Cool Infographic Compares the Chemistry of Planetary Atmospheres

"The Chemistry of the Solar System" by Compound Interest's Andy Brunning

Here on Earth we enjoy the nitrogen-oxygen atmosphere we’ve all come to know and love with each of the approximately 24,000 breaths we take each day (not to mention the surprisingly comfortable 14.7 pounds per square inch of pressure it exerts on our bodies every moment.) But every breath we take would be impossible (or at least quickly prove to be deadly) on any of the other planets in our Solar System due to their specific compositions. The infographic above, created by UK chemistry teacher Andy Brunning for his blog Compound Interest, breaks down — graphically, that is; not chemically — the makeup of atmospheres for each of the planets. Very cool!

In addition to the main elements found in each planet’s atmosphere, Andy includes brief notes of some of the conditions present.

“Practically every other planet in our solar system can be considered to have an atmosphere, apart from perhaps the extremely thin, transient atmosphere of Mercury, with the compositions varying from planet to planet. Different conditions on different planets can also give rise to particular effects.”

– Andy Brunning, Compound Interest

And if you’re thinking “hey wait, what about Pluto?” don’t worry — Andy has included a sort of postscript graphic that breaks down Pluto’s on-again, off-again atmosphere as well. See this and more descriptions of the atmospheres of the planets on the Compound Interest blog here.

Source: Compound Interest on Twitter

Once Upon a Time There Was a Spacecraft Called Rosetta…

The road to a comet isn't an easy one! Luckily Rosetta and Philae have a lot of help.

…and that time is now! ESA’s Rosetta spacecraft is just over a mere two weeks away from its arrival at Comet 67P/Churyumov-Gerasimenko (which has recently surprised everyone with its binary “rubber duckie” shape) and the excitement continues to grow — and rightfully so, since after ten years traveling through the Solar System Rosetta is finally going to achieve its goal of being the first spacecraft to orbit a comet!

As part of the “Are We There Yet” campaign to encourage public participation in this historic space exploration event, ESA has released the next installment of Rosetta’s story in adorable animated format. Check it out above, and feel free to fall in love with a solar-powered spacecraft.

Keep up with Rosetta’s journey on the ESA website here, and enter the #RosettaAreWeThereYet contest by sharing your photos here (you could win a trip to ESA’s Operations Center in Darmstadt, Germany in November for Philae’s landing party!)

Video: ESA

Is Our Solar System Weird?

This artist’s view shows an extrasolar planet orbiting a star (the white spot in the right).
This artist’s view shows an extrasolar planet orbiting a star (the white spot in the right). Image Credit: IAU/M. Kornmesser/N. Risinger (skysurvey.org)

Is our Solar System normal? Or is it weird? How does the Solar System fit within the strange star systems we’ve discovered in the Milky Way so far?

With all the beautiful images that come down the pipe from Hubble, our Solar System has been left with celestial body image questions rivaling that of your average teenager. They’re questions we’re all familiar with. Is my posture crooked? Do I look pasty? Are my arms too long? Is it supposed to bulge out like this in the middle? Some of my larger asteroids are slightly asymmetrical. Can everyone tell? And of course the toughest question of all… Am I normal?

The idea that stars are suns with planets orbiting them dates back to early human history. This was generally accompanied by the idea that other planetary systems would be much like our own. It’s only in the last few decades that we’ve had real evidence of planets around other stars, known as exoplanets. The first extrasolar planet was discovered around a pulsar in 1992 and the first “hot jupiter” was discovered in 1995.

Most of the known exoplanets have been discovered by the amazing Kepler spacecraft. Kepler uses the transit method, observing stars over long periods of time to see if they dim as a planet passes in front of the star. Since then, astronomers have found more than 1700 exoplanets, and 460 stars are known to have multiple planets. Most of these stellar systems are around main sequence stars, just like the Sun. Leaving us with plenty of systems for comparison.

