Stairway to Heaven! – Boeing Starliner Crew Access Arm’s ‘Awesome’ Launch Pad Installation

A crane lifts the Crew Access Arm and White Room for Boeing's CST-100 Starliner spacecraft for mating to the Crew Access Tower at Cape Canaveral Air Force Station’s Space Launch Complex 41 on Aug. 15, 2016. Astronauts will walk through the arm to board the Starliner spacecraft stacked atop a United Launch Alliance Atlas V rocket. Credit: Ken Kremer/kenkremer.com
A crane lifts the Crew Access Arm and White Room for Boeing's CST-100 Starliner spacecraft for mating to the Crew Access Tower at Cape Canaveral Air Force Station’s Space Launch Complex 41.  Astronauts will walk through the arm to board the Starliner spacecraft stacked atop a United Launch Alliance Atlas V rocket.  Credit: Ken Kremer/kenkremer.com
A crane lifts the Crew Access Arm and White Room for Boeing’s CST-100 Starliner spacecraft for mating to the Crew Access Tower at Cape Canaveral Air Force Station’s Space Launch Complex 41 on Aug. 15, 2016. Astronauts will walk through the arm to board the Starliner spacecraft stacked atop a United Launch Alliance Atlas V rocket. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL — A new ‘Stairway to Heaven’ which American astronauts will soon stride along as “the last place on Earth” departure point aboard our next generation of human spaceships, was at long last hoisted into place at the ULA Atlas rocket launch pad on Florida’s Space Coast on Monday Aug 15, at an “awesome” media event witnessed by space journalists including Universe Today.

“This is awesome,” Chris Ferguson, a former shuttle commander who is now Boeing’s deputy program manager for the company’s Commercial Crew Program told Universe Today in an exclusive interview at the launch pad – after workers finished installing the spanking new Crew Access Arm walkway for astronauts leading to the hatch of Boeing’s Starliner ‘Space Taxi.’

Starliner will ferry crews to and from the International Space Station (ISS) as soon as 2018.

“It’s great to see the arm up there,” Ferguson elaborated to Universe Today. “I know it’s probably a small part of the overall access tower. But it’s the most significant part!”

“We used to joke about the 195 foot level on the shuttle pad as being ‘the last place on Earth.”

“This will now be the new ‘last place on Earth’! So we are pretty charged up about it!” Ferguson gushed.

Up close view of Boeing Starliner Crew Access Arm and White Room craned into place at Crew Access Tower at Cape Canaveral Air Force Station’s Space Launch Complex 41 on Aug. 15, 2016.   Credit: Dawn Leek Taylor
Up close view of Boeing Starliner Crew Access Arm and White Room craned into place at Crew Access Tower at Cape Canaveral Air Force Station’s Space Launch Complex 41 on Aug. 15, 2016. Credit: Dawn Leek Taylor

Under hot sunny skies portending the upcoming restoration of America’s ability to once again launch American astronauts from American soil when American rockets ignite, the newly constructed 50-foot-long, 90,000-pound ‘Crew Access Arm and White Room’ was lifted and mated to the newly built ‘Crew Access Tower’ at Space Launch Complex-41 (SLC-41) on Monday morning, Aug. 15.

“We talked about how the skyline is changing here and this is one of the more visible changes.”

The Boeing CST-100 Starliner crew capsule stacked atop the venerable United Launch Alliance (ULA) Atlas V rocket at pad 41 on Cape Canaveral Air Force Station in Florida will launch crews to the massive orbiting science outpost continuously soaring some 250 miles (400 km) above Earth.

Space workers, enthusiasts and dreamers alike have been waiting years for this momentous day to happen. And I was thrilled to observe all the action firsthand along with the people who made it happen from NASA, United Launch Alliance, Boeing, the contractors – as well as to experience it with my space media colleagues.

“All the elements that we talked about the last few years are now reality,” Ferguson told me.

The Crew Access Arm and White Room for Boeing's CST-100 Starliner spacecraft approaches the notch for mating to the Crew Access Tower at Cape Canaveral Air Force Station’s Space Launch Complex 41 at level 13 on Aug. 15, 2016, as workers observe from upper tower level.  Astronauts will walk through the arm to board the Starliner spacecraft stacked atop a United Launch Alliance Atlas V rocket.  Credit: Ken Kremer/kenkremer.com
The Crew Access Arm and White Room for Boeing’s CST-100 Starliner spacecraft approaches the notch for mating to the Crew Access Tower at Cape Canaveral Air Force Station’s Space Launch Complex 41 at level 13 on Aug. 15, 2016, as workers observe from upper tower level. Astronauts will walk through the arm to board the Starliner spacecraft stacked atop a United Launch Alliance Atlas V rocket. Credit: Ken Kremer/kenkremer.com

Attaching the access arm is vital and visual proof that at long last America means business and that a renaissance in human spaceflight will commence in some 18 months or less when commercially built American crew capsules from Boeing and SpaceX take flight to the heavens above – and a new space era of regular, robust and lower cost space flights begins.

It took about an hour for workers to delicately hoist the gleaming grey steel and aluminum white ‘Stairway to Heaven’ by crane into place at the top of the tower – at one of the busiest launch pads in the world!

It’s about 130 feet above the pad surface since it’s located at the 13th level of the tower.

The install work began at about 7:30 a.m. EDT as we watched a work crew lower a giant grappling hook and attach cables. Then they carefully raised the arm off the launch pad surface by crane. The arm had been trucked to the launch pad on Aug. 11.

The tower itself is comprised of segmented tiers that were built in segments just south of the pad. They were stacked on the pad over the past few months – in between launches. Altogether they form a nearly 200-foot-tall steel structure.

Another crew stationed in the tower about 160 feet above ground waited as the arm was delicately craned into the designated notch. The workers then spent several more hours methodically bolting and welding the arm to the tower to finish the assembly process.

Indeed Monday’s installation of the Crew Access Arm and White Room at pad 41 basically completes the construction of the first new Crew Access Tower at Cape Canaveral Air Force Station since the Apollo moon landing era of the 1960s.

“It is the first new crew access structure at the Florida spaceport since the space shuttle’s Fixed Service Structures were put in place before Columbia’s first flight in 1981,” say NASA officials.

Overall the steel frame of the massive tower weighs over a million pounds. For perspective, destination ISS now weighs in at about a million pounds in low Earth orbit.

Construction of the tower began about 18 months ago.

“You think about when we started building this 18 months ago and now it’s one of the most visible changes to the Cape’s horizon since the 1960s,” said Ferguson at Monday’s momentous media event. “It’s a fantastic day.”

The White Room is an enclosed area at the end of the Crew Access Arm. It big enough for astronauts to make final adjustments to their suits and is spacious enough for technicians to assist the astronauts climbing aboard the spacecraft and get tucked into their seats in the final hours before liftoff.

“You have to stop and celebrate these moments in the craziness of all the things we do,” said Kathy Lueders, manager of NASA’s Commercial Crew Program, at the event. “It’s going to be so cool when our astronauts are walking out across this access arm to get on the spacecraft and go to the space station.”

The Crew Access Arm was built by Saur at NASA’s nearby off site facility at Oak Hill.

And when Starliner takes flight it will hearken back to the dawn of the Space Age.

“John Glenn was the first to fly on an Atlas, now our next leap into the future will be to have astronauts launch from here on Atlas V,” said Barb Egan, program manager for Commercial Crew for ULA.

Boeing is manufacturing Starliner in what is officially known as Boeing’s Commercial Crew and Cargo Processing Facility (C3PF) at the Kennedy Space Center in Florida under contract with NASA’s Commercial Crew Program (CCP).

Hull of the Boeing CST-100 Starliner Structural Test Article (STA)- the first Starliner to be built in the company’s modernized Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Hull of the Boeing CST-100 Starliner Structural Test Article (STA)- the first Starliner to be built in the company’s modernized Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

The Boeing CST 100 Starliner is one of two private astronaut capsules – along with the SpaceX Crew Dragon – being developed under a CCP commercial partnership contract with NASA to end our sole reliance on Russia for crew launches back and forth to the International Space Station (ISS).

The goal of NASA’s Commercial Crew Program since its inception in 2010 is to restore America’s capability to launch American astronauts on American rockets from American soil to the ISS, as soon as possible.

Furthermore when the Boeing Starliner and SpaceX Crew Dragon become operational the permanent resident ISS crew will grow to 7 – enabling a doubling of science output aboard the science laboratory.

This significant growth in research capabilities will invaluably assist NASA in testing technologies and human endurance in its agency wide goal of sending humans on a ‘Journey to Mars’ by the 2030s with the mammoth Space Launch System (SLS) rocket and Orion deep space capsule concurrently under full scale development by the agency.

The next key SLS milestone is a trest firing of the RS-25 main engines at NASA Stennis this Thursday, Aug. 18 – watch for my onsite reports!

Boeing was awarded a $4.2 Billion contract in September 2014 by NASA Administrator Charles Bolden to complete development and manufacture of the CST-100 Starliner space taxi under the agency’s Commercial Crew Transportation Capability (CCtCap) program and NASA’s Launch America initiative.

Since the retirement of NASA’s space shuttle program in 2011, the US was been 100% dependent on the Russian Soyuz capsule for astronauts rides to the ISS at a cost exceeding $70 million per seat.

When will Ferguson actually set foot inside the walkway?

“I am hoping to get up there and walk through there in a couple of weeks or so when it’s all strapped in and done. I want to see how they are doing and walk around.”

How does the White Room fit around Starliner and keep it climate controlled?

“The end of the white room has a part that slides up and down and moves over and slides on top of the spacecraft when it’s in place.”

“There is an inflatable seal that forms the final seal to the spacecraft so that you have all the appropriate humidity control and the purge without the Florida atmosphere inside the crew module,” Ferguson replied.

Up close, mid-air view of Crew Access Tower and front of White Room during installation.  The White Room will fit snugly against Boeing's CST-100 Starliner spacecraft with inflatable seal to maintain climate control and clean conditions as astronauts board capsule atop Atlas rocket hours before launch on  United Launch Alliance Atlas V rocket.  Credit: Ken Kremer/kenkremer.com
Up close, mid-air view of Crew Access Arm and front of White Room during installation. The White Room will fit snugly against Boeing’s CST-100 Starliner spacecraft with inflatable seal to maintain climate control and clean conditions as astronauts board capsule atop Atlas rocket hours before launch on United Launch Alliance Atlas V rocket. Credit: Ken Kremer/kenkremer.com

Boeing and NASA are targeting Feb. 2018 for launch of the first crewed orbital test flight on the Atlas V rocket. The Atlas will be augmented with two solid rocket motors on the first stage and a dual engine Centaur upper stage.

