Solar Powered Plane to Fly Across the US

The Solar Impulse, a solar-powered plane, flies over Switzerland. Credit: Solar Impulse.

On May 1, the world’s first solar-powered plane will take off from Moffett Field in Mountain View, California — the home of NASA’s Ames Research Center – and fly across the US to New York. Even though the Solar Impulse plane could probably fly non-stop, day and night with no fuel, instead it will make several stops in US cities such as Phoenix, Dallas, and Washington, D.C. This would be a kind of “get to know you” tour for the US while the founders of Solar Impulse, Swiss pilot Bertrand Piccard and and pilot Andre Borschberg, want to spread their message of sustainability and technology.

“It carries one pilot and zero passengers, but it carries a lot of messages,” Piccard said during a press briefing yesterday. “We want to inspire as many people as possible to have that same spirit: to dare, to innovate, to invent.”

The solar plane made its first intercontinental flight from Spain to Morocco last June, flew continuously through the night in 2010, and by 2015 they hope to fly a similar aircraft around the world.

The Solar Impulse HB-SIA has 12,000 solar cells built into its 64.3-meter (193-foot) wings. That’s longer than an entire Boeing 747 airplane but it weighs just 1,600 kg (3,500 lb), less than a car. It is powered by four electric motors.

Originally built only to prove the possibility of flying day and night, their goal for future flights is to fly for up to five days and five nights, all by one pilot. Such a feat has never been accomplished.

They are using meditation and hypnosis (Bertrand is a psychologist who uses hypnosis) to train the pilots as they prepare to fly on very little sleep, Borschberg said. He added that they are working on an autopilot system would have to be built on the next plane to allow for some rest.

The first stop for the Solar Impulse as it crosses the United States will be Phoenix, followed by Dallas and then one of three cities: Atlanta, Nashville or St. Louis. It will then stop outside Washington D.C. before heading on to New York.

The Solar Impulse team said the stopovers will be a great occasion to spread Solar Impulse’s message meant to inspire people. “Only by challenging common certitudes can there be change and, through conferences on educational themes, Solar Impulse wishes to motivate everybody to become a pioneer in the search for innovative solutions for society’s biggest challenges,” the team said.

You can check on the planned stopovers at the Solar Impulse website.

Solar Powered Airplane Makes First Intercontinental Round-trip Flight

Caption: The Solar Impulse airplane in flight during on July 24, 2012. Credit: Solar Impulse/ Jean Revillard

A unique airplane has just completed a 6,000 km journey, making the first solar-powered intercontinental round-trip air journey. Traveling between Europe and Africa, the Solar Impulse experimental solar airplane landed in Payerne, Switzerland at 08:30 pm local time on July 24, 2012. The trip began two months ago, on May 24 and so was not a test to see how fast it could make the trip, but to assess the endurance and reliability of the craft, as well as bringing awareness to more people of energy issues.

“The goal of this airplane is not just to go from one point to another, but to fly as long as we wish, promote renewable energy and ambitious energy policies,” said pilot Bertrand Piccard, founder of Solar Impulse, during one leg of the intercontinental flight. “All of these have been so successful.”

Solar Impulse flew the eight-leg trip from Payerne to Morocco and back again, with Piccard and André Borschberg taking turns in the single-seat cockpit. They flew Solar Impulse to Madrid, Spain; Rabat, Malta; Ouarzazate, Morocco; Toulouse, France and back to Payerne. The most challenging destination not only for this aircraft but for commercial ones as well was Ouarzazate, a region rich in turbulence and strong winds.

The plane flew during the day but often took off and landed at night to avoid areas of air turbulence called thermals. However, it was almost always brought back to the hangar with a full set of batteries, according to the team at Solar Impulse.

The Solar Impulse HB-SIA has 12,000 solar cells built into its 64.3-meter (193-foot) wings. It weighs 1,600 kg (3,500 lb), and is powered by four electric motors.

Originally built only to prove the possibility of flying day and night (it flew a 26-hour flight in 2010), the prototype airplane is now in the process of collecting a number of distance world records for solar aircrafts, such as straight distance, free distance and distance along a course. The teams hopes to be able to fly the aircraft around the world in a continuous flight.

