And we have liftoff! The Solar Dynamics Observatory has been providing images and video of some beautiful prominences and filaments over the past few days, and today the spacecraft captured a large prominence lifting off over the North Western limb of the Sun. A huge ball of plasma explodes from the surface and blooms into an arc loop that achieves enough energy to escape the Sun’s gravity.
Caption: Shimmering coronal loops from Active Region 1515 on the limb of the Sun before it rotates out of view on July 12, 2012. Credit: NASA/SDO/Goddard Spaceflight Center
What takes place on the Sun before it unleashes a huge solar flare? It’s a thing of beauty, and observations from the Solar Dynamics Observatory are helping scientists understand how magnetic energy on the Sun creates these giant explosions. Below is a video that shows all the activity on the Sun before it emitted a huge X 1.4- class solar flare on July 12, 2012. The shimmering coronal loops provide some magnetic magnificence that is simply stunning. The movie, created from data from SDO, shows the Sun from late July 8 to early July 10 shortly before the solar flare occurred. While the flare isn’t shown here, the movie shows how the Sun is constantly, and complexly, active.
The region responsible for the flare, Active Region 1520 is on the lower left part of the Sun, and it crackles with giant loops of magnetized solar material. On the right side of the Sun, the shimmering, enormous loops provide a parting view of Active Region 1515 – which was also responsible for many solar flares — as it disappears out of view along with the Sun’s rotation.
There is a lot happening in this video, so take the advice of video producer Scott Wiessinger from Goddard Spaceflight Center’s Scientific Visualization Studio, who suggests watching it at highest quality and in full screen. You can download large files of it here.
An active region on the Sun, AR1515, has been putting on quite a show over the last 8 days, sending out all sorts of solar flares. Scientists were sure the huge sunspot was building up to produce an X-class explosion, and they were right. At 23:08 UT on July 6, 2012 it unleashed an X1-class solar flare. The explosion hurled a coronal mass ejection into space, and scientists say the cloud appears to be heading south and away from Earth; however, there is the possibility of a glancing blow to our planet on July 8th or 9th. There could be some auroral activity today, July 7, from a previous batch of CME’s hurled from the same active region.
According to the Solar Dynamics Observatory team, the movie above shows the X1 flare in various different wavelengths, which show different layers and temperatures. Each segment is about 30 minutes in real-time.
Below is another video from July 5-6, where AR1515 pulsed with with C- and M-class solar flares, about 14 flares in all:
Here’s an image of the action from SDO, with lots of activity going on:
“X1-class solar flare on the right, new active region on the left. Will the action continue?” asked Camilla_SDO, the mascot for the Solar Dynamics Observatory, via Twitter.
So, what’s the difference in the classes of solar flares and how could they affect us on Earth?
Flares happen when the powerful magnetic fields in and around the Sun reconnect. They’re usually associated with active regions, which we call sunspots, where the magnetic fields are strongest.
Flares are classified according to their strength. The smallest ones are B-class, followed by C, M and X, the largest. Similar to the Richter scale for earthquakes, each letter represents a ten-fold increase in energy output. So an X is 10 times an M and 100 times a C. Within each letter class, there is a finer scale from 1 to 9. Although X is the last letter, there are flares more than 10 times the power of an X1, so X-class flares can go higher than 9.
C-class flares are too weak to noticeably affect Earth. M-class flares can cause brief radio blackouts at the poles and minor radiation storms that might endanger astronauts. The most powerful flare on record was in 2003, during the last solar maximum. It was so powerful that it overloaded the sensors measuring it. They cut-out at X28. A powerful X-class flare like that can create long lasting radiation storms, which can harm satellites and even give airline passengers, flying near the poles, small radiation doses. X flares also have the potential to create global transmission problems and world-wide blackouts.
