As seen here by the Solar Dynamics Observatory, a long duration M3-class flare began erupting on the Sun from sunspot region 1401 at 13:42 UTC (8:42 AM ET) today, Thursday, January 19, 2012, sending a coronal mass ejection (CME) directly towards Earth. Scientists predict the CME will arrive at around 16:00 UTC on January 21, 2012 GMT. Spaceweather.com says strong geomagnetic storms are possible and high-latitude (and possibly middle-latitude) skywatchers can be on the lookout for increased aurora.
Here’s a great look at a beautiful, leaping C2.2-Class solar flare from the Sun on January 5, 2012. The Solar Dynamics Observatory captured the event and what’s awesome is how SDO can video one event in several different wavelengths.
This is an awesome image of the Sun captured by Efrain Morales Rivera from the Jaicoa Observatory in Aguadilla, Puerto Rico, on December 31, 2011. It shows multiple steam-like prominences on the eastern limb of the Sun. Rivera compared them to a group of trees, and said the now-active Sun is definitely something to watch in the coming new year. Of course, the Solar Dynamics Observatory is keeping a close watch on our star, and captured a huge eruption on the western limb of the Sun on January 2, 2012, with lots of solar material ejected into space; however, it was not Earth-directed. See the video below:
There have been some great images and video of Comet Lovejoy’s close encounter with the Sun, but this video put together by Scott Wiessinger from Goddard Spaceflight Center combines and zooms in on the best views from the Solar Dynamics Observatory (SDO), which adjusted its cameras in order to watch the trajectory.
The first part of the video from SDO, (taken in 171 Angstrom wavelength, which is typically shown in yellow) was filmed on Dec 15, 2011 showing Comet Lovejoy moving in toward the Sun, with its tail “wiggling” from its interaction with the solar wind. The second part of the clip shows the comet exiting from behind the right side of the Sun, after an hour of travel through its closest approach.
No time travel with this slingshot around the Sun, but it is amazing to be able to follow this comet’s journey so closely!
It’s the morning after for the sungrazing Comet Lovejoy, and this feisty comet has scientists shaking their heads in disbelief. “I don’t know where to begin,” wrote Karl Battams, from the Naval Research Laboratory, who curates the Sun-grazing comets webpage. “What an extraordinary 24hrs! I suppose the first thing to say is this: I was wrong. Wrong, wrong, wrong. And I have never been so happy to be wrong!”
Many experts were predicting Comet Lovejoy would not survive perihelion, where it came within about 120,000 km from the Sun. But some extraordinary videos by NASA’s Solar Dynamics Observatory showed the comet entering and then surprisingly exiting the Sun’s atmosphere. Battams said he envisioned that if the comet survived at all, what would be left would be just a very diffuse component that would endure maybe a few hours after its close encounter with the Sun. But somehow it survived, even after enduring the several million-degree solar corona for nearly an hour. However, Comet Lovejoy appears to have lost its tail, as you can see in the image below.
[/caption]
The comet is now in the view of other spacecraft, which will continue monitoring the object. It will likely grow a “new” tail as outgassing of dust, gas and debris will continue. It is not known yet how much of Comet Lovejoy’s core remains — which was 200 meters in diameter earlier this week — or how long it will continue to stay together after its close brush with the Sun.
A comet discovered on Dec. 2, 2011 is now on a near collision course with the Sun, and likely won’t survive such a close encounter. The best part is that you can follow along and watch as it happens! Comet C/2011 W3 Lovejoy will pass behind the sun at around 24:00 UTC (7 pm EST) on Thursday, Dec. 15, 2011 and probably won’t be seen again. In the video above, processed images from the STEREO A spacecraft shows Comet Lovejoy blazing towards the Sun, with the comet’s tail wiggling as it interacts with the solar wind.
The Solar Dynamics Observatory website has a special page where they will be uploading the latest images of the comet as it meets its fiery fate. As Comet Lovejoy moves toward perihelion, the SDO team will point SDO a little to the left of the Sun to try and see the tail of the comet with their instruments. This website will allow you to see those images as quickly as they can download them from the spacecraft.
Science live and in action!
Astronomers and various spacecraft have been keeping an eye on Comet Lovejoy the past few days as this Kreutz-group comet headed towards the Sun. Just today (Thursday) the images from the SOHO spacecraft showed the comet sprouting a bulbous head. This is occurring because the comet is getting so bright, it is overwhelming the detectors on the SOHO satellite. “The photons are ‘bleeding’ out to form that cross-like pattern,” said Dan Pendick on the Geeked On Goddard website.
Pendick also quoted solar scientist Jack Ireland from Goddard, who noted that at times two tails can be seen on the comet. “The thick white tail is primarily dust breaking away from the comet nucleus,” Ireland said, as the Sun’s radiation and solar wind that knocks material off the comet nucleus. But to the left is a tail of charged particles (ions) being deflected to the side by the magnetic field carried by the solar wind.
At its closest approach, Comet Lovejoy will pass just 120,000 km above the solar surface. At that distance, the icy comet is not expected to survive the Sun’s fierce heat. But the comet could actually disintegrate at any moment. Kreutz comets have a tendency to evaporate as they approach, or pass close to the Sun.
If the comet does stay the course and stay visible until it goes around the Sun, we likely won’t be able to see its demise because its closest approach will take place on the far side of the Sun.
But this is a great chance to watch this event as it is about to happen.
“We have here an exceptionally rare opportunity to observe the complete vaporization of a relatively large comet, and we have approximately 18 instruments on five different satellites that are trying to do just that,” wrote Karl Battams, from the Naval Research Laboratory, who curates the Sun-grazing comets webpage, and has been documenting Lovejoy’s journey.