“It’s been an extraordinary adventure not only for what we’ve achieved with this airplane, originally only designed to demonstrate the possibility of flying day and night with a purely solar energy, but also for what has resulted in a tightly fused team, confident in the project and in their capacity to make it happen,” said André Borschberg, CEO of Solar Impulse. “I am proud what we’ve been able to accomplish together, all of us, from the engineers that have built a fantastic airplane, to the Mission team experts that found a safe but successful strategy to the ground crew who had to operate in challenging conditions and multimedia team who under any circumstance brought the message of the project to the public. The world’s first intercontinental solar-powered flight would have never happened without the fantastic support provided by all people that crossed HB-SIA’s way.”

The video below shows Solar Impulse making a truly elegant landing in Toulouse:

The flight was in conjunction with events in Morocco that promoted investment in innovative projects for job creation and sustainable growth while also decreasing dependency on fossil fuels.

“The success of this mission was not only aeronautical: it also stands in the quantity of positive emotions we managed to bring to the cause of renewable energies,” said Piccard at the end of the flight today.

Learn more about Solar Impulse at their website.

A Twisting Tale of Space Solar Power

The University of Strathclyde's Dr. Massimiliano Vasile with a prototype of a SAM module

[/caption]

The dream of clean, consistent and renewable space solar power may become a reality, thanks to new research being done at The University of Strathclyde in Glasgow, Scotland.

The concept of space solar power — gathering solar energy with satellites in low-Earth orbit and “beaming” it down to collection stations on the ground — has been around for decades, but technology restrictions and prohibitive costs have kept it in the R&D phases, with some doubting that it will ever happen at all.

Now, researcher Dr. Massimiliano Vasile, of the University of Strathclyde’s Department of Mechanical and Aerospace Engineering, has announced his team’s development of modular devices that could be used to gather solar energy in orbit, working atop an experimental “space web” structure developed by graduate students at the university’s Department of Mechanical and Aerospace Engineering.

“By using either microwaves or lasers we would be able to beam the energy back down to earth, directly to specific areas. This would provide a reliable, quality source of energy and would remove the need for storing energy coming from renewable sources on ground as it would provide a constant delivery of solar energy.”

– Dr. Massimiliano Vasile, University of Strathclyde

The web structure, part of an experiment called Suaineadh — which means “twisting” in Scottish Gaelic (and I believe it’s pronounced soo-in-ade but correct me if I’m wrong) — is made of a central hub that would go into orbit and release a square web of material that’s weighted at the corners. The whole apparatus would spin, keeping its shape via centrifugal force and providing a firm structure that other devices could build upon and attach to.

The Suaineadh experiment was successfully launched on March 19 aboard a Swedish sounding rocket and while it appears that the components worked as expected, communication was lost after ejection. As a result the central hub — with all its data — couldn’t be located after landing. A recovery mission is planned for this summer.

Meanwhile, Dr. Vasile is still confident that his team’s space solar project, called SAM, can help provide space solar power to remote locations.

A single inflatable SAM cell (M. Vasile)

“The current project, called SAM (Self-inflating Adaptable Membrane) will test the deployment of an ultra light cellular structure that can change shape once deployed,” Dr. Vasile explains. “The structure is made of cells that are self-inflating in vacuum and can change their volume independently through nanopumps.

“The independent control of the cells would allow us to morph the structure into a solar concentrator to collect the sunlight and project it on solar arrays. The same structure can be used to build large space systems by assembling thousands of small individual units.”

By collecting solar energy in space, where the constraints of day and night or weather variability are nonexistent, the satellites could ultimately beam clean energy down to otherwise off-the-grid locales.

“In areas like the Sahara desert where quality solar power can be captured, it becomes very difficult to transport this energy to areas where it can be used,” says Dr. Vasile. “However, our research is focusing on how we can remove this obstacle and use space based solar power to target difficult to reach areas.

“By using either microwaves or lasers we would be able to beam the energy back down to earth, directly to specific areas. This would provide a reliable, quality source of energy and would remove the need for storing energy coming from renewable sources on ground as it would provide a constant delivery of solar energy.”