Artist's impression of the solar system showing the inner planets (Mercury to Mars), the outer planets (Jupiter to Neptune) and beyond. Credit: NASA
Artist’s impression of the solar system showing the inner planets (Mercury to Mars), the outer planets (Jupiter to Neptune) and beyond. Credit: NASA

So, is our Solar System normal? Planets in a stellar system tend to have roughly circular orbits, just like our Solar system. They have a range of larger and smaller planets, just like ours. Most of the known systems are even around G-type stars. Just like ours.….and we are even starting to find Earth-size planets in the habitable zones of their stars. JUST LIKE OURS!

Not so fast…Other stellar systems don’t seem to have the division of small rocky planets closer to the star and larger gas planets farther away. In fact, large Jupiter-type planets are generally found close to the star. This makes our solar system rather unusual.

Computer simulations of early planetary formation shows that large planets tend to move inward toward their star as they form, due to its interaction with the material of the protoplanetary disk. This would imply that large planets are often close to the star, which is what we observe. Large planets in our own system are unusually distant from the Sun because of a gravitational dance between Jupiter and Saturn that happened when our Solar System was young.

55 Cancri. Image credit: NASA/JPL
55 Cancri. Image credit: NASA/JPL

Although our Solar System is slightly unusual, there are some planetary systems that are downright quirky. There are planetary systems where the orbits are tilted at radically different angles, like Kepler 56, and a sci-fi favorite, the planets that orbit two stars like Kepler 16 and 34. There is even a planet so close to its star that its year lasts only 18 hours, known 55 Cancri e.

And so, the Kepler telescope has presented us with a wealth of exoplanets, that we can compare our beautiful Solar System to. Future telescopes such as Gaia, which was launched in 2013, TESS and PLATO slated for launch in 2017 and 2024 will likely discover even more. Perhaps even discovering the holy grail of exoplanets, a habitable planet with life…

And the who knows, maybe we’ll find another planet… just like ours.

What say you? Where should we go looking for habitable worlds in this big bad universe of ours? Tell us in the comments.

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!

What’s Inside Jupiter?

What's Inside Jupiter?

Jupiter is like a jawbreaker. Dig down beneath the swirling clouds and you’ll pass through layer after layer of exotic forms of hydrogen. What’s down there, deep within Jupiter?

What’s inside Jupiter? Is it chameleons? Candy? Cake? Cheddar? Chemtrails? No one knows. No one can ever know.

Well, that’s not entirely true… or even remotely true. Jupiter is the largest planet in the Solar System and two and a half times the mass of the other planets combined. It’s a gas giant, like Saturn, Uranus, and Neptune. It’s almost 90% hydrogen and 10% helium, and then other trace materials, like methane, ammonia, water and some other stuff. What would be a gas on Earth behaves in very strange ways under Jupiter’s massive pressure and temperatures.

So what’s deep down inside Jupiter? What are the various layers and levels, and can I keep thinking of it like a jawbreaker? At the very center of Jupiter is its dense core. Astronomers aren’t sure if there’s a rocky region deep down inside. It’s actually possible that there’s twelve to forty five Earth masses of rocky material within the planet’s core. Now this could be rock, or hydrogen and helium under such enormous forces that it just acts that way. But you couldn’t stand on it. The temperatures are 35,000 degrees C. The pressures are incomprehensible.

Surrounding the core is a vast region made up of hydrogen. But it’s not a gas. The pressure and temperature transforms the hydrogen into an exotic form of liquid metallic hydrogen, similar to the liquid mercury you’d see in a thermometer. This metallic hydrogen region turns inside the planet, and acts like an electric dynamo. Similar to our planet’s own iron core, this gives the planet a powerful magnetic field.

The next level up is still liquid hydrogen, but the pressure’s lower, so it’s not metallic any more. And then above this is the planet’s atmosphere. The upper layers of Jupiter’s atmosphere is the only part we can see. Those bands on the planet are clouds of ammonia that rotate around the planet in alternating directions. The lighter color zones are colder ammonia ice upwelling from below. Here’s the exciting part. Astronomers aren’t sure what the darker regions are.