Amateur astronomers have been trying to capture this event as well, with everyone wondering how bright the comet will get. For updates from amateur astronomers, check out the Yahoo Groups comet observers forum.
Comet C/2011 W3 Lovejoy was actually discovered by an amateur, Australian astronomer Terry Lovejoy (hence the comet’s name.) This is the first Kreutz comet found from a ground-based observer since 1970, and it was spotted with a modest 8″ telescope too! You can read Lovejoy’s tale of his discovery here.
On average, new Kreutz-group comets are discovered every few days by spacecraft like SOHO, but from the ground they are much rarer to see and harder to discover.
“This is the first ground-based discovery of a Kreutz-group comet in 40 years, so we really can’t be sure just how bright it will get,” said Battams. “However, I do think that it will be the brightest Kreutz-group comet SOHO has ever seen.”
For the SDO special webpage, images from SDO take about 30 minutes to move from the spacecraft until they are available on the website. The SOD team plans to off-point the spacecraft at 23:30 UTC (6:30 pm ET) and return to normal solar observing at 12/16 00:30 UTC (7:30 pm ET). Images should start arriving by 24:00 UTC (7 pm EST.)
[/caption]According to a new set of NASA computer simulations, solar storms and Coronal Mass Ejections (CMEs) can erode the lunar surface. Researchers speculate that not only can these phenomena erode the lunar surface, but could also be a cause of atmospheric loss for planets without a global magnetic field, such as Mars.
A team led by Rosemary Killen at NASA’s Goddard Space Flight Center, has written papers exploring different aspects of these phenomena and will appear in an issue of the Journal of Geophysical Research Planets. The team’s research was also presented earlier this week during the fall meeting of the American Geophysical Union.
What are CME’s? Corona Mass Ejections are intense outbursts of the Sun’s usually normal solar wind which consists of electrically charged particles (plasma). CME’s blow outward from the surface of the Sun at speeds in excess of 1.6 million kilometers per hour into space and can contain over a billion tons of plasma in a cloud larger than Earth.
Our Moon has the faintest traces of an atmosphere, which is technically referred to as an exosphere. The lack of any significant atmosphere, combined with the lack of a magnetic field, makes the lunar surface vulnerable to the effects of CME’s.
William Farrell, DREAM (Dynamic Response of the Environment at the Moon) team lead at NASA Goddard, remarked, “We found that when this massive cloud of plasma strikes the Moon, it acts like a sandblaster and easily removes volatile material from the surface. The model predicts 100 to 200 tons of lunar material – the equivalent of 10 dump truck loads – could be stripped off the lunar surface during the typical 2-day passage of a CME.”
While CME’s have been extensively studied, Farrell’s research is the first of its kind that attempts to predict the effects of a CME on the Moon. “Connecting various models together to mimic conditions during solar storms is a major goal of the DREAM project” added Farrell.
When intense heat or radiation is applied to a gas, the electrons can be removed, turning the atoms into ions. This process is referred to as “ionization”, and creates the fourth form of matter, known as plasma. Our Sun’s intense heat and radiation excites gaseous emissions, thus creating a solar wind plasma of charged particles. When plasma ions eject atoms from a surface, the process is called “sputtering”.
The lead author of the research paper Rosemary Killen described this phenomenon: “Sputtering is among the top five processes that create the Moon’s exosphere under normal solar conditions, but our model predicts that during a CME, it becomes the dominant method by far, with up to 50 times the yield of the other methods.”
In an effort to better test the team’s predictions, studies will be performed using NASA’s Lunar Atmosphere And Dust Environment Explorer (LADEE). Scheduled to launch in 2013 and orbit the Moon, the team is confident that the strong sputtering effect will send atoms from the lunar surface to LADEE’s orbital altitude (20 to 50 km).
Farrell also added, “This huge CME sputtering effect will make LADEE almost like a surface mineralogy explorer, not because LADEE is on the surface, but because during solar storms surface atoms are blasted up to LADEE.”
Affecting more than just our Moon, solar storms also affect Earth’s magnetic field and are the root cause of the Northern and Southern lights (aurorae). The effect solar storms have on Mars is a bit more significant, due in part to the Red Planet’s lack of a planet-wide magnetic field. It is widely theorized that this lack of a magnetic field allows the solar wind and CME’s to erode the martian atmosphere. In late 2013, NASA will launch the Mars Atmosphere and Volatile Evolution (MAVEN) mission. The goal of MAVEN is to orbit Mars and help researchers better understand how solar activity, including CMEs, affects the atmosphere of the red planet.
The Solar Dynamics Observatory takes images of the Sun about every 10 seconds, so it easily was able to capture the Sun when the clocks and calendars lined up for a mathematically synchronous readout. Below is another image at the same time in different wavelength.
You can check out what the Sun looks like at anytime of the day or year the the SDO website.
One of the largest sunspots in years is now visible, rotating around into view on the Sun’s limb on November 3, 2011. And it’s a feisty one, too. The Solar Dynamics Observatory team called Active Region 1339 a “Bad Boy,” as at 20:27 UTC, a solar flare peaked at X1.9. X-class flares are massive, and can be major events that can trigger planet-wide radio blackouts and long-lasting radiation storms. This region is not facing Earth — yet. But we’ll be keeping on eye on it as it turns toward an Earth-facing direction.
See a full-Sun image from SDO below.
[/caption]
This sunspot is huge, measuring some 40,000 km wide and at over 80,000 in length. Spaceweather.com said two or three of the sunspot’s dark cores are wider than Earth itself.
This video created with data from the Solar Dynamics Observatory is just absolutely and astoundingly beautiful, showing magnetic loops on the Sun earlier today (October 22, 2011). Via @TheSunToday Twitter feed, just watch how the magnetic loops jump, shimmer and coil back into the Sun, following a long duration M1 flare at about 1100 UTC.