If successful, the Suaineadh/SAM project could develop into a source of renewable energy for not only small, remote locations but also neighborhoods, towns and perhaps even entire cities.

“Initially, smaller satellites will be able to generate enough energy for a small village but we have the aim, and indeed the technology available, to one day put a large enough structure in space that could gather energy that would be capable of powering a large city,” Dr. Vasile says.

Read more on the University of Strathclyde Glasgow’s site here.

Image credits: The University of Strathclyde. The project is part of a NASA Institute for Advanced Concepts (NIAC) study. 

Solar Powered Dragon gets Wings for Station Soar

SpaceX Dragon set to dock at International Space Station on COTS 2/3 mission. Falcon 9 launch of Dragon on COTS 2/3 mission is slated for Feb.7, 2012 from pad 40 at Cape Canaveral, Florida. Artist’s rendition of Dragon spacecraft with solar panels fully deployed on orbit. ISS crew will grapple Dragon and berth to ISS docking port. Credit: NASA

[/caption]

The Dragon has grown its mighty wings

SpaceX’s Dragon spacecraft has gotten its wings and is set to soar to the International Space Station (ISS) in about a month. NASA and SpaceX are currently targeting a liftoff on Feb. 7 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

Dragon is a commercially developed unmanned cargo vessel constructed by SpaceX under a $1.6 Billion contract with NASA. The Dragon spacecraft will launch atop a Falcon 9 booster rocket also built by SpaceX, or Space Exploration Technologies.

Dragon’s solar array panels being installed on Dragon’s trunk at the SpaceX hangar in Cape Canaveral,FL.

The Feb. 7 demonstration flight – dubbed COTS 2/3 – represents the first test of NASA’s new strategy to resupply the ISS with privately developed rockets and cargo carriers under the Commercial Orbital Transportation Services (COTS) initiative.

Following the forced retirement of the Space Shuttle after Atlantis final flight in July 2011, NASA has no choice but to rely on private companies to loft virtually all of the US share of supplies and equipment to the ISS.

The Feb. 7 flight will be the first Dragon mission actually tasked to dock to the ISS and is also the first time that the Dragon will fly with deployable solar arrays. The twin arrays are the primary power source for the Dragon. They will be deployed a few minutes after launch, following Dragon separation from the Falcon 9 second stage.

The solar arrays can generate up to 5000 watts of power on a long term basis to run the sensors and communications systems, drive the heating and cooling systems and recharge the battery pack.

SpaceX designed, developed and manufactured the solar arrays in house with their own team of engineers. As with all space hardware, the arrays have been rigorously tested for hundreds of hours under the utterly harsh conditions that simulate the unforgiving environment of outer space, including thermal, vacuum, vibration, structural and electrical testing.

SpaceX engineers conducting an early solar panel test. Hundreds of flood lamps simulate the unfiltered light of the sun. Photo: Roger Gilbertson/ SpaceX

The two arrays were then shipped to Florida and have been attached to the side of the Dragon’s bottom trunk at SpaceX’s Cape Canaveral launch processing facilities. They are housed behind protective shielding until commanded to deploy in flight.


Video Caption: SpaceX testing of the Dragon solar arrays. Credit: SpaceX

I’ve toured the SpaceX facilities several times and seen the Falcon 9 and Dragon capsule launching on Feb. 7. The young age and enthusiasm of the employees is impressive and quite evident.

NASA recently granted SpaceX the permission to combine the next two COTS demonstration flights into one mission and dock the Dragon at the ISS if all the rendezvous practice activities in the vicinity of the ISS are completed flawlessly.

Dragon with the protective fairings installed over the folded solar arrays, at the SpaceX

The ISS crew is eagerly anticipating the arrival of Dragon, for whch they have long trained.

“We’re very excited about it,” said ISS Commander Dan Burbank in a televised interview from on board the ISS earlier this week.

The ISS crew will grapple the Dragon with the station’s robotic arm when it comes within reach and berth it to the Earth-facing port of the Harmony node.

“From the standpoint of a pilot it is a fun, interesting, very dynamic activity and we are very much looking forward to it,” Burbank said. “It is the start of a new era, having commercial vehicles that come to Station.”

Burbank is a US astronaut and captured stunning images of Comet Lovejoy from the ISS just before Christmas, collected here.