This animated gif shows Voyager 1's approach to Jupiter during a period of over 60 Jupiter days in 1979.  Credit: NASA.
This animated gif shows Voyager 1’s approach to Jupiter during a period of over 60 Jupiter days in 1979. Credit: NASA.

Still think you want to descend into Jupiter, to try and walk on its rocky interior? NASA tried that. In order to protect Jupiter’s moons from contamination, NASA decided to crash the Galileo spacecraft into the planet at the end of its mission. It only got point two percent of the way down through Jupiter’s radius before it was completely destroyed.

Jupiter is a remarkably different world from our own. With all that gravity, normally lightweight hydrogen behaves in completely exotic ways. Hopefully in the future we’ll learn more about this amazing planet we share our Solar System with.

What do you think? Is there a rocky core deep down inside Jupiter?

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!

A New Image of Europa Emerges

Europa's icy, cracked surface imaged by NASA's Galileo spacecraft Credit: NASA/JPL-Caltech/SETI Institute

Eureka – it’s Europa! And a brand-new image of it, too! (Well, kinda sorta.)

The picture above, showing the icy moon’s creased and cracked surface, was made from images acquired by NASA’s Galileo spacecraft during its exploration of Jupiter and its family of moons in 1997 and 1998. While the data itself isn’t new per se the view seen here has never been released by JPL, and so it’s new to you! (And to me too.)

Europa's bizarre surface features suggest an actively churning ice shell above a salty liquid water ocean.  Credit: JPL
Europa’s bizarre surface features suggest an actively churning ice shell above a salty liquid water ocean. Credit: JPL

The original high-resolution images were acquired on Nov. 6, 1997, in greyscale and colorized with data acquired during a later pass by Galileo in 1998. The whiter areas are regions of relatively pure water ice, while the rusty red bands are where ice has mixed with salts and organic compounds that have oozed up from deeper within Europa.

Read more: Hydrogen Peroxide Could Feed Life on Europa

The entire image area measures about 101 by 103 miles across (163 km x 167 km).

Europa has long been one of the few places we know of outside our own planet where life could very well have evolved and potentially still exist. Getting a peek below the icy moon’s frozen crust — or even a taste of the recently-discovered water vapor spraying from its south pole — is all we’d need to further narrow down the chances that somewhere, something could be thriving in Europa’s subsurface seas. Get a planetary scientist’s perspective in a video interview with Dr. Mike Brown here.

Launched in October 1989, the Galileo spacecraft arrived at Jupiter in December 1995. Through primary and extended missions Galileo explored the giant planet and its family of moons until plunging into Jupiter’s atmosphere on September 21, 2003. Learn more about Galileo here, and check out some of the amazing images it acquired on the CICLOPS imaging diary page here.

Source: NASA’s Planetary Photojournal

Rosetta Watches Comet 67P Tumbling Through Space

Animation of Comet 67P/Churyumov-Gerasimenko as seen by Rosetta on June 27-28, 2014

This is really getting exciting! ESA’s Rosetta spacecraft (and the piggybacked Philae lander) are in the home stretch to arrive at Comet 67P/Churyumov-Gerasimenko in 34 days and the comet is showing up quite nicely in Rosetta’s narrow-angle camera. The animation above, assembled from 36 NAC images acquired last week, shows 67P/C-G rotating over a total elapsed time of 12.4 hours. No longer just an extra-bright pixel, it looks like a thing now!

The animation, although fascinating, only hints at the “true” shape of the comet’s nucleus. Reflected light does create a bloom effect in the imaging sensor, especially at such small resolutions, expanding the apparent size of the comet beyond its 4-by-4-pixel size. But rest assured that much, much better images are on the way as Rosetta gets closer and closer.

Read more: How Big is Rosetta’s Comet?

