket failure originated somewhere in the upper stage during fueling test operations at the launch pad for what is known as a hot fire engine ignition test of all nine first stage Merlin 1D engines, said Musk.
However, the countdown dress rehearsal had not yet reached the point of ignition and the Merlin engines were still several minutes away from typically firing for a few seconds as the rocket was to be held down during the pre-planned hot fire test.
“Important to note that this happened during a routine filling operation. Engines were not on and there was no apparent heat source,” Musk elaborated.
Engineers were in the final stages of loading the liquid oxygen (LOX) and RP-1 kerosene propellants that power the Falcon 9 first stage for the static fire test which is a full launch dress rehearsal.
The explosion mystery and its root causes are apparently so deep that SpaceX is asking the public for help by sending in “any recordings of the event” which may exist, beyond what is already known.
“If you have audio, photos or videos of our anomaly last week, please send to [email protected]. Material may be useful for investigation,” Musk requested by twitter.
Indications of an initial “bang” moments before the calamity are also bewildering investigators.
“Particularly trying to understand the quieter bang sound a few seconds before the fireball goes off. May come from rocket or something else.”
The explosion is also being jointly investigated by multiple US Federal agency’s.
“Support & advice from @NASA, @FAA, @AFPAA & others much appreciated. Please email any recordings of the event to [email protected].”
The incident took place less than two days before the scheduled Falcon 9 launch on Sept. 3.
It also caused extensive damage to the rockets transporter erector, or strongback, that holds the rocket in place until minutes before liftoff, and ground support equipment (GSE) around the pad – as seen in my new photos of the pad taken a week after the explosion.
Dangling cables and gear such as pulley’s and more can clearly be seen to still be present as the strongback remains raised at pad 40. The strongback raises the rocket at the pad and also houses multiple umbilical line for electrical power, purge gases, computer communications and more.
One of the four lightning masts is also visibly burnt and blackened – much like what occurred after the catastrophic Orbital ATK Antares rocket exploded moments after liftoff from a NASA Wallops launch pad on Oct 28, 2014 and witnessed by this author.
Black soot also appears to cover some area of the pads ground support equipment in the new photos.
US Air Force personnel immediately jumped into action to assess the situation, set up roadblocks and look for signs of blast debris and “detect, dispose and render safe any possible explosive threats.”
However SpaceX has not released a full description of the damage to the pad and GSE. It cost approximately $15 Million to repair the Antares pad and flights have not yet resumed – nearly 2 years after that disaster.
The rocket disaster was coincidentally captured as it unfolded in stunning detail in a spectacular up close video recorded by my space journalist colleague at USLaunchReport – shown below.
Here is the full video from my space journalist friend and colleague Mike Wagner of USLaunchReport:
Video Caption: SpaceX – Static Fire Anomaly – AMOS-6 – 09-01-2016. Credit: USLaunchReport
The 229-foot-tall (70-meter) SpaceX Falcon 9 had been slated for an overnight blastoff on Saturday, September 3 at 3 a.m. from pad 40 with the 6 ton AMOS-6 telecommunications satellite valued at some $200 million.
The Falcon rocket and AMOS-6 satellite were swiftly consumed in a huge fireball and thunderous blasts accompanied by a vast plume of smoke rising from the wreckage that was visible for many miles around the Florida Space Coast.
“Loss of Falcon vehicle today during propellant fill operation,” Musk tweeted several hours after the launch pad explosion.
“Originated around upper stage oxygen tank. Cause still unknown. More soon.”
Thankfully there were no injuries to anyone – because the pad is always cleared of all personnel during these types of extremely hazardous launch complex operations.
“The anomaly originated around the upper stage oxygen tank and occurred during propellant loading of the vehicle. Per standard operating procedure, all personnel were clear of the pad and there were no injuries,” SpaceX reported in a statement.
“We are continuing to review the data to identify the root cause. Additional updates will be provided as they become available.”
This also marks the second time a Falcon 9 has exploded in 15 months and will call into question the rocket’s reliability. The first failure involved a catastrophic mid air explosion about two and a half minutes after liftoff, during the Dragon CRS-9 cargo resupply launch for NASA to the International Space Station on June 28, 2015 – and witnessed by this author.
All SpaceX launches are on hold until a thorough investigation is conducted, the root cause is determined, and effective fixes and remedies are identified and instituted.
After the last failure, it took nearly six months before Falcon 9 launches were resumed.
Any announcement of a ‘Return to Flight’ following this latest launch failure is likely to be some time off given the thus far inscrutable nature of the anomaly.
The planned engine test was being conducted as part of routine preparations for the scheduled liftoff of the Falcon 9 on Saturday, September 3, with an Israeli telecommunications satellite that would have also been used by Facebook.