Read recent features about the ISS and commercial spaceflight by Ken Kremer here:
Dazzling Photos of the International Space Station Crossing the Moon!
Absolutely Spectacular Photos of Comet Lovejoy from the Space Station
NASA announces Feb. 7 launch for 1st SpaceX Docking to ISS

Jan 11: Free Lecture by Ken at the Franklin Institute, Philadelphia, PA at 8 PM for the Rittenhouse Astronomical Society. Topic: Mars & Vesta in 3 D – Plus Search for Life & GRAIL

First Image Captured by NASAs Jupiter bound Juno; Earth – Moon Portrait

Earth & Moon Portrait - First Photo transmitted from Jupiter Bound Juno. This image of Earth (on the left) and the moon (on the right) was taken by NASA's Juno spacecraft on Aug. 26, 2011, when the spacecraft was about 6 million miles (9.66 million kilometers) away. It was taken by the spacecraft's onboard camera, JunoCam. Credit: NASA/JPL-Caltech

[/caption]

NASA’s solar powered Jupiter bound Juno orbiter has captured her first image – a beautiful portrait of the Earth & Moon – since the probe blasted off from the home planet.

Juno lifted off 25 days ago at 12: 25 p.m. on August 5 from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The spacecraft snapped the portrait with the onboard JunoCam camera on August 26 after journeying some 6 million miles (9.66 million km) from Earth and while traveling at a velocity of 77,600 miles per hour (124,900 kilometers per hour) relative to the sun.

“The image of the Earth Moon system is a rather unique perspective that we can get only by stepping outside of our home planet,” said Scott Bolton, Juno principal investigator, in an exclusive interview with Universe Today. Bolton is from the Southwest Research Institute in San Antonio.

“On our way to Jupiter, we’ve looked back at home and managed to take this amazing image.”

“Earth looking much like any other planet or star from a distance is glorious as this somewhat average looking “star” is home to all of humanity. Our companion, the moon, so beautiful and important to us, stands out even less.”

“We appear almost average and inconspicuous, yet all of our history originates here. It makes one wonder just how many other planets or solar systems might contain life like ours,” Bolton told me.

Juno casts a shadow back toward Earth and Space Shuttle Launch Pad 39A and the shuttle crawler way (at left) seconds after liftoff from adjacent Launch Pad 41 at Cape Canaveral, Florida. View from the VAB Roof. Credit: Ken Kremer

The Juno team commanded the probe to take the image as part of the checkout phase of the vehicles instruments and subsystems.

“The JunoCam instrument turn on and check out were planned activities. The instrument is working great and in fact, all the instruments that we’ve turned on thus far have been working great,” Bolton added.

So far the spacecraft is in excellent health and the team has completed the checkout of the Waves instrument and its two Flux Gate Magnetometer sensors and deployment of its V-shaped electric dipole antenna.

“We have a couple more instruments still to do,” Bolton noted.

The team reports that Juno also performed its first precession, or reorientation maneuver, using its thrusters and that the first trajectory control maneuver (TCM-1) was cancelled as unnecessary because of the extremely accurate targeting provided by the Atlas V rocket.

The portrait shot is actually not Juno’s last photo of her home.

The 8000 pound (3,600 kilogram) probe will fly by Earth once more on October 9, 2013 for a gravity assisted speed boost of 16,330 MPH (7.3 km/sec) to accelerate Juno past the asteroid belt on its long journey to the Jovian system.

Juno soars skyward to Jupiter on Aug. 5 from launch pad 41 at Cape Canaveral Air Force Station at 12:25 p.m. EDT. View from the VAB roof. Credit: Ken Kremer

JunoCam will collect new photos and the other science instruments will make measurements as Juno cartwheels past Earth during the slingshot to Jupiter.

Juno is on a 5 year and 1.7 Billion mile (2.8 Billion km) trek to the largest planet in our solar system. When she arrives at Jupiter on July 4, 2016, Juno will become the first polar orbiting spacecraft at the gas giant.

During a one year science mission – entailing 33 orbits lasting 11 days each – the probe will plunge to within about 3000 miles (5000 km) of the turbulent cloud tops and collect unprecedented new data that will unveil the hidden inner secrets of Jupiter’s genesis and evolution.