How confident is Ferguson about meeting the 2018 launch target?

“The first crew flight is scheduled for February 2018. I am confident.” Ferguson responded.

“And we have a lot of qualification to get through between now and then. But barring any large unforeseen issues we can make it.”

The Crew Access Tower after installation of the Crew Access Arm and White Room for Boeing's CST-100 Starliner spacecraft on Aug. 15, 2016 at Space Launch Complex 41 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
The Crew Access Tower after installation of the Crew Access Arm and White Room for Boeing’s CST-100 Starliner spacecraft on Aug. 15, 2016 at Space Launch Complex 41 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

As the Boeing Starliner Crew Access Arm and White Room are bolted into place behind us at Space Launch Complex 41, Chris Ferguson, former shuttle commander and current Boeing deputy program manager for Commercial Crew, and Ken Kremer of Universe Today discuss the details and future of human spaceflight on Aug. 15, 2016 at Cape Canaveral Air Force Station.  Credit: Jeff Seibert
As the Boeing Starliner Crew Access Arm and White Room are bolted into place behind us at Space Launch Complex 41, Chris Ferguson, former shuttle commander and current Boeing deputy program manager for Commercial Crew, and Ken Kremer of Universe Today discuss the future of human spaceflight on Aug. 15, 2016 at Cape Canaveral Air Force Station. Credit: Jeff Seibert

Boeing Starts Assembly of 1st Flightworthy Starliner Crew Taxi Vehicle at Kennedy Spaceport

Hull of the Boeing CST-100 Starliner Structural Test Article (STA)- the first Starliner to be built in the company’s modernized Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
Hull of the Boeing CST-100 Starliner Structural Test Article (STA)- the first Starliner to be built in the company’s modernized Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Hull of the Boeing CST-100 Starliner Structural Test Article (STA)- the first Starliner to be built in the company’s modernized Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – The next generation of America’s human spaceships is rapidly taking shape and “making fantastic progress” at the Kennedy Space Center as Boeing and NASA showcased the start of assembly of the first flightworthy version of the aerospace giants Starliner crew taxi vehicle to the media last week. Starliner will ferry NASA astronauts to and from the International Space Station (ISS) by early 2018.

“We are making fantastic progress across the board,” John Mulholland, vice president and program manager of Boeing Commercial Programs, told Universe Today at the July 26 media event in Boeing’s new Starliner factory.

“It so nice to move from design to firm configuration, which was an incredibly important milestone, to now moving into the integrated qual phase of the campaign.”

Boeing is swiftly making tangible progress towards once again flying Americans astronauts to space from American soil as was quite visibly demonstrated when the firm showed off their spanking new Starliner ‘clean-floor factory’ to the media last week, including Universe Today – and it’s already humming with activity by simultaneously building two full scale Starliner crew vehicles.

“We are on track to support launch by the end of 2017 [of the uncrewed orbital test flight],” Mulholland told me.

“The Structural Test Article (STA) crew module is almost ready to be delivered to the test site in California. The service module is already delivered at the test site. So we are ready to move into the qualification campaign.”

“We are also in the middle of component qualification and qualifying more than one component every week as we really progress into assembly, integration and test of flight design spacecrafts.”

Starliner is being manufactured in what is officially known as Boeing’s Commercial Crew and Cargo Processing Facility (C3PF) at the Kennedy Space Center in Florida under contract with NASA’s Commercial Crew Program (CCP).

And the Boeing CST-100 Starliner assembly line aiming to send our astronauts to low Earth orbit and the space station is now operating full speed ahead at KSC.

Formerly known as Orbiter Processing Facility-3, or OPF-3, the facility was previously used as a servicing hanger to prepare NASA’s space shuttle orbiters for flight.

NASA-Boeing Mentor NASA, industry and news media representatives visit the modernized high bay in Boeing's Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida.   Credits: NASA/Kim Shiflett
NASA, industry and news media representatives visit the modernized high bay in Boeing’s Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida. Credits: NASA/Kim Shiflett

The facility has now been completely renovated and refurbished by removing about 11,000 tons of massive steel work platforms that once enshrouded the space shuttle orbiters for servicing and refurbishment for flight – and been transformed into Boeings gleaming white C3PF Starliner manufacturing facility.

Components for the first Starliner that will actually fly in space – known as Spacecraft 1 – began arriving recently at the C3PF. These include the upper and lower domes, as well as the docking hatch for the spacecrafts pressure vessel.

“You can see the beginning of Spacecraft 1. To build it all of the major structural elements are here,” Mulholland explained.

“The lower dome will be populated and get to first power on early next year. We are really looking forward to that. Then we will mate that to the upper dome and start in on the ground qualification on Spacecraft 1.”

Altogether Boeing is fabricating three Starliner flight spacecraft.

“We will start building Spacecraft 2 in the Fall of this year. And then we will start Spacecraft 3 early next year.”

“So we will have three Starliner spacecraft flight crew module builds as we move into the flight campaign.”

The honeycombed upper dome of a Boeing Starliner spacecraft on a work stand inside the company’s Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida. The upper dome is part of Spacecraft 1 , the first flightworthy Starliner being developed in partnership with NASA’s Commercial Crew Program.  Credit: Ken Kremer/kenkremer.com
The honeycombed upper dome of a Boeing Starliner spacecraft on a work stand inside the company’s Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida. The upper dome is part of Spacecraft 1 , the first flightworthy Starliner being developed in partnership with NASA’s Commercial Crew Program. Credit: Ken Kremer/kenkremer.com

Technicians are outfitting these individual components of the pressure vessel with wiring and lines, avionics and other systems, before they are bolted together.

Spacecraft 1 is actually the second Starliner being manufactured at the Kennedy Space Center.

The first full scale Starliner vehicle to be built is known as the Structural Test Article (STA) and is nearing completion.

The lower dome of the Boeing Starliner Spacecraft 1 assembly being outfitted with flight systems like wiring,  lines, avionics in the firm’s Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
The lower dome of the Boeing Starliner Spacecraft 1 assembly being outfitted with flight systems like wiring, lines, avionics in the firm’s Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Notably Spacecraft 1 will be the first Starliner to fly in the company’s pad abort test.

“Spacecraft 1 will go into the ground campaign and then the pad abort,” Mulholland stated.

“The test is designed to prove the launch abort system planned for the spacecraft will be able to lift astronauts away from danger in the event of an emergency during launch operations,” says NASA.

The Pad Abort test is currently slated for October 2017 in New Mexico. Boeing will fly an uncrewed orbital flight test in December 2017 and a crewed orbital flight test in February 2018.

“Spacecraft 3 will be the first to fly in orbit on the uncrewed flight test by the end of 2017,” Mulholland confirmed.

‘Spacecraft 2 will go through a several month long thermal vac testing and EMI and EMC in California in the middle of next year and then go into the crewed flight test [in 2018].”

The rather distinctive, olive colored aluminum domes are manufactured using a weldless spin forming process by Spincraft, based in North Billerica, Massachusetts.

They take on their honeycombed look after being machined for the purposes of reducing weight and increasing strength to handle the extreme stresses of spaceflight. The lower dome is machined by Janicki Industries in Layton, Utah, and the upper dome is machined by Major Tool & Machine in Indianapolis.

Overhead view of the docking hatch for the Boeing Starliner Spacecraft 1 assembly which technicians will soon join to the upper dome in the firm’s Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Overhead view of the docking hatch for the Boeing Starliner Spacecraft 1 assembly which technicians will soon join to the upper dome in the firm’s Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Engineers bolted together the upper and lower domes of Boeings maiden Starliner crew module in early May to form the complete hull of the pressure vessel for the Structural Test Article (STA).

Altogether they are held together by 216 bolts. They have to line up perfectly. And the seals are checked to make sure there are no leaks, which could be deadly in space.

Boeing expects to finish fabricating the STA by August.

The completed Starliner STA will then be transported to Boeing’s facility in Huntington Beach, California for a period of critical stress testing that verifies the capabilities and worthiness of the spacecraft.

“Boeing’s testing facility in Huntington Beach, California has all the facilities to do the structural testing and apply loads. They are set up to test spacecraft,” said Danom Buck, manager of Boeing’s Manufacturing and Engineering team at KSC, during an interview in the C3PF.

“At Huntington Beach we will test for all of the load cases that the vehicle will fly in and land in – so all of the worst stressing cases.”

“So we have predicted loads and will compare that to what we actually see in testing and see whether that matches what we predicted.”

Boeing has also vastly updated the mockup Starliner to reflect the latest spacecraft advances and assist in manufacturing the three planned flight units.

Bastian Technologies built many of the components for the mockup and signed as new 18-month new Mentor-Protégé Program agreement with Boeing and NASA at the media event.

The mock up “is used as a hands-on way to test the design, accessibility and human factors during the early design and development phase of the program. The mock-up is currently being used for rapid fire engineering verification activities, ergonomic evaluations [including the seats and display panels], and crew ingress and egress training,” says NASA.

Looking inside the newly upgraded Starliner mockup with display panel, astronauts seats, gear and hatch at top that will dock to the new International Docking Adapter (IDA) on the ISS.    Credit: Ken Kremer/kenkremer.com
Looking inside the newly upgraded Starliner mockup with display panel, astronauts seats, gear and hatch at top that will dock to the new International Docking Adapter (IDA) on the ISS. Credit: Ken Kremer/kenkremer.com

The Boeing CST 100 Starliner is one of two private astronaut capsules – along with the SpaceX Crew Dragon – being developed under a commercial partnership contract with NASA to end our sole reliance on Russia for crew launches back and forth to the International Space Station (ISS).

The goal of NASA’s Commercial Crew Program (CCP) is to restore America’s capability to launch American astronauts on American rockets from American soil to the ISS, as soon as possible.

Boeing was awarded a $4.2 Billion contract in September 2014 by NASA Administrator Charles Bolden to complete development and manufacture of the CST-100 Starliner space taxi under the agency’s Commercial Crew Transportation Capability (CCtCap) program and NASA’s Launch America initiative.

Since the retirement of NASA’s space shuttle program in 2011, the US was been 100% dependent on the Russian Soyuz capsule for astronauts rides to the ISS at a cost exceeding $70 million per seat.

Starliners will launch to space atop the United Launch Alliance (ULA) Atlas V rocket from pad 41 on Cape Canaveral Air Force Station in Florida.