The AMOS-6 communications satellite was built by Israel Aerospace Industries for Space Communication Ltd. It was planned to provide communication services including direct satellite home internet for Africa, the Middle East and Europe.
SpaceX is simultaneously renovating and refurbishing NASA’s former shuttle launch pad at the Kennedy Space Center at Pad 39A – from which the firm hopes to launch the new Falcon Heavy booster as well as human rated launches of the Falcon 9.
SpaceX has indicated they hope to have the pad upgrades complete by November, but a lot of work remains to be done. For example the shuttle era Rotating Service Structure (RSS) is still standing. The timing for its demolishment has not been announced.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
The SpaceX Falcon 9 rocket that suffered a catastrophic explosion this morning, Thursday, Sept. 1, at Cape Canaveral Air Force Station in Florida was captured in stunning detail in a spectacular video recorded by my space journalist colleague at USLaunchReport.
As seen in the still image above and the full video below, the rocket failure originated somewhere in the upper stage during fueling test operations at the launch pad, less than two days prior to its planned launch on Sept. 3. The rocket was swiftly consumed in a massive fireball and thunderous blasts accompanied by a vast plume of smoke rising from the wreckage visible for many miles.
Both the SpaceX rocket and the $200 million AMOS-6 Israeli commercial communications satellite payload were completely destroyed in the incident. Thankfully there were no injuries to anyone, because the pad is cleared during these types of operations.
It took place during this morning’s prelaunch preparations for a static hot fire test of the nine Merlin 1 D engines powering the Falcon 9 first stage when engineers were loading the liquid oxygen (LOX) and RP-1 kerosene propellants for the test, according to SpaceX CEO Elon Musk.
“Loss of Falcon vehicle today during propellant fill operation,” tweeted SpaceX CEO and founder Elon Musk this afternoon a few hours after the launch pad explosion.
“Originated around upper stage oxygen tank. Cause still unknown. More soon.”
The Falcon 9 explosion occurred at approximately 9:07 a.m. EDT this morning at the SpaceX launch facilities at Space Launch Complex 40 on Cape Canaveral Air Force Station, according to statements from SpaceX and the USAF 45th Space Wing Public Affairs office.
All SpaceX launches will be placed on hold until a thorough investigation is conducted, the root cause is determined, and effective fixes and remedies are identified and instituted.
The planned engine test was being conducted as part of routine preparations for the scheduled liftoff of the Falcon 9 on Saturday, September 3, with an Israeli telecommunications satellite that would have also been used by Facebook.
During the static fire test, which is a full launch dress rehearsal, the rocket is loaded with propellants and is held down at pad 40 while the engines are typically fired for a few seconds.
Here is the full video from my space journalist friend and colleague Mike Wagner of USLaunchReport:
Video Caption: SpaceX – Static Fire Anomaly – AMOS-6 – 09-01-2016. Credit: USLaunchReport
The 229-foot-tall (70-meter) SpaceX Falcon 9 had been slated for an overnight blastoff on Saturday, September 3 at 3 a.m. from pad 40 with the 6 ton AMOS-6 telecommunications satellite valued at some $200 million.
In the video you can clearly see the intensely bright explosion flash near the top of the upper stage that quickly envelopes the entire rocket in a fireball, followed later by multiple loud bangs from the disaster echoing across and beyond the pad.
Seconds later the nose cone and payload break away violently, falling away and crashing into the ground and generating a new round of loud explosions and fires and a vast plume of smoke rising up.
At the end the rocket is quite visibly no longer standing. Only the strongback erector is still standing at pad 40. And both the strongback and the pad structure seems to have suffered significant damage.
This would have been the 9th Falcon 9 launch of 2016.
SpaceX media relations issued this updated statement:
“At approximately 9:07 am ET, during a standard pre-launch static fire test for the AMOS-6 mission, there was an anomaly at SpaceX’s Cape Canaveral Space Launch Complex 40 resulting in loss of the vehicle.”
“The anomaly originated around the upper stage oxygen tank and occurred during propellant loading of the vehicle. Per standard operating procedure, all personnel were clear of the pad and there were no injuries.”
“We are continuing to review the data to identify the root cause. Additional updates will be provided as they become available.”
Listen to my BBC Radio 5 Live interview conducted late this afternoon:
Today’s explosion and the total loss of vehicle and payload will certainly have far reaching consequences for not just SpaceX and the commercial satellite provider and end users, but also NASA, the International Space Station, the US military, and every other customer under a launch contact with the fast growing aerospace firm.
The ISS is impacted because SpaceX is one of two NASA contracted firms launching cargo resupply missions to the ISS – along with Orbital ATK.
