This idea really is quite a fascinating one. Currently a trip to Mars would require large amounts of air, water and other resources to sustain human life but would also expose travellers to harmful levels of radiation. A wonderful solution has been proposed in a new paper recently published by researchers from Ukraine. They propose that asteroids which already travel relatively close by Earth, Mars and even Venus already could be used to hop between the planets. They are already making the journey anyway and so perhaps the cosmos already provides the solution to interplanetary travel.
Continue reading “Astronauts Could Take an Asteroid Ferry from Earth to Mars”New Research Reveals Provides Insight into Mysterious Features on Airless Worlds
Between 2011 and 2018, NASA’s Dawn mission conducted extended observations of Ceres and Vesta, the largest bodies in the Main Asteroid Belt. The mission’s purpose was to address questions about the formation of the Solar System since asteroids are leftover material from the process, which began roughly 4.5 billion years ago. Ceres and Vesta were chosen because Ceres is largely composed of ice, while Vesta is largely composed of rock. During the years it orbited these bodies, Dawn revealed several interesting features on their surfaces.
This included mysterious flow features similar to those observed on other airless bodies like Jupiter’s moon Europa. In a recent study, Michael J. Poston, a researcher from the Southwest Research Institute (SWRI), recently collaborated with a team at NASA’s Jet Propulsion Laboratory to attempt to explain the presence of these features. In the paper detailing their findings, they outlined how post-impact conditions could temporarily produce liquid brines that flow along the surface, creating curved gullies and depositing debris fans along the impact craters’ walls.
Continue reading “New Research Reveals Provides Insight into Mysterious Features on Airless Worlds”Establishing a New Habitability Metric for Future Astrobiology Surveys
The search for exoplanets has grown immensely in recent decades thanks to next-generation observatories and instruments. The current census is 5,766 confirmed exoplanets in 4,310 systems, with thousands more awaiting confirmation. With so many planets available for study, exoplanet studies and astrobiology are transitioning from the discovery process to characterization. Essentially, this means that astronomers are reaching the point where they can directly image exoplanets and determine the chemical composition of their atmospheres.
As always, the ultimate goal is to find terrestrial (rocky) exoplanets that are “habitable,” meaning they could support life. However, our notions of habitability have been primarily focused on comparisons to modern-day Earth (i.e., “Earth-like“), which has come to be challenged in recent years. In a recent study, a team of astrobiologists considered how Earth has changed over time, giving rise to different biosignatures. Their findings could inform future exoplanet searches using next-generation telescopes like the Habitable Worlds Observatory (HWO), destined for space by the 2040s.
Continue reading “Establishing a New Habitability Metric for Future Astrobiology Surveys”China Releases its First Roadmap for Space Science and Exploration Through 2050.
China’s space program has advanced considerably since the turn of the century. In addition to developing heavy-launch vehicles like the Long March 5 and building a modular space station in orbit, China has also embarked on an ambitious program of lunar exploration (Chang’e) – which has launched six robotic missions to explore the Moon’s surface since 2007. These missions are paving the way for crewed missions to the Moon by 2030 and creating a permanent habitat around the Moon’s southern polar region – the International Lunar Research Station (ILRS).
They also plan to send crewed missions to Mars by 2033, which will culminate in the creation of a permanent base there too. Earlier today, the Chinese Academy of Sciences (CAS), the China National Space Administration (CNSA), and the China Manned Space Agency (CMSE) jointly released the country’s first long-term scheme for space science and exploration. Titled “National Medium—and Long-Term Development Plan for Space Science (2024-2050),” this plan elaborated on the basic principles, development goals, and roadmap for the country’s space science and exploration through 2050.
Continue reading “China Releases its First Roadmap for Space Science and Exploration Through 2050.”A Possible Exomoon Could be Volcanic, like Jupiter’s Moon Io
In 2012, astronomers detected a gas giant transiting in front of WASP-49A, a G-type star located about 635 light-years from Earth. The data obtained by the WASP survey indicated that this exoplanet (WASP-49 b) is a gas giant roughly the same size as Jupiter and 37% as massive. In 2017, WASP-49 b was found to have an extensive cloud of sodium, which was confounding to scientists. Further observations in 2019 using the Hubble Space Telescope detected the presence of other minerals, including magnesium and iron, which appeared to be magnetically bound to the gas giant.
WASP-49 b and its star are predominantly composed of hydrogen and helium, with only trace amounts of sodium – not enough to account for this cloud. In addition, there was no indication of how this sodium cloud was ejected into space. In our Solar System, gas emissions from Jupiter’s volcanic moon Io create a similar phenomenon. In a recent study, an international team led by scientists from NASA’s Jet Propulsion Laboratory found potential evidence of a rocky, volcanic moon orbiting WASP-49 b. While not yet confirmed, the presence of a volcanic exomoon around this gas giant could explain the presence of this sodium cloud.