The goal is to find out more about the planets origins, interior structure and atmosphere, observe the aurora, map the intense magnetic field and investigate the existence of a solid planetary core.

“This is a remarkable sight people get to see all too rarely,” said Bolton in a NASA statement about the Earth-Moon photo. “This view of our planet shows how Earth looks from the outside, illustrating a special perspective of our role and place in the universe. We see a humbling yet beautiful view of ourselves.”

NASA’s Jet Propulsion Laboratory manages the Juno mission. The spacecraft was designed and built by Lockheed Martin Space Systems, Denver.

Juno and Booster Streak Across the Stars
NASA's Juno spacecraft and its spent Centaur upper rocket stage are captured in this telescope view as they move across the field of stars. The five-minute, timed exposure was acquired on Aug. 5 11:18pm Eastern time (Aug. 6 at 3:18 UTC) when Juno was at a distance of about 195,000 miles (314,000 kilometers) from Earth. The images were taken remotely by amateur astronomer Scott Ferguson using Global Rent-a-Scope's GRAS-016 Takahashi Widefield Refractor, which is located in Nerpio, Spain. Credit: Scott Ferguson
Juno Spacecraft Cruise Trajectory to Jupiter
This graphic shows Juno's trajectory, or flight path, from Earth to Jupiter. The spacecraft travels around the Sun, to a point beyond the orbit of Mars where it fires its main engine a couple of times. These deep space maneuvers set up the Earth flyby maneuver that occurs approximately two years after launch. The Earth flyby gives Juno the boost in velocity it needs to coast all the way to Jupiter. Juno arrives at Jupiter in July 2016. Credit: NASA/JPL-Caltech
View of Juno’s position on Aug. 24, 2011 nearly 6 million miles distant from Earth visualized by NASA’s Eyes on the Solar System website.

Read my continuing features about Juno
Juno Blasts off on Science Trek to Discover Jupiter’s Genesis
Juno Jupiter Orbiter poised at Launch Pad for Aug. 5 Blastoff
JUNO Orbiter Mated to Mightiest Atlas rocket for Aug. 5 Blastoff to Jupiter
Solar Powered Jupiter bound JUNO lands at Kennedy Space Center

Juno Blasts off on Science Trek to Discover Jupiter’s Genesis

JUNO blasts off for Jupiter on Aug. 5 from Cape Canaveral Air Force Station at 12:25 p.m. EDT. Credit: Alan Walters (awaltersphoto.com)

[/caption]

NASA’s solar powered Juno spacecraft blasted off today (Aug.5)from Cape Canaveral today to begin a 2.8 billion kilometer science trek to discover the genesis of Jupiter hidden deep inside the planet’s interior.

Upon arrival at Jupiter in July 2016, JUNO will fire its braking rockets and go into polar orbit and circle the planet 33 times over about one year. The goal is to find out more about the planets origins, interior structure and atmosphere, observe the aurora, map the intense magnetic field and investigate the existence of a solid planetary core.

The spacecraft is healthy and the solar panels successfully deployed.

Check out the photo album of Juno’s launch from the Universe Today team of Alan Walters and Ken Kremer.

“Jupiter is the Rosetta Stone of our solar system,” said Scott Bolton, Juno’s principal investigator from the Southwest Research Institute in San Antonio. “It is by far the oldest planet, contains more material than all the other planets, asteroids and comets combined and carries deep inside it the story of not only the solar system but of us. Juno is going there as our emissary — to interpret what Jupiter has to say.”

Juno was launched atop a powerful Atlas V rocket augmented by 5 solid rocket boosters – built by United Launch Alliance

JUNO blasts off for Jupiter on Aug. 5. Credit: Alan Walters (awaltersphoto.com)

“Today, with the launch of the Juno spacecraft, NASA began a journey to yet another new frontier,” NASA Administrator Charles Bolden said. “The future of exploration includes cutting-edge science like this to help us better understand our solar system and an ever-increasing array of challenging destinations.”