A United Launch Alliance (ULA) Atlas V rocket carrying the NROL-61 surveillance satellite for the National Reconnaissance Office (NRO) lifts off from Space Launch Complex-41 on July 28, 2016 at 8:37 a.m. EDT from Cape Canaveral Air Force Station, FL.  Credit: Ken Kremer/kenkremer.com
The Boeing Starliner will launch on a United Launch Alliance (ULA) Atlas V rocket similar to the one carrying the NROL-61 surveillance satellite for the National Reconnaissance Office (NRO) from Space Launch Complex-41 on July 28, 2016 at 8:37 a.m. EDT from Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Boeing ‘Starliner’ commercial crew space taxi manufacturing facility marks Grand Opening at the Kennedy Space Center on Sept 4. 2015.   Exterior view depicting newly installed mural for the Boeing Company’s newly named CST-100 ‘Starliner’ commercial crew transportation spacecraft on the company’s Commercial Crew and Cargo Processing Facility (C3PF) at NASA’s Kennedy Space Center in Florida.  Credit: Ken Kremer /kenkremer.com
Boeing ‘Starliner’ commercial crew space taxi manufacturing facility at the Kennedy Space Center. Exterior view depicts mural for the Boeing Company’s recently named CST-100 ‘Starliner’ commercial crew transportation spacecraft on the company’s Commercial Crew and Cargo Processing Facility (C3PF) at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer /kenkremer.com

John Mulholland, vice president and program manager of Boeing Commercial Programs, and Ken Kremer, Universe Today, discuss status and assembly of 1st flightworthy Boeing Starliner by the new Starliner mockup in the Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida.  Starliner will transport US astronauts to the ISS by 2018.  Credit: Julian Leek
John Mulholland, vice president and program manager of Boeing Commercial Programs, and Ken Kremer, Universe Today, discuss status and assembly of 1st flightworthy Boeing Starliner by the new Starliner mockup in the Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida. Starliner will transport US astronauts to the ISS by 2018. Credit: Julian Leek

Crackling Roar of Atlas Rocket Carries Clandestine NRO Surveillance Satellite Aloft From Cape

A United Launch Alliance (ULA) Atlas V rocket carrying the NROL-61 surveillance satellite for the National Reconnaissance Office (NRO) lifts off from Space Launch Complex-41 on July 28, 2016 at 8:37 a.m. EDT from Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V rocket carrying the NROL-61 surveillance satellite for the National Reconnaissance Office (NRO) lifts off from Space Launch Complex-41 on July 28, 2016 at 8:37 a.m. EDT. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V rocket carrying the NROL-61 surveillance satellite for the National Reconnaissance Office (NRO) lifts off from Space Launch Complex-41 on July 28, 2016 at 8:37 a.m. EDT from Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL — Riding atop the crackling roar of an Atlas V rocket, a clandestine surveillance satellite for our nation’s spy masters was carried aloft by a powerful booster from the Florida space coast to an undisclosed orbit at breakfast time today, Thursday, July 28.

The United Launch Alliance (ULA) Atlas V rocket carrying the NROL-61 surveillance satellite for the National Reconnaissance Office (NRO) lifted off from Space Launch Complex-41 right at the appointed time of 8:37 a.m. EDT this morning with approximately 1.5 million pounds of thrust.

The top secret NROL-61 satellite bolted on top and inside the 4 meter diameter nose cone was launched in support of US national defense and is vital to US national security.

“Thank you to the entire mission team for years of hard work and collaboration on today’s successful launch of NROL-61. We are proud the U.S. Air Force and NRO Office of Space Launch have entrusted ULA with delivering this critical asset for our nation’s security,” said Laura Maginnis, ULA vice president of Custom Services, in a statement.

“Our continued one launch at a time focus and exceptional teamwork make launches like today’s successful.”

A United Launch Alliance (ULA) Atlas V rocket carrying the NROL-61 surveillance satellite for the National Reconnaissance Office (NRO) lifts off from Space Launch Complex-41 on July 28, 2016 at 8:37 a.m. EDT. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V rocket carrying the NROL-61 surveillance satellite for the National Reconnaissance Office (NRO) lifts off from Space Launch Complex-41 on July 28, 2016 at 8:37 a.m. EDT from Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

The launch was webcast live by ULA and featured video recorded call in questions about spaceflight from the general public – especially children!

The rocket roared off pad 41 atop an ever expanding plume of smoke and ash into a brilliant and cloudless blue sky under absolutely ideal weather conditions with clear lines of sight enjoyed by hordes of spectators gathered here from near and far, and lining the space coast beaches and surrounding viewing areas.

Many local area hotels were packed with space enthusiasts hoping for a space spectacular at this unusually convenient launch time – and they were not disappointed!!

Because the Atlas rocket was equipped with a pair of powerful solid rocket boosters to augment its liftoff thrust, the smoke plume was visible for as long as we could see it.

ULA Atlas V rocket lifts off with NROL-61 spy satellite for the NRO from pad 41 on July 28, 2016 at 8:37 a.m. EDT. Credit: Julian Leek
ULA Atlas V rocket lifts off with NROL-61 spy satellite for the NRO from pad 41 on July 28, 2016 at 8:37 a.m. EDT. Credit: Julian Leek

The rocket soon arced over, racing southeasterly to orbit and towards the African continent.

Virtually everything about the clandestine payload, its mission, purpose and goals are classified top secret on a mission of vital importance to America’s national security and defense needs.

The NRO is the government agency that runs a vast fleet of powerful orbital assets hosting a multitude of the most advanced, wide ranging and top secret capabilities.

The most recent NRO payload, known as NROL 37, was just launched by ULA last month on their Delta IV Heavy – the most powerful rocket in the world on June 11 – read my story here.

The venerable ULA Atlas V rocket sports a 100% record of launch success and its unusual for technical issues to hold up a launch. The ever changeable Florida weather is another matter entirely.

The NROL-61 mission counts as ULA’s sixth launch of 2016 and the 109th overall since the company was founded in 2006.

The 20 story tall Atlas V launched in its 421 configuration – the same as what will be used for manned launches with the crewed Boeing ‘Starliner’ space taxi carrying astronaut crews to the International Space Station.
This was the sixth Atlas V to launch in the 421 configuration.

The Atlas 421 vehicle includes a 4-meter diameter Extra Extended Payload Fairing (XEPF) payload fairing and two solid rocket boosters that augment the first stage. The Atlas booster for this mission was powered by the RD AMROSS RD-180 engine and the Centaur upper stage was powered by the Aerojet Rocketdyne RL10C-1 engine.

The RD-180 burns RP-1 (Rocket Propellant-1 or highly purified kerosene) and liquid oxygen and delivers 860,200 lb of thrust at sea level.

The strap on solids deliver approximately 500,000 pounds of thrust.

The solids were jettisoned about 2 minutes after liftoff.

Virtually everything about the clandestine payload, its mission, purpose and goals are classified top secret.

The NRO is the government agency that runs a vast fleet of powerful orbital assets hosting a multitude of the most advanced, wide ranging and top secret capabilities.

The possible roles for the reconnaissance payload include signals intelligence, eavesdropping, imaging and spectroscopic observations, early missile warnings and much more.

The NRO was formed in response to the Soviet launch of Sputnik and secretly created on September 6, 1961.

“The purpose is overseeing all satellite and overflight reconnaissance projects whether overt or covert. The existence of the organization is no longer classified today, but we’re still pressing to perform the functions necessary to keep American citizens safe,” according to the official NRO website.

Atlas V rocket streaks to orbit on smoke and ash carrying NROL-61 spy satellite for the NRO  after launch on July 28, 2016 at 8:37 a.m. EDT from Cape Canaveral Air Force Station, FL.  Credit: Ken Kremer/kenkremer.com
Atlas V rocket streaks to orbit on smoke and ash carrying NROL-61 spy satellite for the NRO after launch on July 28, 2016 at 8:37 a.m. EDT from Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing on site reports direct from Cape Canaveral Air Force Station, the Kennedy Space Center and the ULA Atlas launch pad.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SLS and Orion crew vehicle, SpaceX CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Juno at Jupiter, Orbital ATK Antares & Cygnus, Boeing, Space Taxis, Mars rovers, NASA missions and more at Ken’s upcoming outreach events:

July 27-28: “ULA Atlas V NRO Spysat launch July 28, SpaceX launch to ISS on CRS-9, SLS, Orion, Juno at Jupiter, ULA Delta 4 Heavy NRO spy satellite, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Atlas V rocket streaks to orbit carrying NROL-61 spy satellite for the NRO  on July 28, 2016 at 8:37 a.m. EDT as seen from Satellite Beach, FL.  Credit: Jillian Laudick
Atlas V rocket streaks to orbit carrying NROL-61 spy satellite for the NRO on July 28, 2016 at 8:37 a.m. EDT as seen from Satellite Beach, FL. Credit: Jillian Laudick

Mission artwork for Atlas V NROL-61 mission for the National Reconnaissance Office (NRO) is painted on nose cone of Atlas V rocket and depicts a green lizard, Spike, riding an Atlas V  launch vehicle.  Credit: Ken Kremer/kenkremer.com
Mission artwork for Atlas V NROL-61 mission for the National Reconnaissance Office (NRO) is painted on nose cone of Atlas V rocket and depicts a green lizard, Spike, riding an Atlas V launch vehicle. Credit: Ken Kremer/kenkremer.com

A ULA Atlas V rocket carrying the NROL-61 satellite is poised for blastoff from the pad at Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on July 28, 2016.   Credit: Ken Kremer/kenkremer.com
A ULA Atlas V rocket carrying the NROL-61 satellite is poised for blastoff from the pad at Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on July 28, 2016. Credit: Ken Kremer/kenkremer.com

Top Secret NRO SpySat Set for Brilliant Breakfast Blastoff July 28 – Watch Live

A ULA Atlas V rocket carrying the NROL-61 satellite is poised for blastoff from the pad at Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on July 28, 2016. Credit: Ken Kremer/kenkremer.com
A ULA Atlas V rocket carrying the NROL-61 satellite is poised for blastoff from the pad at Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on July 28, 2016.   Credit: Ken Kremer/kenkremer.com
A ULA Atlas V rocket carrying the NROL-61 satellite is poised for blastoff from the pad at Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on July 28, 2016. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL — The nation’s newest surveillance satellite is all set for a brilliant breakfast blastoff on Thursday July 28 atop a powerful Atlas V rocket from the Florida Space Coast – and both the booster and weather are in excellent shape at this time!