Continued operations of the ISS depends on a reliable and robust lifeline of periodic supply trains from SpaceX and Orbital ATK.
In fact the most recent SpaceX Drago cargo freighter launched on the CRS-9 mission to the ISS on July 18 as I witnessed and reported here. And just successfully returned to Earth with 3000 pounds of NASA science cargo and research samples last week on Aug. 26.
The SpaceX Dragon launches to the ISS will be put on hold as the investigation moves forward.
Furthermore SpaceX is manufacturing a Crew Dragon designed to launch astronauts to the ISS atop this same Falcon 9 rocket. So that will also have to be evaluated.
SpaceX is also trying to recover and recycle the Falcon 9 first stage.
To date SpaceX has recovered 6 first stage Falcon 9 boosters by land and by sea.
Indeed as I reported just 2 days ago, SpaceX announced a contract with SES to fly the SES-10 communications satellite on a recycled Falcon 9, before the end of the year and perhaps as soon as October.
But this explosion will set back that effort and force a halt to all SpaceX launches until the root cause of the disaster is determined.
Here’s one of my photos showing the prior SpaceX rocket failure in June 2015 during the CRS-7 cargo delivery mission to the ISS:
Here’s the prior SpaceX Falcon 9 on pad 40 before the successful liftoff with the JCSAT-16 Japanese telecom satellite on Aug. 14, 2016:
The AMOS-6 communications satellite was built by Israel Aerospace Industries for Space Communication Ltd. It was planned to provide communication services including direct satellite home internet for Africa, the Middle East and Europe.
Cape Canaveral Air Force Station Emergency Management quickly provided initial on-scene response and set up roadblocks, said the Air Force in a statement.
“Days like today are difficult for many reasons,” said Brig. Gen. Wayne Monteith, 45th Space Wing commander.
“There was the potential for things to be a lot worse; however, due to our processes and procedures no one was injured as a result of this incident. I am proud of our team and how we managed today’s response and our goal moving forward will be to assist and provide support wherever needed. Space is inherently dangerous and because of that, the Air Force is always ready.”
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
BREAKING NEWS- A SpaceX Falcon 9 rocket and its Israeli commercial satellite payload were completely destroyed this morning, Thursday, September 1, during launch preparations ahead of the scheduled liftoff on Saturday, September 3.
The explosion occurred at approximately 9:07 a.m. this morning at the SpaceX launch facilities at Space Launch Complex 40 on Cape Canaveral Air Force Station, according to a statement from the USAF 45th Space Wing Public Affairs office.
Watch for additional details here and my interview on the BBC as this story is being frequently updated:
There were no injuries reported at this time.
SpaceX was preparing to conduct a routine static fire test of the first stage Merlin 1 D engine when the explosion took place this morning.
SpaceX media relations issued this statement:
“SpaceX can confirm that in preparation for today’s static fire, there was an anomaly on the pad resulting in the loss of the vehicle and its payload. Per standard procedure, the pad was clear and there were no injuries.”
The SpaceX Falcon 9 had been slated for an overnight blastoff on Saturday, September 3 at 3 a.m. from pad 40 with the AMOS-6 telecommunications satellite valued at some $200 million.
SpaceX sells Falcon 9 rockets at a list price of some $60 million.
This would have been the 9th Falcon 9 launch of 2016.
This explosion and the total loss of vehicle and payload will have far reaching consequences for not just SpaceX and the commercial satellite provider, but also NASA, the US military, and every other customer under a launch contact with the aerospace firm.
Here’s my interview with the BBC TV news a short while ago. Note that the cause is under investigation:
SpaceX is also trying to recover and recycle the Falcon 9 first stage.
Indeed as I reported just 2 days ago, SpaceX announce a contract with SES to fly the SES-10 communications satellite on a recycled Falcon 9.
This explosion will set back that effort and force a halt to all SpaceX launches until the root cause is determined.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
CAPE CANAVERAL, FL — The telecommunications giant SES is boldly going where no company has gone before by making history in inking a deal today, Aug. 30, to fly the expensive SES-10 commercial satellite on the first ever launch of a ‘Flight-Proven’SpaceX booster – that’s been used and recovered.
Luxembourg-based SES and Hawthrone, CA-based SpaceX today jointly announced the agreement to “launch SES-10 on a flight-proven Falcon 9 orbital rocket booster” before the end of this year.
“The satellite, which will be in a geostationary orbit and expand SES’s capabilities across Latin America, is scheduled for launch in Q4 2016. SES-10 will be the first-ever satellite to launch on a SpaceX flight-proven rocket booster,” according to a joint statement.
That first launch of a flight-proven Falcon 9 first stage will use the CRS-8 booster that delivered a SpaceX Dragon to the International Space Station in April 2016. The reflight could happen as soon as October 2016.