Juno Launch - View from the VAB Roof
Atlas V liftoff with JUNO to Jupiter on Aug. 5 from Cape Canaveral Air Force Station. Credit: Ken Kremer
Juno Launch - View from the VAB Roof
Atlas V liftoff with JUNO to Jupiter on Aug. 5 from Cape Canaveral Air Force Station. Credit: Ken Kremer (kenkremer.com)
Juno Launch - View from the VAB Roof
JUNO blasts off for Jupiter on Aug. 5 atop an Atlas V rocket from Cape Canaveral Air Force Station at 12:25 p.m. EDT.

Credit: Ken Kremer (kenkremer.com)

Send Ken your Juno launch photos to post at Universe Today

Read my continuing features about Juno
Juno Jupiter Orbiter poised at Launch Pad for Aug. 5 Blastoff
JUNO Orbiter Mated to Mightiest Atlas rocket for Aug. 5 Blastoff to Jupiter
Solar Powered Jupiter bound JUNO lands at Kennedy Space Center

JUNO Orbiter Mated to Mightiest Atlas rocket for Aug. 5 Blastoff to Jupiter

Hoisting Juno at Launch Pad 41 to bolt atop most powerful Atlas Rocket. At Space Launch Complex 41, a crane is lowered over the nose of the Atlas payload fairing enclosing the Juno spacecraft in preparation for its lift to the top of the Atlas rocket stacked in the Vertical Integration Facility. Juno is scheduled to launch Aug. 5 aboard the most powerful ever United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida. The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. Credit: NASA/Cory Huston

[/caption]

In less than one week’s time, NASA’s $1.1 Billion Juno probe will blast off on the most powerful Atlas V rocket ever built and embark on a five year cruise to Jupiter where it will seek to elucidate the mysteries of the birth and evolution of our solar system’s largest planet and how that knowledge applies to the remaining planets.

The stage was set for Juno’s liftoff on August 5 at 11:34 a.m. after the solar-powered spacecraft was mated atop the Atlas V rocket at Space Launch Complex 41 at Cape Canaveral and firmly bolted in place at 10:42 a.m. EDT on July 27.

“We’re about to start our journey to Jupiter to unlock the secrets of the early solar system,” said Scott Bolton, the mission’s principal investigator from the Southwest Research Institute in San Antonio. “After eight years of development, the spacecraft is ready for its important mission.”

Inside the Vertical Integration Facility at Space Launch Complex 41, the Juno spacecraft, enclosed in an Atlas payload fairing, is in position on top of its Atlas launch vehicle. The spacecraft was prepared for launch in the Astrotech Space Operations' payload processing facility in Titusville, Fla. Credit: NASA/Cory Huston

The launch window for Juno extends from Aug. 5 through Aug. 26. The launch time on Aug. 5 opens at 11:34 a.m. EDT and closes at 12:43 p.m. EDT. Juno is the second mission in NASA’s New Frontiers program.

JUNO’s three giant solar panels will unfurl about five minutes after payload separation following the launch, said Jan Chodas, Juno’s project manager at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif.

The probe will cartwheel through space during its five year trek to Jupiter.

Upon arrival in July 2016, JUNO will fire its braking rockets and go into polar orbit and circle Jupiter 33 times over about one year. The goal is to find out more about the planet’s origins, interior structure and atmosphere, observe the aurora, map the intense magnetic field and investigate the existence of a solid planetary core.

Hoisting Juno inside the payload fairing at Space Launch Complex 41. Credit: NASA/Cory Huston

“Juno will become the first polar orbiting spacecraft at Jupiter. Not only are we over the poles, but we’re getting closer to Jupiter in our orbit than any other spacecraft has gone,” Bolton elaborated at a briefing for reporters at the Kennedy Space Center. “We’re only 5,000 kilometers above the cloud tops and so we’re skimming right over those cloud tops and we’re actually dipping down beneath the radiation belts, which is a very important thing for us. Because those radiation belts at Jupiter are the most hazardous region in the entire solar system other than going right to the sun itself.”

“Jupiter probably formed first. It’s the largest of all the planets and in fact it’s got more material in it than all the rest of the solar system combined. If I took everything in the solar system except the sun, it could all fit inside Jupiter. So we want to know the recipe.”