The goal is carry the top secret NROL-61 mission for the National Reconnaissance Office (NRO) to an undisclosed orbit which in support of US national defense and vital to US national security.

The NROL-61 mission is set to lift off on a United Launch Alliance (ULA) Atlas V rocket on Thursday morning July 28 from Space Launch Comple-41 at Cape Canaveral Air Force Station in Florida.

In an uncommon move, ULA and the military have announced the launch time is 8:37 a.m. EDT.

Virtually everything about the clandestine payload, its mission, purpose and goals are classified top secret.

The NRO is the government agency that runs a vast fleet of powerful orbital assets hosting a multitude of the most advanced, wide ranging and top secret capabilities.

The most recent NRO payload, known as NROL 37, was just launched by ULA last month on their Delta IV Heavy – the most powerful rocket in the world on June 11 – read my story here.

The excitement is building with the launch just a day away and visitors are checking into local area hotels hoping for a magnificent show from the venerable Atlas rocket with a perfect record of launch performance.

ULA managers completed the Launch Readiness Review and everything “is on track for launch.”

So you can now plan your day and watch Thursday’s launch live via a ULA broadcast which starts 20 minutes prior to the given launch time at 8:17 a.m. EDT.

Webcast links: http://bit.ly/nrol61

Or: www.youtube.com/unitedlaunchalliance

Better yet if you are free and mobile you can watch this truly impressive feat with your own eyes by making your way to the many excellent viewing locations surrounding Cape Canaveral in every direction.

Here’s the rather cool ULA mission art with a webcast link.

ULA Webcast info for launch of Atlas V NROL-61 mission for the National Reconnaissance Office (NRO) on July 28, 2016.  Credit: ULA/NRO
ULA Webcast info for launch of Atlas V NROL-61 mission for the National Reconnaissance Office (NRO) on July 28, 2016. Credit: ULA/NRO

The NROL-61 patch depicts a green lizard, Spike, riding an Atlas V launch vehicle from the Cape Canaveral AFS. Spike was chosen as the mission mascot.

Mission artwork for Atlas V NROL-61 mission for the National Reconnaissance Office (NRO) is painted on nose cone of Atlas V rocket and depicts a green lizard, Spike, riding an Atlas V  launch vehicle.  Credit: Ken Kremer/kenkremer.com
Mission artwork for Atlas V NROL-61 mission for the National Reconnaissance Office (NRO) is painted on nose cone of Atlas V rocket and depicts a green lizard, Spike, riding an Atlas V launch vehicle. Credit: Ken Kremer/kenkremer.com

The Florida weather outlook is looking quite promising at this time rather favorable. Air Force meteorologists are predicting an 80 percent chance of ‘GO’ with favorable weather conditions for Thursdays breakfast time blastoff.

The primary weather concern is for Cumulus Clouds.

In the event of a scrub delay for any reason, a backup launch opportunity exists on Friday, July 29. The weather odds are the same at 80% GO!

The rocket should put on a spectacular sky show since it is equipped with a pair of powerful solid rocket boosters spewing fire and an expanding plume of smoke and ash as is soars to orbit!

The Atlas rocket and payload were rolled put to launch pad 41 as planned Tuesday morning, July 26 – for a distance of about 1800 feet from the Vertical Integration Facility (VIF) where the rocket and payload were assembled, out to the pad.

It is now visibly erect at the pad from a number of viewing locations including Titusville and Playalinda Beach – positioned in between four lightning masts for protection from lightening.

Here’s a detailed mission profile video describing the launch events:

The NROL-61 mission counts as ULA’s sixth launch of 2016 and the 109th overall since the company was founded in 2006.

A ULA Atlas V rocket carrying the NROL-61 satellite is poised for blastoff from the pad at Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on July 28, 2016.   Credit: Ken Kremer/kenkremer.com
A ULA Atlas V rocket carrying the NROL-61 satellite is poised for blastoff from the pad at Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on July 28, 2016. Credit: Ken Kremer/kenkremer.com

The 20 story tall Atlas V will launch in its 421 configuration – the same as what will be used for manned launches with the crewed Boeing ‘Starliner’ space taxi carrying astronaut crews to the International Space Station.

This will be the sixth Atlas V to launch in the 421 configuration.

The Atlas 421 vehicle includes a 4-meter diameter payload fairing and two solid rocket boosters that augment the first stage. The Atlas booster for this mission was powered by the RD AMROSS RD-180 engine and the Centaur upper stage was powered by the Aerojet Rocketdyne RL10C-1 engine.

The RD-180 burns RP-1 (Rocket Propellant-1 or highly purified kerosene) and liquid oxygen and delivers 860,200 lb of thrust at sea level.

The strap on solids deliver approximately 500,000 pounds of thrust.

The solids will be jettisoned about 2 minutes after liftoff

The possible roles for the reconnaissance payload include signals intelligence, eavesdropping, imaging and spectroscopic observations, early missile warnings and much more.

The NRO was formed in response to the Soviet launch of Sputnik and secretly created on September 6, 1961.

“The purpose is overseeing all satellite and overflight reconnaissance projects whether overt or covert. The existence of the organization is no longer classified today, but we’re still pressing to perform the functions necessary to keep American citizens safe,” according to the official NRO website.

Watch for Ken’s continuing on site reports direct from Cape Canaveral Air Force Station, the Kennedy Space Center and the ULA Atlas launch pad.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SLS and Orion crew vehicle, SpaceX CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Juno at Jupiter, Orbital ATK Antares & Cygnus, Boeing, Space Taxis, Mars rovers, NASA missions and more at Ken’s upcoming outreach events:

July 27-28: “ULA Atlas V NRO Spysat launch July 28, SpaceX launch to ISS on CRS-9, SLS, Orion, Juno at Jupiter, ULA Delta 4 Heavy NRO spy satellite, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Spectacular Launch of Most Powerful Atlas Completes Constellation of Navy’s Advanced Tactical Comsats – Gallery

A United Launch Alliance (ULA) Atlas V rocket carrying the MUOS-5 mission lifts off from Space Launch Complex-41 at 10:30 a.m. EDT on June 24, 2016. Credit: United Launch Alliance
A United Launch Alliance (ULA) Atlas V rocket carrying the MUOS-5  mission lifts off from Space Launch Complex-41 at 10:30 a.m. EDT.  Credit:  United Launch Alliance
A United Launch Alliance (ULA) Atlas V rocket carrying the MUOS-5 mission lifts off from Space Launch Complex-41 at 10:30 a.m. EDT on June 24, 2016. Credit: United Launch Alliance

Today’s (June 24) spectacular launch of the most powerful version of the venerable Atlas V rocket from the sunshine state completes the orbital deployment of a constellation of advanced tactical communications satellites for the U.S. Navy.

A United Launch Alliance (ULA) Atlas V rocket successfully launched the massive MUOS-5 satellite into clear blue skies from Space Launch Complex-41 on Cape Canaveral Air Force Station, Florida, at 10:30 a.m. EDT – on its way to a geosynchronous orbit location approximately 22,000 miles (37,586 km) above the Earth.

Note: Check back again for an expanding gallery of launch photos and videos

The Mobile User Objective System-5 (MUOS-5) satellite is the last in a five-satellite constellation that will provide military forces with significantly improved and assured communications worldwide. Lockheed Martin is the prime contractor for the MUOS system.

As launch time neared the weather odds improved to 100% GO and Atlas rumbled off the pad for on time launch that took place at the opening of a 44 minute window.

The launch was broadcast live on a ULA webcast.

The 206 foot tall Atlas rocket roared to space on an expanding plume of smoke and crackling fire from the first stage liquid and solid fueled engines generating over 2.5 million pounds of liftoff thrust.

Their contribution complete, all 5 solid rocket motors were jettisoned with seconds about 2 minutes after liftoff as the liquid fueled first stage continued firing.

The spent first stage separated about 5 minutes after liftoff, as the Centaur second stage fires up for the first of three times over almost three hours to deliver the hefty payload to orbit.

Blastoff of United Launch Alliance (ULA) Atlas V rocket on MUOS-5  mission from Space Launch Complex-41 on June 24, 2016.  Credit: Lane Hermann
Blastoff of United Launch Alliance (ULA) Atlas V rocket on MUOS-5 mission from Space Launch Complex-41 on June 24, 2016. Credit: Lane Hermann

“We are honored to deliver the final satellite in the MUOS constellation for the U.S. Navy,” said Laura Maginnis, ULA vice president, Custom Services, in a statement.

“Congratulations to our navy, air force and Lockheed Martin mission partners on yet another successful launch that provides our warfighters with enhanced communications capabilities to safely and effectively conduct their missions around the globe.”

This is the fifth satellite in the MUOS series and will provide military users up to 16 times more communications capability over existing systems, including simultaneous voice, video and data, leveraging 3G mobile communications technology.

Long plume from MUOS-5 Atlas V Launch by United Launch Alliance from Space Launch Complex-41 on June 24, 2016.  Credit: Michael Seeley
Long plume from MUOS-5 Atlas V Launch by United Launch Alliance from Space Launch Complex-41 on June 24, 2016. Credit: Michael Seeley

With MUOS-5 in orbit the system’s constellation is completed.

MUOS-5 will serve as an on orbit spare. It provides the MUOS network with near-global coverage. Communications coverage for military forces now extends further toward the North and South poles than ever before, according to Lockheed Martin officials.

“Like its predecessors, the MUOS-5 satellite has two payloads to support both new Wideband Code Division Multiple Access (WCDMA) waveform capabilities, as well as the legacy Ultra High Frequency (UHF) satellite system. On orbit, MUOS-5 will augment the constellation as a WCDMA spare, while actively supporting the legacy UHF system, currently used by many mobile forces today.”

The prior MUOS-4 satellite was launched on Sept. 2, 2015 – as I reported here.

The 20 story tall Atlas V launched in its most powerful 551 configuration and performed flawlessly.

United Launch Alliance (ULA) Atlas V rocket carrying MUOS-5 military comsat streaks to orbit atop a vast exhaust plume after liftoff from Space Launch Complex-41 on June 24, 2016.  Credit: Jillian Laudick
United Launch Alliance (ULA) Atlas V rocket carrying MUOS-5 military comsat streaks to orbit atop a vast exhaust plume after liftoff from Space Launch Complex-41 on June 24, 2016. Credit: Jillian Laudick

The vehicle includes a 5-meter diameter payload fairing and five solid rocket boosters that augment the first stage. The Atlas booster for this mission was powered by the RD AMROSS RD-180 engine and the Centaur upper stage was powered by the Aerojet Rocketdyne RL10C-1 engine.