From July 2 to July 5, the Sun shot off a whopping eighteen M-class solar flares. Most originated from Active Region 1515 and ranged from M1.1 to M6.1. On July 4th alone, there were seven M-class solar flares. According to SpaceWeather.com, big sunspot AR1515 appears to be on the verge of producing an X-class explosion. NOAA forecasters estimate an 80% chance of M-flares and a 10% chance of X-flares during the next 24 hours. Continue reading “Fireworks from the Sun”
This video from the Solar Dynamics Observatory shows about 18 hours worth of a stellar show of suspended plasma from the Sun. Lofted in twisted magnetic fields, the hot plasma structure is several times the size of planet Earth. Continue reading “Dancing Plasma on the Sun”
Seen the movie “Prometheus” yet? If so, you may recognize one of the creatures in an eerie but beautiful prominence eruption from the Sun today. The folks at the Solar Dynamics Observatory noticed the similarity, too. This video covers almost 15 hours from the early hours of June 18, 2012, showing ultraviolet views from the AIA instrument on SDO. In addition to the hovering alien, look for a big blast from the Sun at about 0:15, too. Continue reading ““Alien Prometheus Prominence” Hovers Over the Sun”
On June 14th, for the second day in a row, sunspot AR1504 erupted and hurled a Coronal Mass Ejection toward Earth. Spaceweather.com says the fast-moving (1360 km/s) cloud is expected to sweep up a previous CME and deliver a combined blow to Earth’s magnetic field on June 16th around 10:16 UT. So, high latitude skywatchers should be on the lookout for possible aurorae. Continue reading “Sun Spews Earth-Directed Flares”
The Solar Dynamics Observatory always provides an incredible view of our Sun, and is keeping an eye on Active Region 1504, which is turning towards Earth and has been producing several C-class solar flares and even three stronger M-class solar flares. There are also a few other Active Regions visible, 1505, 1506 and 1507. The video above starts off with a view from June 9 to 12 in the 171 angstrom wavelengths and it shows us the many coronal loops extending off of the Sun where plasma moves along magnetic field lines, then switches to the 304 angstrom view, seeing the M-class solar flares. Continue reading “Active Region on the Sun Turning Toward Earth”
Here’s the entire 7-hour transit of Venus across the face of the Sun – shown in several views — in just 39 seconds, as seen by the Solar Dynamics Observatory on June 5, 2012. This view is in the 171 Angstrom wavelength, so note also the the bright active region in the northern solar hemisphere as Venus passes over, with beautiful coronal loops visible. The transit produced a silhouette of Venus on the Sun that no one alive today will likely see again. With its specialized instruments SDO’s high-definition view from space provides a solar spectacular!
Scott Wiessinger from NASA Goddard’s Scientific Visualization Studio wrote this morning to tell us, “If you have the space and the bandwidth, I really recommend downloading this large file on the SVS to view. YouTube compression is hard on solar footage, so it looks even better when you watch it at true full quality.”
Below is a composite image from SDO of Venus’ path across the Sun, as well as another great timelapse view from ESA’s PROBA-2 microsatellite:
[/caption]
This movie shows the transit of Venus as seen from SWAP, a Belgian solar imager onboard ESA’s PROBA2 microsatellite. SWAP, watching the Sun in EUV light, observes Venus as a small, black circle, obscuring the EUV light emitted from the solar outer atmosphere – the corona – from 19:45UT onwards (seen on the running timer on the video). At 22:16UT – Venus started its transit of the solar disk.
Venus appears to wobble thanks to the slight up-down motion of Proba-2 and the large distance between the satellite and the Sun.
The bright dots all over the image, looking almost like a snow storm, are energetic particles hitting the SWAP detector when PROBA2 crosses the South Atlantic Anomaly, a region where the protection of the Earth magnetic field against space radiation is known to be weaker.
And as if the Sun is just showing off, a Coronal Mass Ejection is visible as well towards the end of the video, seen as a big, dim inverted-U-shape moving away from the Sun towards the bottom-right corner. This is a coronal mass ejection bursting out from the Sun.
Images and video from the Solar Dynamics Observatory have shown us that the fury of the Sun can be mesmerizingly beautiful. SDO has allowed us to see loops of plasma in various wavelengths, coils of magnetic fields that are invisible to human eyes, and so much more. And then, sometimes, happy accidents happen, creating beautiful images just for beauty’s sake. The teams at Goddard Space Flight Center’s Multimedia Center are wizards at honing SDO’s raw data into works of art, and video producer Scott Wiessinger sent a note today to say he accidentally happened across a “really neat Photoshop effect,” that while not really useful scientifically, is rather beautiful and fun to watch. “There isn’t any science behind this video, it’s just a nice ‘moment of zen,’” he said.
The video is below.
The lead image shows one of the original frames in the 171 Angstrom wavelength of extreme ultraviolet, with the additional processing. This wavelength shows plasma in the corona that is around 600,000 Kelvin. The loops represent plasma held in place by magnetic fields. They are concentrated in “active regions” where the magnetic fields are the strongest. These active regions usually appear in visible light as sunspots.
So, enjoy a little contemplative moment courtesy of the Goddard team:
The video shows about 24 hours of activity on September 25, 2011.
Thanks to Scott and the Goddard team for sharing their work! See more images with this unique processing at their website.