Continue reading “A Possible Exomoon Could be Volcanic, like Jupiter’s Moon Io”Primordial Holes Could be Hiding in Planets, Asteroids, and Here on Earth
Small primordial black holes (PBHs) are one of the hot topics in astronomy and cosmology today. These hypothetical black holes are believed to have formed soon after the Big Bang, resulting from pockets of subatomic matter so dense that they underwent gravitational collapse. At present, PBHs are considered a candidate for dark matter, a possible source of primordial gravitational waves, and a resolution to various problems in physics. However, no definitive PBH candidate has been observed so far, leading to proposals for how we may find these miniature black holes.
Recent research has suggested that main-sequence neutron and dwarf stars might contain small PBHs in their interiors that are slowly consuming their gas supply. In a recent study, a team of physicists extended this idea to include a new avenue for potentially detecting PBHs. Basically, we could search inside objects like planets and asteroids or employ large plates or slabs of metal to detect PBHs for signs of their passage. By detecting the microchannels these bodies would leave, scientists could finally confirm the existence of PBHs and shed light on some of the greatest mysteries in cosmology today.
Continue reading “Primordial Holes Could be Hiding in Planets, Asteroids, and Here on Earth”Could Comets have Delivered the Building Blocks of Life to “Ocean Worlds” like Europa, Enceladus, and Titan too?
Throughout Earth’s history, the planet’s surface has been regularly impacted by comets, meteors, and the occasional large asteroid. While these events were often destructive, sometimes to the point of triggering a mass extinction, they may have also played an important role in the emergence of life on Earth. This is especially true of the Hadean Era (ca. 4.1 to 3.8 billion years ago) and the Late Heavy Bombardment, when Earth and other planets in the inner Solar System were impacted by a disproportionately high number of asteroids and comets.
These impactors are thought to have been how water was delivered to the inner Solar System and possibly the building blocks of life. But what of the many icy bodies in the outer Solar System, the natural satellites that orbit gas giants and have liquid water oceans in their interiors (i.e., Europa, Enceladus, Titan, and others)? According to a recent study led by researchers from Johns Hopkins University, impact events on these “Ocean Worlds” could have significantly contributed to surface and subsurface chemistry that could have led to the emergence of life.
Continue reading “Could Comets have Delivered the Building Blocks of Life to “Ocean Worlds” like Europa, Enceladus, and Titan too?”A New Study Shows How our Sun Could Permantly Capture Rogue Planets!
Interest in interstellar objects (ISOs) was ignited in 2017 when ‘Oumuamua flew through our Solar System and made a flyby of Earth. Roughly two years later, another ISO passed through our Solar System – the interstellar comet 2I/Borisov. These encounters confirmed that ISOs are not only very common, but pass through our Solar System regularly – something that astronomers have suspected for a long time. Even more intriguing is that some of these objects are captured and can still be found orbiting our Sun.
In a recent study, a team of researchers described a region in the Solar System where objects can be permanently captured from interstellar space. Their analysis determined that once objects are captured by our Sun’s gravitational pull and fall into this region—which could include comets, asteroids, and even rogue planets—they will remain in orbit around the Sun and not collide with it. These findings could have drastic implications for ISO studies and proposed missions to rendezvous with some of these objects in the near future.
Continue reading “A New Study Shows How our Sun Could Permantly Capture Rogue Planets!”Instead of Losing its Atmosphere, an Exoplanet Puffed Up and Held Onto it
To date, astronomers have confirmed the existence of 5638 extrasolar planets in 4,199 star systems. In the process, scientists have found many worlds that have defied expectations. This is certainly the case regarding “hot Neptunes,” planets that are similar to the “ice giants” of the outer Solar System but orbit much closer to their stars. But when a Johns Hopkins University-led team of astronomers discovered TIC365102760 b (aka. Pheonix), they observed something entirely unexpected: a Neptune-sized planet that retained its atmosphere by puffing up.
Continue reading “Instead of Losing its Atmosphere, an Exoplanet Puffed Up and Held Onto it”New Telescope Images of Io are so Good, it Looks like a Spacecraft Took Them
The Large Binocular Telescope (LBT), located on Mount Graham in Arizona and run by the University of Arizona, is part of the next generation of extremely large telescopes (ELTs). With two primary mirrors measuring 8.4 m (~27.5 ft), it has a collecting area slightly greater than that of a 30-meter (98.4 ft) telescope. With their resolution, adaptive optics, and sophisticated instruments, these telescopes are expected to probe deeper into the Universe and provide stunning images of everything from distant galaxies to objects in our Solar System.
An international team led by the University of Arizona recently acquired images of Jupiter’s moon Io that were the highest-resolution pictures ever taken by a ground-based telescope. The images revealed surface features measuring just 80 km (50 mi) across, a spatial resolution previously reserved for spacecraft. This includes NASA’s Juno mission, which has captured some of the most stunning images of Io’s volcanoes. These images were made possible by the LBT’s new SHARK-VIS instrument and the telescope’s adaptive optics system.
Continue reading “New Telescope Images of Io are so Good, it Looks like a Spacecraft Took Them”