The RD-180 burns RP-1 (Rocket Propellant-1 or highly purified kerosene) and liquid oxygen and delivers 860,200 lb of thrust at sea level.

And the rocket needed all that thrust because the huge MUOS-5 was among the heftiest payloads ever lofted by an Atlas V booster, weighing in at some 15,000 pounds.
The Centaur upper stage was fired a total of three times.

For this mission the payload fairing was outfitted with an upgraded and advanced acoustic system to beet shield the satellite from the intense vibrations during the launch sequence.

This Atlas launch had been delayed several months to rectify a shortfall in the first stage thrust that occurred during the prior mission launching the Orbital ATK OA-6 cargo freighter in March 2016 on a contract mission for NASA to resupply the International Space Station (ISS).

The launch comes just two weeks after blastoff of the ULA Delta IV Heavy, the worlds most powerful rocket, on a mission to deliver a top secret spy satellite to orbit – as I witnessed and reported on here.

“I am so proud of the team for all their hard work and commitment to 100 percent mission success,” Maginnis added.

“It is amazing to deliver our second national security payload from the Cape in just two weeks. I know this success is due to our amazing people who make the remarkable look routine.”

The 15,000 pound MUOS payload is a next-generation narrowband tactical satellite communications system designed to significantly improve ground communications for U.S. forces on the move.

Here’s a detailed mission profile video describing the launch events:

Video caption: Atlas V MUOS-5 Mission Profile launched on June 24, 2016 from Cape Canaveral Air force Station. Credit: ULA

The launch was supported by the 45th Space Wing.

“Today’s successful launch is the culmination of the 45th Space Wing, Space and Missile Systems Center, Navy and ULA’s close partnership and dedicated teamwork,” said Brig. Gen. Wayne Monteith, 45th Space Wing commander and mission Launch Decision Authority, in a statement.

“We continue our unwavering focus on mission success and guaranteeing assured access to space for our nation, while showcasing why the 45th Space Wing is the ‘World’s Premiere Gateway to Space.”

Watch this exciting launch highlights video reel from ULA – including deployment of MUOS-5!

The MUOS-5 launch marked the 63rd Atlas V mission since the vehicle’s inaugural launch in August 2002. To date seven flights have launched in the 551 configuration. These include all four prior MUOS missions as well as NASA’s New Horizons mission to Pluto and the Juno mission to Jupiter.

Watch my up close remote launch video from the pad with hurling rocks:

Video caption: The sounds and fury of a ULA Atlas V 551 rocket blast off carrying Lockheed Martin built MUOS-5 tactical communications satellite to geosynchronous orbit for US Navy on June 24, 2016 at 10:30 a.m. EDT from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fl, as seen in this up close video from remote camera positioned at pad. Credit: Ken Kremer/kenkremer.com

Watch this compilation of dramatic launch videos from Jeff Seibert.

Video Caption: MUOS-5 launch compilation on ULA Atlas 5 rocket on 6/24/2016 from Pad 41 of CCAFS. Credit: Jeff Seibert

The Navy's fifth Mobile User Objective System (MUOS) is encapsulated inside an Atlas V five-meter diameter payload fairing.  Credit: ULA
The Navy’s fifth Mobile User Objective System (MUOS) is encapsulated inside an Atlas V five-meter diameter payload fairing. Credit: ULA

The next Atlas V launch is slated for July 28 with the NROL-61 mission for the National Reconnaissance Office (NRO).

Blastoff of MUOS-4 US Navy communications satellite on United Launch Alliance Atlas V rocket from pad 41 at Cape Canaveral Air Force Station, FL on Sept. 2, 2015. Credit: Ken Kremer/kenkremer.com
Blastoff of MUOS-4 US Navy communications satellite on United Launch Alliance Atlas V rocket from pad 41 at Cape Canaveral Air Force Station, FL on Sept. 2, 2015. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

United Launch Alliance (ULA) Atlas V rocket poised for launch on MUOS-5  mission from Space Launch Complex-41 on June 24, 2016.  Credit: Lane Hermann
United Launch Alliance (ULA) Atlas V rocket poised for launch on MUOS-5 mission from Space Launch Complex-41 on June 24, 2016. Credit: Lane Hermann
Artist’s concept of a MUOS satellite in orbit. Credit: Lockheed Martin
Artist’s concept of a MUOS satellite in orbit. Credit: Lockheed Martin
MUOS-5 mission logo. Credit: ULA
MUOS-5 mission logo. Credit: ULA
A United Launch Alliance (ULA) Atlas V rocket carrying the MUOS-5  mission lifts off from Space Launch Complex-41 at 10:30 a.m. EDT on June 24, 2016.  Credit:  United Launch Alliance
A United Launch Alliance (ULA) Atlas V rocket carrying the MUOS-5 mission lifts off from Space Launch Complex-41 at 10:30 a.m. EDT on June 24, 2016. Credit: United Launch Alliance

America’s First Asteroid Sampling Mission OSIRIS-REx Arrives at Florida Launch Base

Artist’s conception of NASA’s OSIRIS-REx spacecraft at Bennu. Credits: NASA/GSFC
Artist’s conception of NASA’s OSIRIS-REx spacecraft at Bennu.  Credits: NASA/GSFC
Artist’s conception of NASA’s OSIRIS-REx spacecraft at Bennu. Credits: NASA/GSFC

America’s first ever mission designed to retrieve samples from the surface of an asteroid and return them to Earth – OSIRIS-Rex – has arrived at its Florida launch base for processing to get ready for blastoff barely three and one half months from today.

NASA’s Origins, Spectral Interpretation, Resource Identification, Security – Regolith Explorer (OSIRIS-REx) spacecraft will launch from Space Launch Complex 41 at Cape Canaveral Air Force Station on a United Launch Alliance Atlas V rocket on September 8.

OSIRIS-REx was flown to NASA’s Kennedy Space Center from prime contractor Lockheed Martin’s facility near Denver, Colorado via Buckley Air Force Base. It arrived safely inside its shipping container on Friday, May 20 aboard an Air Force C-17 at the Shuttle Landing Facility.

It was soon offloaded and transported to Kennedy’s Payloads Hazardous Servicing Facility, or PHSF. OSIRIS-REx came out of the shipping container today, Saturday, May 21.

Inside the Payloads Hazardous Servicing Facility high bay at NASA's Kennedy Space Center, engineers are removing “the birdcage” a soft, protective cover from over the Osiris-REx spacecraft.  Credit: NASA
Inside the Payloads Hazardous Servicing Facility high bay at NASA’s Kennedy Space Center, engineers are removing “the birdcage” a soft, protective cover from over the Osiris-REx spacecraft. Credit: NASA

A busy first week of processing starts Monday.

NASA officials say it will go onto a rotation fixture on Monday, May 23, have a spin test May 24-25. It then will be hoisted onto a dolly May 26 for other upcoming activities. A partial solar array deployment test is scheduled on May 31.

The PHFS clean room was most recently used to process the Orbital ATK Cygnus space station resupply vehicles. It has also processed NASA interplanetary probes such as the Curiosity Mars Science Laboratory mission.

The spacecraft will reach Bennu in 2018. Once within three miles of the asteroid, the spacecraft will begin six months of comprehensive surface mapping of the carbonaceous asteroid.

After analyzing the data returned, the science team then will select a site where the spacecraft’s robotic sampling arm will grab a sample of regolith and rocks. The regolith may record the earliest history of our solar system.

Engineers will command the spacecraft to gradually move on closer to the chosen sample site, and then extend the arm to snatch the pristine samples.

OSIRIS-REx will gather rocks and soil and bring at least a 60-gram (2.1-ounce) sample back to Earth in 2023 for study by researchers here with all the most sophisticated science instruments available.

The mission will help scientists investigate how planets formed and how life began, as well as improve our understanding of asteroids that could impact Earth.

Bennu is an unchanged remnant from the collapse of the solar nebula and birth of our solar system some 4.5 billion years ago, little altered over time.

Bennu is a near-Earth asteroid and was selected for the sample return mission because it “could hold clues to the origin of the solar system and host organic molecules that may have seeded life on Earth,” says NASA.

OSIRIS-Rex will return the largest sample from space since the American and Soviet Union’s moon landing missions of the 1970s.

Inside the Payloads Hazardous Servicing Facility high bay at NASA's Kennedy Space Center, engineers are removing “the birdcage” a soft, protective cover from over the Osiris-REx spacecraft.  Credit: NASA
Inside the Payloads Hazardous Servicing Facility high bay at NASA’s Kennedy Space Center, engineers are removing “the birdcage” a soft, protective cover from over the Osiris-REx spacecraft. Credit: NASA

OSIRIS-REx is the third mission in NASA’s New Frontiers Program, following New Horizons to Pluto and Juno to Jupiter, which also launched on Atlas V rockets.

NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is responsible for overall mission management.

Osiris-REx is off-loaded from an Air Force C-17 aircraft at the Shuttle Landing Facility at the Kennedy Space Center on May 20, 2016. Osiris-REx made its way from Lockheed Martin’s facility near Denver, Colorado to NASA's Kennedy Space Center to be processed before launching to the asteroid Bennu.  Credit: NASA
Osiris-REx is off-loaded from an Air Force C-17 aircraft at the Shuttle Landing Facility at the Kennedy Space Center on May 20, 2016. Osiris-REx made its way from Lockheed Martin’s facility near Denver, Colorado to NASA’s Kennedy Space Center to be processed before launching to the asteroid Bennu. Credit: NASA

OSIRIS-REx complements NASA’s Asteroid Initiative – including the Asteroid Redirect Mission (ARM) which is a robotic spacecraft mission aimed at capturing a surface boulder from a different near-Earth asteroid and moving it into a stable lunar orbit for eventual up close sample collection by astronauts launched in NASA’s new Orion spacecraft. Orion will launch atop NASA’s new SLS heavy lift booster concurrently under development.

United Launch Alliance (ULA) Atlas V rocket carrying the GPS IIF-12 mission lifted off at 8:38 a.m. EST on Feb. 5, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fla.  Credit: Ken Kremer/kenkremer.com
OSIRIS-REx will launch on a United Launch Alliance (ULA) Atlas V rocket similar to this launch carrying the GPS IIF-12 mission which lifted off at 8:38 a.m. EST on Feb. 5, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Fuel Control Valve Faulted for Atlas Launch Anomaly, Flights Resume Soon

A United Launch Alliance (ULA) Atlas V rocket carrying the Orbital ATK Cygnus OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

A critical fuel control valve has been faulted for the Atlas V launch anomaly that forced a premature shutdown of the rockets first stage engines during its most recent launch of a Cygnus cargo freighter to the International Space Station (ISS) last month – that nevertheless was successful in delivering the payload to its intended orbit.