Watch for my continuing updates and on-site launch coverage of Juno, only the 2nd probe from Earth to ever orbit Jupiter. Galileo was the first.

Solar Powered Jupiter bound JUNO lands at Kennedy Space Center for blastoff

The Juno spacecraft passes in front of Jupiter in this artist's depiction. Juno, the second mission in NASA's New Frontiers program, will improve our understanding of the solar system by advancing studies of the origin and evolution of Jupiter. The spacecraft will carry eight instruments to investigate the existence of a solid planetary core, map Jupiter's intense magnetic field, measure the amount of water and ammonia in the deep atmosphere, and observe the planet's auroras. Credit: NASA/JPL-Caltech

[/caption]

Juno, NASA’s next big mission bound for the outer planets, has arrived at the Kennedy Space Center to kick off the final leg of launch preparations in anticipation of blastoff for Jupiter this summer.

The huge solar-powered Juno spacecraft will skim to within 4800 kilometers (3000 miles) of the cloud tops of Jupiter to study the origin and evolution of our solar system’s largest planet. Understanding the mechanism of how Jupiter formed will lead to a better understanding of the origin of planetary systems around other stars throughout our galaxy.

Juno will be spinning like a windmill as it fly’s in a highly elliptical polar orbit and investigates the gas giant’s origins, structure, atmosphere and magnetosphere with a suite of nine science instruments.

Technicians at Astrotech's payload processing facility in Titusville, Fla. secure NASA's Juno spacecraft to the rotation stand for testing. The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins. Credit: NASA/Jack Pfaller

During the five year cruise to Jupiter, the 3,600 kilogram probe will fly by Earth once in 2013 to pick up speed and accelerate Juno past the asteroid belt on its long journey to the Jovian system where it arrives in July 2016.

Juno will orbit Jupiter 33 times and search for the existence of a solid planetary core, map Jupiter’s intense magnetic field, measure the amount of water and ammonia in the deep atmosphere, and observe the planet’s auroras.

The mission will provide the first detailed glimpse of Jupiter’s poles and is set to last approximately one year. The elliptical orbit will allow Juno to avoid most of Jupiter’s harsh radiation regions that can severely damage the spacecraft systems.

Juno was designed and built by Lockheed Martin Space Systems, Denver, and air shipped in a protective shipping container inside the belly of a U.S. Air Force C-17 Globemaster cargo jet to the Astrotech payload processing facility in Titusville, Fla.

Juno undergoes acoustics testing at Lockheed Martin in Denver where the spacecraft was built. Credit: NASA/JPL-Caltech/Lockheed Martin

This week the spacecraft begins about four months of final functional testing and integration inside the climate controlled clean room and undergoes a thorough verification that all its systems are healthy. Other processing work before launch includes attachment of the long magnetometer boom and solar arrays which arrived earlier.

Juno is the first solar powered probe to be launched to the outer planets and operate at such a great distance from the sun. Since Jupiter receives 25 times less sunlight than Earth, Juno will carry three giant solar panels, each spanning more than 20 meters (66 feet) in length. They will remain continuously in sunlight from the time they are unfurled after launch through the end of the mission.

“The Juno spacecraft and the team have come a long way since this project was first conceived in 2003,” said Scott Bolton, Juno’s principal investigator, based at Southwest Research Institute in San Antonio, in a statement. “We’re only a few months away from a mission of discovery that could very well rewrite the books on not only how Jupiter was born, but how our solar system came into being.”

Juno is slated to launch aboard the most powerful version of the Atlas V rocket – augmented by 5 solid rocket boosters – from Cape Canaveral, Fla. on August 5. The launch window extends through August 26. Juno is the second mission in NASA’s New Frontiers program.

NASA’s Mars Curiosity Rover will follow Juno to the Atlas launch pad, and is scheduled to liftoff in late November 2011. Read my stories about Curiosity here and here.

Because of cuts to NASA’s budget by politicians in Washington, the long hoped for mission to investigate the Jovian moon Europa may be axed, along with other high priority science missions. Europa may harbor subsurface oceans of liquid water and is a prime target in NASA’s search for life beyond Earth.