The deal marks a major milestone and turning point in SpaceX CEO and billionaire founder Elon Musk’s long sought endeavor to turn the science fictionesque quest of rocket reusability into the scientific fact of reality.
“Thanks for the longstanding faith in SpaceX,” tweeted SpaceX CEO Elon Musk after today’s joint SES/SpaceX announcement.
“We very much look forward to doing this milestone flight with you.”
Elon Musk’s goal is to radically slash the cost of launching rockets and access to space via rocket recycling – in a way that will one day lead to his vision of a ‘City on Mars.’
Over just the past 8 months, SpaceX has successfully recovered 6 of the firms Falcon 9 first stage boosters intact – by land and by sea since December 2015 – in hopes of recycling and reusing them with new payloads from paying customers daring enough to take the risk of stepping into the unknown!
SES is that daring company and has repeatedly shown faith in SpaceX. They were the first commercial satellite operator to launch with SpaceX with SES-8 back in October 2013. Earlier this year the firm also launched SES-9 on the recently upgraded full thrust version of Falcon 9 in March 2016.
“Having been the first commercial satellite operator to launch with SpaceX back in 2013, we are excited to once again be the first customer to launch on SpaceX’s first ever mission using a flight-proven rocket. We believe reusable rockets will open up a new era of spaceflight, and make access to space more efficient in terms of cost and manifest management,” said Martin Halliwell, Chief Technology Officer at SES, in the statement.
“This new agreement reached with SpaceX once again illustrates the faith we have in their technical and operational expertise. The due diligence the SpaceX team has demonstrated throughout the design and testing of the SES-10 mission launch vehicle gives us full confidence that SpaceX is capable of launching our first SES satellite dedicated to Latin America into space.”
But the company first has to prove that the used vehicle can survive the extreme and unforgiving stresses of the violent spaceflight environment before they can relaunch it. So they have been carefully inspecting it for structural integrity, checking all the booster systems, plumbing, avionics, etc and retesting the first stage Merlin 1D engines.
Multiple full duration hot fire tests of the fully integrated booster have been conducted at the SpaceX test facility in McGregor, Texas as part of long life endurance testing. This includes igniting all nine used first stage Merlin 1D engines housed at the base of a landed rocket for approximately three minutes.
For the SES-10 launch, SpaceX plans to use the Falcon 9 booster that landed on an ocean going drone ship from NASA’s CRS-8 space station mission launched in April 2016, said Hans Koenigsmann, SpaceX vice president of Flight Reliability, to reporters recently at the Kennedy Space Center during NASA’s CRS-9 cargo launch to the ISS.
SpaceX has derived many lessons learned on how to maximize the chances for a successful rocket recovery, Koenigsmann explained to Universe Today at KSC when I asked for some insight.
“We learned a lot … from the landings,” Hans Koenigsmann, SpaceX vice president of Flight Reliability, told Universe Today during the media briefings for the SpaceX CRS-9 space station cargo resupply launch on July 18.
“There are no structural changes first of all.”
“The key thing is to protect the engines- and make sure that they start up well [in space during reentry],” Koenigsmann elaborated, while they are in flight and “during reentry.”
“And in particular the hot trajectory, so to speak, like the ones that comes in after a fast payload, like the geo-transfer payload basically.”
“Those engines need to be protected so that they start up in the proper way. That’s something that we learned.”
The SpaceX Falcon 9 first stage is outfitted with four landing legs at the base and four grid fins at the top to conduct the landing attempts.
“In general I think the landing concept with the legs, and the number of burns and the way we perform those seems to work OK,” Koenigsmann told me.
“Re-launching a rocket that has already delivered spacecraft to orbit is an important milestone on the path to complete and rapid reusability,” said Gwynne Shotwell, President and Chief Operating Officer of SpaceX.
“SES has been a strong supporter of SpaceX’s approach to reusability over the years and we’re delighted that the first launch of a flight-proven rocket will carry SES-10.”
How much money will SES save by using a spent, recycled first stage Falcon 9 booster?
SpaceX says the price of a completely new Falcon 9 booster is approximately $60 million.
Shotwell has said SpaceX will reduce the cost about 30%. So SES might be saving around $20 million – but there are no published numbers regarding this particular launch contract.
SES-10 will be the first SES satellite wholly dedicated to Latin America.
“The satellite will provide coverage over Mexico, serve the Spanish speaking South America in one single beam, and cover Brazil with the ability to support off-shore oil and gas exploration,” according to SES.