Having identified the root cause of the engine shortfall, workers for Atlas rocket builder United Launch Alliance (ULA), have now stacked the booster slated for the next planned liftoff in the processing facility at their Cape Canaveral launch pad, the company announced in a statement Friday.

The Atlas rockets Centaur upper stage fired longer than normal after the first stage anomaly, saving the day by making up for the significant lack of thrust and “delivering Cygnus to a precise orbit, well within the required accuracy,” ULA said.

ULA says it hopes to resume launches of the 20 story tall rocket as soon as this summer, starting with the MUOS-5 communications satellite payload for the U.S. Navy.

Following a painstaking investigation to fully evaluate all the data, the ULA engineering team “determined an anomaly with the RD-180 Mixture Ratio Control Valve (MRCV) assembly caused a reduction in fuel flow during the boost phase of the flight,” the company confirmed in a statement.

The Atlas V first stages are powered by the Russian-made RD AMROSS RD-180 engines. The dual nozzle powerplants have been completely reliable in 62 Atlas launches to date.

The RD-180s are fueled by a mixture of RP-1 kerosene and liquid oxygen stored in the first stage.

Up close view of dual nozzle RD-180 first stage engines firing during blastoff of United Launch Alliance (ULA) Atlas V rocket carrying the GPS IIF-12 mission on Feb. 5, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fla.  Credit: Ken Kremer/kenkremer.com
Up close view of dual nozzle RD-180 first stage engines firing during blastoff of United Launch Alliance (ULA) Atlas V rocket carrying the GPS IIF-12 mission on Feb. 5, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

The Centaur RL10C-1 second stage powerplant had to make up for a thrust and velocity deficiency resulting from a 6 second shorter than planned firing of the first stage RD-180 engines.

“The Centaur [upper stage] burned for longer than planned,” Lyn Chassagne, ULA spokesperson, told Universe Today.

Indeed Centaur fired for a minute longer than planned to inject Cygnus into its proper orbit.

“The first stage cut-off occurred approximately 6 seconds early, however the Centaur was able to burn an additional approximately 60 seconds longer and achieve mission success, delivering Cygnus to its required orbit,” said ULA.

MUOS-5 was originally supposed to blastoff on May 5. But the liftoff was put on hold soon after the Atlas V launch anomaly experienced during the March 22, 2016 launch of the Orbital ATK Cygnus OA-6 supply ship to the ISS for NASA.

Since then, ULA mounted a thorough investigation to determine the root cause and identify fixes to correct the problem with RD-180 Mixture Ratio Control Valve (MRCV) assembly, while postponing all Atlas V launches.

ULA has inspected, analyzed and tested their entire stockpile of RD-180 engines.

Last Friday, the Atlas V first stage for the MUOS-5 launch was erected inside ULA’s Vertical Integration Facility (VIF) at Space Launch Complex-41 on Cape Canaveral Air Force Station, Florida. The five solid motors have been attached and the Centaur is next.

In this configuration, known as Launch Vehicle on Stand (LVOS) operation, technicians can further inspect and confirm that the RD-180 engines are ready to support a launch.

The two stage Atlas V for MUOS-5 will launch in its most powerful 551 configuration with five solid rocket boosters attached to the first stage, a single engine Aerojet Rocketdyne RL10C-1 Centaur upper stage and a 5-meter-diameter payload fairing.

The RD-180s were supposed to fire for 255.5 seconds, or just over 4 minutes. But instead they shut down prematurely resulting in decreased velocity that had to be supplemented by the Centaur RL10C-1 to get to the intended orbit needed to reach the orbiting outpost.

The liquid oxygen/liquid hydrogen fueled Aerojet Rocketdyne RL10C-1 engine was planned to fire for 818 seconds or about 13.6 minutes. The single engine produces 22,900 lbf of thrust.

The Atlas V first and second stages are preprogrammed to swiftly react to a wide range of anomalous situations to account for the unexpected. The rocket and launch teams conduct countless simulations to react to off nominal situations.

“The Atlas V’s robust system design, software and vehicle margins enabled the successful outcome for this mission,” Chassagne said.

“As with all launches, we will continue to focus on mission success and work to meet our customer’s needs.”

ULA currently sports a year’s long manifest of future Atlas V launches in the pipeline. It includes a wide range of payloads for NASA, US and foreign governments, and military and commercial customers – all of who are depending on ULA maintaining its string of 106 straight launches with a 100% record of success since the company formed in 2006.

The Orbital ATK Cygnus CRS-6 space freighter was loaded with 3513 kg (7700 pounds) of science experiments and hardware, crew supplies, spare parts, gear and station hardware for the orbital laboratory in support of over 250 research experiments being conducted on board by the Expedition 47 and 48 crews.

Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a Cygnus cargo spacecraft is being prepared for the upcoming Orbital ATK Commercial Resupply Services-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus was named SS Rick Husband in honor of the commander of the STS-107 mission. On that flight, the crew of the space shuttle Columbia was lost during re-entry on Feb. 1, 2003. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22.  Credit: Ken Kremer/kenkremer.com
Inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida, a Cygnus cargo spacecraft was being prepared for the Orbital ATK Commercial Resupply Services-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus was named SS Rick Husband in honor of the commander of the STS-107 mission. On that flight, the crew of the space shuttle Columbia was lost during re-entry on Feb. 1, 2003. The Cygnus lifted off atop a United Launch Alliance Atlas V rocket on March 22. Credit: Ken Kremer/kenkremer.com

Cygnus successfully arrived and berthed at the ISS on March 26 as planned.

An exact date for the MUOS-5 launch has yet to be confirmed on the Eastern Range with the US Air Force.

ULA is in the process of coordinating launch dates with customers for their remaining Atlas V launches in 2016.

MUOS-4 US Navy communications satellite stowed inside huge 5 meter diameter payload fairing atop Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL set for launch on Sept. 2, 2015. EDT. Credit: Ken Kremer/kenkremer.com
MUOS-4 US Navy communications satellite stowed inside huge 5 meter diameter payload fairing atop Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL set for launch on Sept. 2, 2015. EDT. Credit: Ken Kremer/kenkremer.com

The 15,000 pound MUOS payload is a next-generation narrowband tactical satellite communications system designed to significantly improve ground communications for U.S. forces on the move.

ULA says they expect minimal impact and foresee completing all launches planned for 2016, including the top priority OSIRIS-REx asteroid mission for NASA which has a specific launch window requirement.

Blastoff of MUOS-4 US Navy communications satellite on United Launch Alliance Atlas V rocket from pad 41 at Cape Canaveral Air Force Station, FL on Sept. 2, 2015. Credit: Ken Kremer/kenkremer.com
Blastoff of MUOS-4 US Navy communications satellite on United Launch Alliance Atlas V rocket from pad 41 at Cape Canaveral Air Force Station, FL on Sept. 2, 2015. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

MUOS-4 US Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Sept. 2, 2015 at 5:59 a.m. EDT. Credit: Ken Kremer/kenkremer.com
MUOS-4 US Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Sept. 2, 2015 at 5:59 a.m. EDT. Credit: Ken Kremer/kenkremer.com

Atlas V Engine Anomaly Forces Thrust Makeup During Cygnus Launch, Next Flight Delayed

A United Launch Alliance (ULA) Atlas V rocket carrying the Orbital ATK Cygnus OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. The first stage is powered by RD-180 engines that shut down 6 seconds early for an undetermined reason. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – This week’s Atlas V rocket launch of a Cygnus cargo ship to the International Space Station (ISS) apparently experienced a first stage engine anomaly during the climb to space that required a longer firing of the boosters upper stage engine so the payload could successfully achieve the required orbit.

The stunningly beautiful nighttime blastoff of the United Launch Alliance (ULA) Atlas V from the Florida space coast on Tuesday, March 22, was not quite as flawless as initially thought and marred by the early engine shutdown which has now forced a postponement of the next planned Atlas V launch as company engineers painstakingly evaluate the data.

“The Centaur [upper stage] burned for longer than planned,” Lyn Chassagne, spokesperson for rocket maker ULA, told Universe Today.

“The ULA engineering team is reviewing the data to determine the root cause of the occurrence.”

The Centaur RL10C-1 powerplant had to make up for a thrust and velocity deficiency resulting from a 6 second shorter than planned firing of the Atlas V’s first stage RD-180 engines.

Indeed the Centaur had to fire for a minute longer than planned to inject Cygnus into its target orbit.

“The first stage cut-off occurred approximately 6 seconds early, however the Centaur was able to burn an additional approximately 60 seconds longer and achieve mission success, delivering Cygnus to its required orbit.”

“The team is evaluating the occurrence as part of the standard post-flight data analysis. Following successful spacecraft separation, Centaur performed a disposal burn,” Chessagne elaborated.

The two stage ULA Atlas V lifted off on time at 11:05 p.m. EDT on Tuesday, March 22, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fl, under a picturesque moonlit sky carrying an Orbital ATK Cygnus spacecraft on a resupply mission for NASA to the ISS.

Following a 21-minute ascent, the S.S. Rick Husband Cygnus spacecraft was successfully deployed into its intended orbit approximately 144 miles above the Earth, inclined at 51.6 degrees to the equator, Orbital ATK confirmed in a statement.

The Russian-made RD AMROSS RD-180 engines power the Atlas V first stage and the dual nozzle powerplants have been completely reliable in 62 Atlas launches to date.

The RD-180s were supposed to fire for 255.5 seconds, or just over 4 minutes. But instead they shut down prematurely resulting in decreased velocity that had to be supplemented by the Centaur RL10C-1 to get to the intended orbit need to reach the orbiting outpost.

The liquid oxygen/liquid hydrogen fueled Aerojet Rocketdyne RL10C-1 engine was planned to fire for 818 seconds or about 13.6 minutes. The single engine produces 22,900 lbf of thrust.

The cause of the first stage engine shortfall has not been announced. ULA has launched a thorough investigation to determine root cause as to whether for example it’s the RD-180 engine itself, a faulty sensor, fuel related, ground support equipment or a myriad of some other rocket components or issues.