Technicians inside the clean room at Astrotech in Titusville, Fla. guide NASA's Juno spacecraft, as it is lowered by overhead crane, onto the rotation stand for testing. Credit: NASA/Jack Pfaller
Technicians at Astrotech unfurl solar array No. 1 with a magnetometer boom that will help power NASA's Juno spacecraft on a mission to Jupiter. Credit: NASA
Juno's interplanetary trajectory to Jupiter. Juno will launch in August 2011 and fly by Earth once in October 2013 during its 5 year cruise to Jupiter. Click to enlarge. Credit: NASA/JPL

Solar Powered Airplane Successfully Flies Through the Night

Solar Impulse's Chief Executive Officer and pilot Andre Borschberg flyes in the solar-powered HB-SIA prototype airplane for its first night flight attempt near Payerne airport July 7, 2010. Credit: KEYSTONE/Dominic Favre/POOL/SOLAR IMPULSE

[/caption]

After flying for over 26 straight hours, pilot André Borschberg landed the solar-powered Solar Impulse HB-SIA airplane to cheers and applause at the Payerne airbase in Switzerland, successfully completing the goal of flying the aircraft through the night. According to Bertrand Piccard, president of Solar Impulse, there was power to spare, with over three hours of energy remaining in the sun-gathering lithium batteries. “This is a highly symbolic moment: flying by night using solely solar power is a stunning manifestation of the potential that clean technologies offer today to reduce the dependency of our society on fossil fuels!” Piccard said. “We are on the verge of the perpetual flight.”

With an official flight time of 26 hours and 9 minutes, the lightweight carbon fiber plane reached a a maximum altitude of 8,700 m (28,543 ft), a top speed of 68 knots (ground speed), an average speed of 23 knots. The HB-SIA flew solely on solar power, gathering and storing it during the daylight hours, and using the energy to fly through the night.

Solar Impulse flies towards the night. Credit: KEYSTONE/POOL/Dominic Favre/Solar Impulse

“During the whole of the flight, I just sat there and watched the battery charge level rise and rise! Sitting in a plane producing more energy than it consumes is a fantastic feeling”, said Borschberg, CEO and co-founder of the Solar Impulse project.

The Solar Impulse HB-SIA has 12,000 solar cells built into its 64.3-meter (193-foot) wings, and is a prototype for an aircraft that the Solar Impulse team hope to fly around the world in a continuous flight in 2012.

Solar impulse weights 1,600 kg (3,500 lb), and is powered by four electric motors.

“Nothing can prevent us from another day and night, and the myth of perpetual flight,” a jubilant Piccard said at a press conference following the flight.

Update: Here’s a video from Solar Impulse, as the team waited for the sunrise:

Source: Solar Impulse, Solar Impulse webcast

Here’s an article about the biggest airplane.

Solar-Powered Airplane Makes Maiden Voyage

Solar Impulse durings its maiden voyage. Credit: Solar Impulse.


A solar powered airplane that one day will attempt an around the world non-stop flight took its maiden voyage yesterday in Switzerland. Solar Impulse flew for 87 minutes and climbed to 1,200 meters. “This first flight was for me a very intense moment!” exclaimed test pilot Markus Scherdel immediately after the flight. “The HB-SIA behaved just as the flight simulator told us! Despite its immense size and feather weight, the aircraft’s controllability matches our expectations!”

[/caption]
“We reached all objectives, especially the safe landing, which was our main purpose,” said Claude Nicollier, a former astronaut who is one of the leaders of the project.

The plane has a 61 meter wingspan, and the wings are covered with 12,000 state-of-the-art photovoltaic solar cells that power the plane. Using so-called intelligent light materials and new energy storage, the plane will be able to fly both night and day, completely on solar power. Solar impulse weights 1,600 kg and can fly at speeds up to 70 kmh at a maximum altitude of 8,500 m (27 900 ft)

“We .still have a long way to go until the night flights and an even longer way before flying round the world, but today, thanks to the extraordinary work of an entire team, an essential step towards achieving our vision has been taken,” said Solar Impulse Chairman and initiator Bertrand Piccard. “Our future depends on our ability to convert rapidly to the use of renewable energies. Solar Impulse is intended to demonstrate what can be done already today by using these energies and applying new technologies that can save natural resources.”

For more information on Solar Impulse.