It will replace capacity currently provided by two other satellites, namely AMC-3 and AMC-4, and will “provide enhanced coverage and significant capacity expansion over Latin America – including Mexico, Central America, South America and the Caribbean. The high-powered, tailored and flexible beams will provide direct-to-home broadcasting, enterprise and mobility services.”
It is equipped with a Ku-band payload of 55 36MHz transponder equivalents, of which 27 are incremental. It will be stationed at 67 degrees West.
SES-10 was built by Airbus Defence and Space and is based on the Eurostar E3000 platform. Notably it will use “an electric plasma propulsion system for on-orbit manoeuvres and a chemical system for initial orbit raising and some on-orbit manoeuvres.”
The most recent SpaceX Falcon 9 booster to be recovered followed the dramatic overnight launch of the Japanese JCSAT-16 telecom satellite on Aug. 14.
It was towed back into port on atop the diminutive OCISLY ocean landing platform that measures only about 170 ft × 300 ft (52 m × 91 m). SpaceX formally dubs it an ‘Autonomous Spaceport Drone Ship’ or ASDS.
The 6 successful Falcon upright first stage landings are part of a continuing series of SpaceX technological marvels/miracles rocking the space industry to its core.
SpaceX had already successfully recovered first stages three times in a row at sea earlier this year on the ocean going drone ship barge using the company’s OCISLY Autonomous Spaceport Drone Ship (ASDS) on April 8, May 6 and May 27, prior to JCSAT-16 on Aug. 14.
Two land landings back at Cape Canaveral Landing Zone-1 were accomplished on Dec. 21, 2015 and July 18, 2016.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
A virgin SpaceX Falcon 9 rocket carrying the Japanese JCSAT-16 telecom satellite roared to life past midnight last Sunday, Aug. 14, at 1:26 a.m. EDT and streaked to orbit from Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida.
After the first stage firing was completed, it separated from the second stage, turned around 180 degrees, relit three of its Merlin 1D engines and began descending back to Earth towards the waiting drone ship barge.
Scarcely nine minutes later the 15 story tall first stage completed a pinpoint and upright soft landing on a prepositioned ocean going platform some 400 miles (650 km) off shore of of Florida’s east coast in the Atlantic Ocean., after successfully delivering the Japanese communications satellite to its intended geostationary orbit.
It was towed back into port on Wedenesday, Aug. 16 atop the diminutive ocean landing platform measuring only about 170 ft × 300 ft (52 m × 91 m). SpaceX formally dubs it an ‘Autonomous Spaceport Drone Ship’ or ASDS.
The JCSAT-16 satellite was successfully deployed from the second stage about 32 minutes after liftoff from Cape Canaveral – as the primary objective of this flight.
The secondary experimental objective was to try and recover the first stage booster via a propulsive landing on the ocean-going platform named “Of Course I Still Love You” or OCISLY.
The ocean-going barge is named “Of Course I Still Love You” after a starship from a novel written by Iain M. Banks.
OCISLY and the vertical booster arrived back into Port Canaveral three days later on Wednesday morning, Aug. 17,floating past unsuspecting tourists and pleasure craft.
A heavy duty crane lifted the spent 156-foot-tall (47-meter) booster off the OCISLY barge and onto a restraining cradle within hours of arrival.
Watch this exquisitely detailed video from USLaunchReport showing workers capping the first stage and preparing the booster for craning off the barge on Aug. 17, 2016.
Video Caption: SpaceX – JCSAT-16 – In Port – YouTube 4K – 08-17-2016. Credit: USLaunchReport
One by one, workers then removed all four landing legs over the next two days.
It will be tilted and lowered horizontally and then be placed onto a multi-wheeled transport for shipment back to SpaceX launch processing facilities and hangars at Cape Canaveral for refurbishment, exhaustive engine and structural testing. It will also be washed, stored and evaluated for reuse.
This 6th successful Falcon upright first stage landing – two by land and four by sea – is part of a continuing series of technological marvels/miracles rocking the space industry to its core.
The sextet of intact and upright touchdowns of the recovered 156-foot-tall (47-meter) booster count as stunning successes towards SpaceX founder and CEO Elon Musk’s vision of rocket reusability and radically slashing the cost of sending rockets to space by recovering the boosters and eventually reflying them with new payloads from paying customers.
To date SpaceX had successfully recovered first stages three times in a row at sea earlier this year on the ocean going drone ship barge using the company’s OCISLY Autonomous Spaceport Drone Ship (ASDS) on April 8, May 6 and May 27.
Two land landings back at Cape Canaveral Landing Zone-1 were accomplished on Dec. 21, 2015 and July 18, 2016.
The JCSAT-16 communications satellite was built by Space Systems Loral for Tokyo-based SKY Perfect JSAT Corp. It is equipped Ku-band and Ka-band communications services for customers of SKY Perfect JSAT Corp.