A United Launch Alliance (ULA) Atlas V launch vehicle lifts off from Cape Canaveral Air Force Station carrying a Cygnus resupply spacecraft on the Orbital ATK CRS-6 mission to the International Space Station. Liftoff was at 11:05 p.m. EDT on March 22, 2016.  The first stage is powered by RD-180 engines that shut down 6 seconds early for an undetermined reason. The spacecraft will deliver 7,500 pounds of supplies, science payloads and experiments.  Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V launch vehicle lifts off from Cape Canaveral Air Force Station carrying a Cygnus resupply spacecraft on the Orbital ATK CRS-6 mission to the International Space Station. Liftoff was at 11:05 p.m. EDT on March 22, 2016. The spacecraft will deliver 7,500 pounds of supplies, science payloads and experiments. Credit: Ken Kremer/kenkremer.com

Although the Atlas V did successfully launch and deploy the commercial Cygnus CRS-6/OA-6 spacecraft into the required orbit, the Centaur was pressed into extra duty in real time to propel the payload.

The Atlas V first and second stages are preprogrammed to swiftly react to a wide range of anomalous situations to account for the unexpected. The rocket and launch teams conduct countless simulations to react to off nominal situations.

“The Atlas V’s robust system design, software and vehicle margins enabled the successful outcome for this mission,” Chassagne said.

“As with all launches, we will continue to focus on mission success and work to meet our customer’s needs.”

At the post launch media briefing, ULA program manager for NASA missions Vern Thorp, said that “ in a little over 20 minutes we went from liftoff to delivering Cygnus into exactly the orbit that it wanted to be in. This was our second successful cargo mission [for Orbital ATK] since December.”

“We were targeting a 230 kilometer circular orbit and we came very close to that as we normally do, just a fraction of a kilometer off. Well within the normal dispersions.”
“We nailed it. We got Cygnus where it wants to go.”

Asked about the Centaur he said that the prelaunch predictions are based on preliminary trajectories and can vary depending on the actual conditions at launch.

“What I do know is that Centaur nailed the orbit. Like every mission, we’re going to do a very, very detailed post-flight review. We always do and we always have done that. That’s to make sure that everything performed properly. From everything we’ve seen so far, the mission was pretty nominal.”

Now as a result of the post-flight review into the engine anomaly and velocity shortfall, the next launch of the “Atlas V carrying the MUOS-5 mission for the U.S. Navy and the U.S. Air Force has been delayed to no earlier than May 12,” Chassagne added.

ULA needs to “further review the data anomaly experienced during the OA-6 mission.”

“The delay will allow additional time to review the data and to confirm readiness for the MUOS-5 mission.”

The Atlas V/MUOS-5 mission will lift off from the same pad at Space Launch Complex 41 on Cape Canaveral Air Force Station, Fl, whenever a launch target date is announced by ULA.

ULA Atlas V rockets to orbit with Orbital ATK Cygnus OA-6 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 11:05 p.m. EDT on March 22, 2016. Credit: Julian Leek
ULA Atlas V rockets to orbit with Orbital ATK Cygnus OA-6 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 11:05 p.m. EDT on March 22, 2016. Credit: Julian Leek

Meanwhile the Cygnus CRS-6/OA-6 spacecraft continues chasing down the ISS for a planned arrival early Saturday morning, March 26.

The spacecraft will arrive at the station on Saturday, March 26. At that time Expedition 47 Commander Tim Kopra of NASA and Flight Engineer Tim Peake of ESA (European Space Agency) will grapple Cygnus, using the space station’s robotic arm, at approximately 6:40 a.m.

NASA TV coverage of rendezvous and grapple will begin at 5:30 a.m.

The Cygnus CRS-6/OA-6 payload of more than 16,000 pounds (7200 kg) weighed in as the heaviest payload to launch on an Atlas V to date.

A Cygnus cargo spacecraft named the SS Rick Husband  is being prepared inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016.  Credit: Ken Kremer/kenkremer.com
A Cygnus cargo spacecraft named the SS Rick Husband is being prepared inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016. Credit: Ken Kremer/kenkremer.com

The Cygnus has been named the S.S. Rick Husband in honor of Col. Rick Husband, the late commander of Space Shuttle Columbia, which was tragically lost with its crew of seven NASA astronauts during re-entry on its final flight on Feb. 1, 2003.

Watch for Ken’s ongoing Cygnus launch reports.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Orbital ATK CRS-6 launch vehicle with the Cygnus cargo spacecraft bolted to the top of the Atlas V rocket is poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station on March 22, 2016. Credit: Ken Kremer/kenkremer.com
Orbital ATK CRS-6 launch vehicle with the Cygnus cargo spacecraft bolted to the top of the Atlas V rocket is poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station on March 22, 2016. Credit: Ken Kremer/kenkremer.com

Streaks Galore as Cygnus Soars Chasing Station for Science; Photos, Videos

Long exposure streak shot of blastoff of United Launch Alliance Atlas V rocket carrying Orbital ATK's Cygnus spacecraft at 11:05 p.m. EDT on March 22, 2016, with foreground view of world famous Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. Atlas V lifted off from nearby Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Credit: Alex Polimeni/Spaceflight Now
Long exposure streak shot of blastoff of United Launch Alliance Atlas V rocket carrying Orbital ATK's Cygnus spacecraft at 11:05 p.m. EDT on March 22, 2016, with foreground view of world famous Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida.  Atlas V lifted off from nearby Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Credit: Alex Polimeni/Spaceflight Now
Long exposure streak shot of blastoff of United Launch Alliance Atlas V rocket carrying Orbital ATK’s Cygnus spacecraft at 11:05 p.m. EDT on March 22, 2016, with foreground view of world famous Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. Atlas V lifted off from nearby Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Credit: Alex Polimeni/Spaceflight Now

KENNEDY SPACE CENTER, FL – Tuesday evening, March 22, turned into ‘streaks galore’ on Florida’s space coast, as the nighttime launch of an Orbital ATK Cygnus cargo freighter atop an Atlas V rocket was captured in unforgettable fashion by talented space photographers as it chases down the International Space Station (ISS), loaded with hundreds of science experiments.

Check out this expanding gallery of breathtaking photos and videos collected from many of my photojournalist friends and colleagues – who collectively count as the best space photographers worldwide!

We all descended on the sunshine state to record the Tuesday’s blastoff of the United Launch Alliance Atlas V rocket carrying Orbital ATK’s Cygnus CRS-6 (OA-6) spacecraft from an array of locations ringing Cape Canaveral’s seaside launch pad as well as remote cameras we all set as media directly at the launch pad.

The two stage ULA Atlas V lifted off right on time at 11:05 p.m. EDT from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fl, into a picturesque moonlit sky on a resupply mission to the ISS.

ULA Atlas V rockets to orbits with Orbital ATK Cygnus OA-6 in this long exposure streak shot taken from the roof of the world famous Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida.  Liftoff from nearby Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida occurred at 11:05 p.m. EDT on March 22, 2016 . Credit: Julian Leek
ULA Atlas V rockets to orbits with Orbital ATK Cygnus OA-6 in this long exposure streak shot taken from the roof of the world famous Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. Liftoff from nearby Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida occurred at 11:05 p.m. EDT on March 22, 2016. Credit: Julian Leek

One could not have asked for better weather. Conditions were near perfect at launch time with virtually no winds and clouds.

Cygnus rode to orbit on a fountain of fire. And right now she is in hot pursuit of the million pound orbiting outpost crewed by an international team of six astronauts and cosmonauts.

The streak shots vividly show how the rocket magnificently illuminated the scattered thin clouds hovering over the seaside launch pad as it ascended and arced over eastwards towards Africa.

Streak shot shows United Launch Alliance Atlas V rocket carrying Orbital ATK's Cygnus spacecraft soaring over Space Launch Complex- 37 housing upcoming Delta IV Heavy rocket after lift off from nearby Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 11:05 p.m. EDT on March 22, 2016.  The Cygnus is on a resupply mission to the International Space Station and scheduled to arrive at the orbiting laboratory Saturday, March 26.  Credit: United Launch Alliance/Ben Cooper
Streak shot shows United Launch Alliance Atlas V rocket carrying Orbital ATK’s Cygnus spacecraft soaring over Space Launch Complex- 37 housing upcoming Delta IV Heavy rocket after lift off from nearby Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 11:05 p.m. EDT on March 22, 2016. The Cygnus is on a resupply mission to the International Space Station and scheduled to arrive at the orbiting laboratory Saturday, March 26. Credit: United Launch Alliance

The Orbital ATK Cygnus CRS-6 (OA-6) mission launched aboard an Atlas V Evolved Expendable Launch Vehicle (EELV) in the 401 configuration vehicle. This includes a 4-meter-diameter payload fairing in its longest, extra extended configuration to accommodate the Cygnus.

The first stage of the Atlas V booster is powered by the RD AMROSS RD-180 engine. The Centaur upper stage was powered by the Aerojet Rocketdyne RL10C-1 engine.

It was the ULA’s 62nd straight success with the Atlas V as well as the firms third launch in 2016 and the 106th launch since the company formed in 2006.

Gorgeous launch of ULA Atlas V with Cygnus OA-6 mission in this streak shot taken over Cocoa Beach on March 22, 2016! Weather couldn't have cooperated better!  Credit: Talia Landman/AmericaSpace
Gorgeous launch of ULA Atlas V with Cygnus OA-6 mission in this streak shot taken over Cocoa Beach on March 22, 2016! Weather couldn’t have cooperated better! Credit: Talia Landman/AmericaSpace

The Cygnus CRS-6 (OA-6) mission is being launched under terms of the firm’s Commercial Resupply Services (CRS) contract with NASA. It also counts as Orbital ATK’s fifth cargo delivery mission to the space station.

Watch these launch videos from remote video cameras set right at the launch pad showing the full fury of liftoff sounding off with the deafening thunder of some one million pounds of liftoff thrust.

Video caption: Flame trench view of the Orbital/ATK OA-6 resupply module launch to the ISS on a ULA Atlas 5 rocket from Pad 41 of the CCAFS on March 22, 2016. Credit: Jeff Seibert/AmericaSpace

Video caption: Mobius video camera placed at Florida launch pad captures blastoff up close of Orbital ATK OA-6 (CRS-6) mission riding to orbit atop a United Launch Alliance Atlas V rocket on March 22, 2016 at 11:05 p.m. EDT from Space Launch Complex-41 on Cape Canaveral Air Force Station. Credit: Ken Kremer/kenkremer.com

OA-6 is loaded with 3513 kg (7700 pounds) of science experiments and hardware, crew supplies, spare parts, gear and station hardware to the orbital laboratory in support over 250 research experiments being conducted on board by the Expedition 47 and 48 crews.