The satellite was launched using the upgraded version of the 229 foot tall Falcon 9 rocket.
Relive the launch via this pair of videos from remote video cameras set at the SpaceX launch pad 40 facility:
Video caption: SpaceX Falcon 9 launch of JCSAT-16 on Aug. 14, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
Video Caption: Launch of the JCSAT-16 communications satellite on a SpaceX Falcon 9 rocket on 8/14/2016 from Pad 40 of CCAFS. Credit: Jeff Seibert
SKY Perfect JSAT Corp. is a leading satellite operator in the Asia – Pacific region. JCSAT-16 will be positioned 22,300 miles (35,800 kilometers) above the equator.
The Aug. 14 launch was the second this year for SKY Perfect JSAT. The JCSAT-14 satellite was already successfully launched earlier this year atop a SpaceX Falcon 9 on May 6.
JCSAT-16 will primarily serve as an on orbit back up spare for the company’s existing services, a company spokeswomen told Universe Today at the media launch viewing site.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
KENNEDY SPACE CENTER, FL – Scarcely three weeks after the mesmerizing midnight launch and landing of a SpaceX Falcon 9 rocket that delivered over two tons of science and critical hardware to the space station for NASA, the innovative firm is set to repeat the back to back space feats – with a few big twists – during a post midnight launch this Sunday, Aug.14 of a Japanese telecom satellite.
In less than 24 hours, a freshly built SpaceX Falcon 9 is set to transform night into day and launch the JCSAT-16 communications satellite from Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida.
And some nine minutes later, the 15 story Falcon 9 first stage is scheduled to make a pinpoint soft landing on a tiny, prepositioned drone ship at sea in the vast Atlantic Ocean.
To date SpaceX has successfully soft landed 5 first stage boosters over the past eight months – two by land and three by sea.
Nighttime liftoffs are always a viewing favorite among the general public – whether visiting from near or far. And this one is virtually certain to offer some spectacular summer fireworks since the weather looks rather promising – if all goes well.
Sunday’s launch window opens at 1:26 a.m. EDT and extends two hours long for the 229 foot tall Falcon 9 rocket. The window closes at 3:26 a.m. EDT.
The commercial mission involves lofting the JCSAT-16 Japanese communications satellite to a Geostationary Transfer Orbit (GTO) for SKY Perfect JSAT – a leading satellite operator in the Asia – Pacific region. JCSAT-16 will be positioned 22,300 miles (35,800 kilometers) above the equator.
Sunday’s launch is the second this year for SKY Perfect JSAT. The JCSAT-14 satellite was already launched earlier this year on May 6.
You can watch the launch live via a special live webcast from SpaceX.
The SpaceX webcast will be available starting at about 20 minutes before liftoff, at approximately 1:06 a.m. EDT at SpaceX.com/webcast
The weather currently looks very good. Air Force meteorologists are predicting an 80 percent chance of favorable weather conditions at launch time in the wee hours early Sunday morning.
The primate concerns are for violations of the Cumulus Cloud and Think Cloud rules.
The U.S. Air Force’s 45th Space Wing will support SpaceX’s Falcon 9 launch of JCSAT-16.
In cases of any delays for technical or weather issues, a backup launch opportunity exists 24 hours later on Monday morning with a 70 percent chance of favorable weather.
The rocket has already been rolled out to the launch pad on the transporter and raised to its vertical position.
The path to launch was cleared following the successful Aug. 10 hold down static fire test of the Falcon 9 first stage Merlin 1-D engines. SpaceX routinely performs the hot fire test to ensure the rocket is ready.
Watch this crystal clear video of the Static Fire Test from USLaunchReport:
Video Caption: SpaceX – JCSAT-16 – Static Fire Test 08-10-2016. On a humid, windless evening at 11 PM, JCSAT-16 gave one good vapor show. Credit: USLaunchReport
Via a fleet of 15 satellites, Tokyo, Japan based SKY Perfect JSAT provides high quality satellite communications to its customers.
The JCSAT-16 communications satellite was designed and manufactured by Space Systems/Loral for SKY Perfect JSAT Corporation.
JCSAT-16 satellite will separate from the second stage and will be deployed about 32 minutes after liftoff from Cape Canaveral. The staging events are usually broadcast live by SpaceX via stunning imagery from onboard video cameras.
A secondary objective is to try and recover the first stage booster via a propulsive landing on an ocean-going platform.
This booster is again equipped with 4 landing legs and 4 grid fins.
Following stage separation, SpaceX will try to soft land the first stage on the “Of Course I Still Love You” drone ship positioned about 400 miles (650 km) off shore of Florida’s east coast in the Atlantic Ocean.
But SpaceX officials say landings from GTO mission destinations are extremely challenging because the first stage will be subject to extreme velocities and re-entry heating.
If all goes well with the supersonic retropropulsion landing on the barge, the booster will arrive back into Port Canaveral a few days later.
To date SpaceX has successfully recovered first stages three times in a row at sea this year on the an ocean going drone ship barge using the company’s OCISLY Autonomous Spaceport Drone Ship (ASDS) on April 8, May 6 and May 27.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Learn more about SpaceX missions, Juno at Jupiter, SpaceX CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:
Aug 12-14: “SpaceX missions/launches to ISS on CRS-9, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings
KENNEDY SPACE CENTER, FL – SpaceX founder Elon Musk’s daring dream of rocket recycling and reusability is getting closer and closer to reality with each passing day. After a breathtaking series of experimental flight tests aimed at safely landing the firms spent Falcon 9 first stages on land and at sea over the past half year the bold effort achieved another major milestone by just completing the first full duration test firing of one of those landed boosters.
On Thursday, July 28, SpaceX engineers successful conducted a full duration static engine test firing of the 156-foot-tall (47-meter) recovered Falcon 9 first stage booster while held down on a test stand at the company’s rocket development test facility in McGregor, Texas. The engines fired up for about two and a half minutes.
The SpaceX team has been perfecting the landing techniques by adopting lessons learned after each landing campaign attempt.
What are the lessons learned so far from the first stage landings and especially the hard landings? Are there any changes being made to the booster structure? How well did the landing burn scenario perform?
During SpaceX’s recent CRS-9 launch campaign media briefings at NASA’s Kennedy Space Center on July 18, I asked SpaceX VP Hans Koenigsmann for some insight.
“We learned a lot … from the landings,” Hans Koenigsmann, SpaceX vice president of Flight Reliability, told Universe Today during the recent media briefings for the SpaceX CRS-9 space station cargo resupply launch on July 18.
“There are no structural changes first of all.”
“The key thing is to protect the engines,” Koenigsmann elaborated, while they are in flight and “during reentry”.
The SpaceX Falcon 9 first stage is outfitted with four landing legs at the base and four grid fins at the top to conduct the landing attempts.
“In general I think the landing concept with the legs, and the number of burns and the way we perform those seems to work OK,” Koenigsmann told Universe Today.
After separating from the second stage at hypersonic speeds of up to some 4000 mph, the first stage engines are reignited to reverse course and do a boost backburn back to the landing site and slow the rocket down for a soft landing, via supersonic retropulsion.
Proper engine performance is critical to enabling a successful touchdown.
“The key thing is to protect the engines – and make sure that they start up well [in space during reentry],” Koenigsmann explained. “And in particular the hot trajectory, so to speak, like the ones that comes in after a fast payload, like the geo-transfer payload basically.”
“Those engines need to be protected so that they start up in the proper way. That’s something that we learned.”
Elon Musk’s goal is to radically slash the cost of launching rockets and access to space via rocket reuse – in a way that will one day lead to his vision of a ‘City on Mars.’
SpaceX hopes to refly a once flown booster later this year, sometime in the Fall, using the ocean landed Falcon from NASA’s CRS-8 space station mission launched in April, says Koenigsmann.
But the company first has to prove that the used vehicle can survive the extreme and unforgiving stresses of the violent spaceflight environment before they can relaunch it.
The July 28 test firing is part of that long life endurance testing and involved igniting all nine used first stage Merlin 1D engines housed at the base of a used landed rocket.
The Falcon 9 first stage generates over 1.71 million pounds of thrust when all nine Merlin engines fire up on the test stand for a duration of up to three minutes – the same as for an actual launch.
Watch the engine test in this SpaceX video:
Video Caption: Falcon 9 first stage from May 2016 JCSAT mission was test fired, full duration, at SpaceX’s McGregor, Texas rocket development facility on July 28, 2016. Credit: SpaceX
Just 10 minutes after launching the JCSAT-14 telecom satellite to a Geostationary Transfer Orbit (GTO), the used first stage relit a first stage Merlin 1D engine.
It conducted a series of three recovery burns to maneuver the rocket to a designated landing spot at sea or on land and rapidly decelerate it from supersonic speeds for a propulsive soft landing, intact and upright using a quartet of landing legs that deploy in the final moments before a slow speed touchdown.
However, although the landing was upright and intact, this particular landing was also classed as a ‘hard landing’ because the booster landed at a higher velocity and Merlin 1D first stage engines did sustain heavy damage as seen in up close photos and acknowledged by Musk.
“Most recent rocket took max damage, due to v high entry velocity. Will be our life leader for ground tests to confirm others are good,” Musk tweeted at the time.