Among the research highlights are experiments like Strata-1 which will evaluate how soil on airless bodies like asteroids moves about in microgravity, Gecko Gripper to test adhesives similar those found on geckos’ feet, Meteor will evaluate the chemical composition of meteors entering the Earth’s atmosphere, Saffire will purposely set a large fire inside Cygnus after it unberths from the ISS to examine how fires spread in space, and a nanosat deployer mounted externally will deploy over two dozen nanosats also after unberthing.

A new 3D printer featuring significantly upgraded capabilities is also on board.

Atlas V Cygnus OA-6 streak shot on March 22, 2016. 246 second exposure from Satellite Beach.  Credit: John Kraus
Atlas V Cygnus OA-6 streak shot on March 22, 2016. 246 second exposure from Satellite Beach. Credit: John Kraus

The spacecraft will arrive at the station on Saturday, March 26, at which time Expedition 47 Commander Tim Kopra of NASA and Flight Engineer Tim Peake of ESA (European Space Agency) will grapple Cygnus, using the space station’s robotic arm, at approximately 6:40 a.m.

NASA TV coverage of rendezvous and grapple will begin at 5:30 a.m.

The Cygnus has been named the S.S. Rick Husband in honor of Col. Rick Husband, the late commander of Space Shuttle Columbia, which was tragically lost with its crew of seven NASA astronauts during re-entry on its final flight on Feb. 1, 2003.

Watch for Ken’s onsite launch reports direct from the Kennedy Space Center in Florida.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

This ‘Frankenstein’ liftoff image is the result of a 160+ image time lapse sequence compiled from Atlas V rocket launch carrying the OA-6 ISS resupply #Cygnus capsule,  showing streak shot and star trails as captured at the NASA causeway at KSC/CCAFS. Launched by United Launch Alliance for Orbital ATK on March 22, 2016 at 11:05 p.m. EDT.  Credit: Mike Seeley
This ‘Frankenstein’ liftoff image is the result of a 160+ image time lapse sequence compiled from Atlas V rocket launch carrying the OA-6 ISS resupply #Cygnus capsule, showing streak shot and star trails as captured at the NASA causeway at KSC/CCAFS. Launched by United Launch Alliance for Orbital ATK on March 22, 2016 at 11:05 p.m. EDT. Credit: Michael Seeley
ULA Atlas V carrying Orbital ATK Cygnus CRS-6/OA-6 streaks skyward on March 22, 2016. Credit:  Ben Smegelsky
ULA Atlas V carrying Orbital ATK Cygnus CRS-6/OA-6 streaks skyward on March 22, 2016. Credit: Ben Smegelsky
 ULA Atlas V/Cygnus OA-6 intermittent streak shot following launch on March 22, 2016 is taken from roof of Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida.   Credit: Ken Kremer/kenkremer.com

ULA Atlas V/Cygnus OA-6 intermittent streak shot following launch on March 22, 2016 is taken from roof of Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
Photographers on the VAB roof at KSC, preparing for Atlas V/Cygnus launch on March 22, 2016.  Credit: Jared Haworth
Photographers on the VAB roof at KSC, preparing for Atlas V/Cygnus launch on March 22, 2016. Credit: Jared Haworth
A Cygnus cargo spacecraft named the SS Rick Husband  is being prepared inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016.  Credit: Ken Kremer/kenkremer.com
A Cygnus cargo spacecraft named the SS Rick Husband is being prepared inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016. Credit: Ken Kremer/kenkremer.com

Stunning Nighttime Cygnus Freighter Rockets to ISS Stocked with Science Mesmerizing Spectators

A United Launch Alliance (ULA) Atlas V launch vehicle lifts off from Cape Canaveral Air Force Station carrying a Cygnus resupply spacecraft on the Orbital ATK CRS-6 mission to the International Space Station. Liftoff was at 11:05 p.m. EDT on March 22, 2016. The spacecraft will deliver 7,500 pounds of supplies, science payloads and experiments. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V launch vehicle lifts off from Cape Canaveral Air Force Station carrying a Cygnus resupply spacecraft on the Orbital ATK CRS-6 mission to the International Space Station. Liftoff was at 11:05 p.m. EDT on March 22, 2016.  The spacecraft will deliver 7,500 pounds of supplies, science payloads and experiments.  Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V launch vehicle lifts off from Cape Canaveral Air Force Station carrying a Cygnus resupply spacecraft on the Orbital ATK CRS-6 mission to the International Space Station. Liftoff was at 11:05 p.m. EDT on March 22, 2016. The spacecraft will deliver 7,500 pounds of supplies, science payloads and experiments. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – A stunningly beautiful nighttime launch mesmerized delighted spectators as it roared off a Florida space coast launch pad late Tuesday night, March 22, on a mission for NASA stocked with over three tons of science and supplies bound for the multinational crews working aboard the International Space Station (ISS).

A United Launch Alliance (ULA) Atlas V rocketed raced to orbit from Cape Canaveral Air Force Station, Fl, carrying an enlarged Cygnus commercial resupply spacecraft on the Orbital ATK CRS-6 mission to the ISS.

The venerable Atlas V lifted off right on target at 11:05 p.m. EDT from Space Launch Complex 41 into a picturesque moonlit sky that magnificently illuminated the scattered thin clouds hovering over the seaside launch pad for the hordes of excited folks and families lining the beaches and lucky to witness what may be history’s last launch of a Cygnus from Florida.

A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

Future liftoffs of the private Orbital ATK Cygnus supply truck designed to stock the station will return to their original launch site on Virginia’s eastern shore starting with the next mission for their NASA customer sometime this summer.

Cygnus launches to the ISS normally start from NASA’s Wallops Flight Facility in Virginia.

But a catastrophic failure of the Orbital ATK Antares rocket moments after liftoff on Oct. 28, 2014, forced Orbital to seek and book an alternative launch vehicle while the company redesigned and reengined Antares first stage with new powerful powerplants for the ride to orbit.

A United Launch Alliance (ULA) Atlas V launch vehicle lifts off from Cape Canaveral Air Force Station carrying a Cygnus resupply spacecraft on the Orbital ATK CRS-6 mission to the International Space Station. Liftoff was at 11:05 p.m. EDT on March 22, 2016.  The spacecraft will deliver 7,500 pounds of supplies, science payloads and experiments.  Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V launch vehicle lifts off from Cape Canaveral Air Force Station carrying a Cygnus resupply spacecraft on the Orbital ATK CRS-6 mission to the International Space Station. Liftoff was at 11:05 p.m. EDT on March 22, 2016. The spacecraft will deliver 7,500 pounds of supplies, science payloads and experiments. Credit: Ken Kremer/kenkremer.com

The Cygnus spacecraft will arrive at the station on Saturday, March 26, at which time Expedition 47 Commander Tim Kopra of NASA and Flight Engineer Tim Peake of ESA (European Space Agency) will grapple Cygnus, using the space station’s robotic arm, at approximately 6:40 a.m. NASA TV coverage of rendezvous and grapple will begin at 5:30 a.m.

The commercial Cygnus cargo freighter was built by Orbital ATK, based in Dulles, Virginia.

A Cygnus cargo spacecraft named the SS Rick Husband  is being prepared inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016.  Credit: Ken Kremer/kenkremer.com
A Cygnus cargo spacecraft named the SS Rick Husband is being prepared inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016. Credit: Ken Kremer/kenkremer.com

The Cygnus has been named the S.S. Rick Husband in honor of Col. Rick Husband, the late commander of Space Shuttle Columbia, which was tragically lost with its crew of seven NASA astronauts during re-entry on its final flight on Feb. 1, 2003.

This flight is also known as OA-6 and is being launched under terms of the firm’s Commercial Resupply Services (CRS) contract with NASA. It also counts as Orbital ATK’s fifth cargo delivery mission to the space station.

OA-6 is loaded with 3513 kg (7700 pounds) of science experiments and hardware, crew supplies, spare parts, gear and station hardware to the orbital laboratory in support over 250 research experiments being conducted on board by the Expedition 47 and 48 crews.

About a quarter of the cargo is devoted to science and research gear. The cargo includes 3279 kg of science investigations, 1139 kg of crew supplies, 1108 kg of vehicle hardware, 157 kg of spacewalk equipment, and 98 kg of computer resources.
Here a NASA description of a few of the scientific highlights:

– Gecko Gripper, testing a mechanism similar to the tiny hairs on geckos’ feet that lets them stick to surfaces using an adhesive that doesn’t wear off,

– Strata-1, designed to evaluate how soil on small, airless bodies such as asteroids behaves in microgravity.

– Meteor, an instrument to evaluate from space the chemical composition of meteors entering Earth’s atmosphere. The instrument is being re-flown following its loss on earlier supply missions.

– Saffire, which will set a large fire inside the Cygnus in an unprecedented study to see how large fires behave in space. The research is vital to selecting systems and designing procedures future crews of long-duration missions can use for fighting fires.

– Cygnus is carrying more than two dozen nanosatellites that will be ejected from either the spacecraft or the station at various times during the mission to evaluate a range of technology and science including Earth observations.

Here a cool video prelaunch look at Cygnus and me in the NASA Kennedy Space Center clean room discussing the Meteor experiment:

Video Credit: Thaddeus Cesari/VideoShampoo.com

When the ISS Expedition 47 crew members open the hatch, they will be greeted with a sign noting the spacecraft was named ‘SS Rick Husband’ in honor of the STS-107 mission commander.

Cygnus will spend approximately two months docked at the ISS.

OA-6 is only the second Cygnus to be launched atop a ULA Atlas V rocket, following the OA-4 mission last December.

The CRS-6/OA-6 flight is also the second flight of the enhanced Cygnus variant, that is over 1 meter longer and sports 50% more volume capability.

Thus it is capable of carrying a much heavier payload of some 3500 kg (7700 lbs) vs. a maximum of 2300 kg (5070 lbs) for the standard version.

A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite launch reports direct from the Kennedy Space Center in Florida.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about Orbital ATK Cygnus, ISS, ULA Atlas rocket, SpaceX, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Mar 21-23: “Orbital ATK Atlas/Cygnus launch to the ISS, ULA, SpaceX, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evening Mar 21 /late afternoon Mar 22/23

The Orbital ATK CRS-6 launch vehicle with the Cygnus cargo spacecraft bolted to the top of the Atlas V rocket is poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station on March 22, 2016. Credit: Ken Kremer/kenkremer.com
The Orbital ATK CRS-6 launch vehicle with the Cygnus cargo spacecraft bolted to the top of the Atlas V rocket is poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station on March 22, 2016. Credit: Ken Kremer/kenkremer.com