Nevertheless it all worked out spectacularly and this was the first one to be recovered from the much more demanding, high velocity trajectory delivering a satellite to GTO.
Indeed prior to liftoff, Musk had openly doubted a successful landing outcome, since this first stage was flying faster and at a higher altitude at the time of separation from the second stage and thus was much more difficult to slow down and maneuver back to the ocean based platform compared to ISS missions, for example.
So although this one cannot be reflown, it still serves another great purpose for engineers seeking to determining the longevity of the booster and its various components – as now audaciously demonstrated by the July 28 engine test stand firing.
“We learned a lot even on the missions where things go wrong with the landing, everything goes well on the main mission of course,” said Koenigsmann.
Altogether SpaceX has successfully soft landed and recovered five of their first stage Falcon 9 boosters intact and upright since the history making first ever land landing took place just seven months ago in December 2015 at Cape Canaveral Air Force Station in Florida.
See the stupendous events unfold in up close photos and videos herein.
Following each Falcon 9 launch and landing attempt, SpaceX engineers assess the voluminous and priceless data gathered, analyze the outcome and adopt the lessons learned.
CRS-9 marks only the second time SpaceX has attempted a land landing of the 15 story tall first stage booster back at Cape Canaveral Air Force Station – at the location called Landing Zone 1 (LZ 1).
Watch this exquisitely detailed up close video showing the CRS-9 first stage landing at LZ 1, as shot by space colleague Jeff Seibert from the ITL causeway at CCAFS- which dramatically concluded with multiple shockingly loud sonic booms rocketing across the Space Coast and far beyond and waking hordes of sleepers:
Video caption: This was the second terrestrial landing of a SpaceX Falcon 9 booster on July 18, 2016. It had just launched the CRS9 Dragon mission towards the ISS. The landing took place at LZ1, formerly known as Pad 13, located on CCAFS and caused a triple sonic boom heard 50 miles away. Credit: Jeff Seibert
The history making first ever ground landing successfully took place at Landing Zone 1 (LZ 1) on Dec. 22, 2015 as part of the ORBCOMM-2 mission. Landing Zone 1 is built on the former site of Space Launch Complex 13, a U.S. Air Force rocket and missile testing range.
SpaceX also successfully recovered first stages three times in a row at sea this year on an ocean going drone ship barge using the company’s OCISLY Autonomous Spaceport Drone Ship (ASDS) on April 8, May 6 and May 27.
OCISLY is generally stationed approximately 400 miles (650 kilometers) off shore and east of Cape Canaveral, Florida in the Atlantic Ocean. The barge arrives back in port at Port Canaveral several days after the landing, depending on many factors like weather, port permission and the state of the rocket.
The rocket apparently ran out of liquid oxygen fuel in the final moments before touchdown, hit hard, tipped over and pancaked onto the deck.
“Looks like early liquid oxygen depletion caused engine shutdown just above the deck,” Musk explained via twitter at the time.
“Looks like thrust was low on 1 of 3 landing engines. High g landings v sensitive to all engines operating at max.”
“We learned a lot even on the mission where things go wrong with the landing,” Koenigsmann explained. “Everything goes well on the main mission of course.”
“That’s actually something where you have successful deploy and the landing doesn’t quite work- and yet its the landing that gets all the attention.”
“But even on those landings we learned a lot. In particular on the last landing [from Eutelsat launch] we learned a lot.”
“We believe we found a way to operationally protect these engines and to make it safer for them to start up – and to come up to full thrust and stay at full thrust.”
What exactly does “protecting the engines” mean “in flight?”
“Yes I mean protecting the engines during reentry,” Koenigsmann told me.
“That’s when the engines get hot. We enter with the engines facing the flow. So its basically the engines directly exposed to the hot flow. And that’s when you need to protect the engines and the gases and liquids that are in the engines. To make sure that nothing boils off and does funny things.”
“So all in all these series of drone ship landings has been extremely successful, even when we didn’t recover all the first stages [fully intact].”
Watch for Ken’s continuing SpaceX and CRS-9 mission coverage where he reported onsite direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Video caption: SpaceX Falcon 9 lifts off with Dragon CRS-9 resupply ship bound for the International Space Station on July 18, 2016 at 12:45 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl, as seen in this up close video from Mobius remote camera positioned at pad. Credit: Ken Kremer/kenkremer.com
Watch this CRS-9 launch and landing video compilation from space colleague Mike Wagner:
Video caption: SpaceX CRS-9 Launch and Landing compilation on 7/18/2016. Local papers reported 911 calls for a loud explosion up to 75 miles away. This sonic boom seemed louder than the first landing at the Cape in Dec. 2015. Credit: USLaunchReport