The spacecraft was about 86,000 km (53,440 miles) from 67P/C-G when the images were acquired. Since that time it has cut that distance in half, and by this weekend it will be less than 36,000 km (22,370 miles) from the comet. After more than a decade of traveling around the inner Solar System Rosetta is finally arriving at its goal! Click here to see where Rosetta is now.

Stay tuned for more exciting updates from Rosetta, and learn more about the mission below:

Source: ESA’s Rosetta blog

Animation credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA 

How Big is Rosetta’s Comet?

Diagram of Comet 67P/C-G compared to terrestrial landmarks (ESA)

Pretty darn big, I’d say.

The illustration above shows the relative scale of the comet that ESA’s Rosetta and Philae spacecraft will explore “up-close and personal” later this year. And while it’s one thing to say that the nucleus of Comet 67P/Churyumov-Gerasimenko is about three by five kilometers in diameter, it’s quite another to see it in context with more familiar objects. Think about it — a comet as tall as Mt Fuji!

Artist's impression (not to scale) of the Rosetta orbiter deploying the Philae lander to comet 67P/Churyumov–Gerasimenko. Credit: ESA–C. Carreau/ATG medialab.
Artist’s impression (not to scale) of the Rosetta orbiter deploying the Philae lander to comet 67P/Churyumov–Gerasimenko. Credit: ESA–C. Carreau/ATG medialab.

At the time of this writing Rosetta is 35 days out on approach to Comet 67P/C-G, at a distance of about 51,000 km (31,700 miles) and closing. Three “big burn” maneuvers have already been performed between May 7 and June 4 to adjust the spacecraft’s course toward the incoming comet, and after smaller ones on June 18 and July 2 there are a total of five more to go. See details of Rosetta’s burn maneuvers here.

As incredibly sensitive as they are, Rosetta’s instruments — which were able to detect the water vapor coming from Comet 67P/C-G from a distance of over 360,000 km — have even sniffed the hydrazine exhaust from its own thruster burns.

Luckily the remaining burns are relatively small compared to the first three, with the final being very brief, so any data contamination by Rosetta’s own exhaust shouldn’t become an issue once the spacecraft has established orbit in August.

Read more: Rosetta’s Comet Already Sweating the Small Stuff

Launched in March 2004, ESA’s Rosetta mission will be the first to orbit and land a probe on a comet, observing its composition and behavior as it makes its close approach to the Sun in 2015. Click here to see where Rosetta is right now.

Source: ESA’s Rosetta blog

Note: While 3-5 km seems pretty big (especially when stood on end) comet nuclei can be much larger, 10 to 20 km in diameter up to the enormous 40+ km size of Hale-Bopp. As comets go, 67P/C-G is fairly average. (Except that, come August, it will be the only comet with an Earthly spacecraft in tow!)

Rosetta Detects Water on its Target Comet

Artist's impression (from 2002) of Rosetta orbiting Comet 67P/Churyumov-Gerasimenko. Credit: ESA, image by AOES Medialab

It’s no surprise that there is a lot of water in comets. The “dirty snowballs” (or dusty ice-balls, more accurately) are literally filled with the stuff, so much in fact it’s thought that comets played a major role in delivering water to Earth. But every comet is unique, and the more we learn about them the more we can understand the current state of our Solar System and piece together the history of our planet.

ESA’s Rosetta spacecraft is now entering the home stretch for its rendezvous with comet 67P/Churyumov-Gerasimenko in August. While it has already visually imaged the comet on a couple of occasions since waking from its hibernation, its instruments have now successfully identified water on 67P for the first time, from a distance of 360,000 km — about the distance between Earth and the Moon.

The detection comes via Rosetta’s Microwave Instrument for Rosetta Orbiter, or MIRO, instrument. The results were distributed this past weekend to users of the IAU’s Central Bureau of Astronomical Telegrams:

S. Gulkis, Jet Propulsion Laboratory, California Institute of Technology, on behalf of the Microwave Instrument on Rosetta Orbiter (MIRO) science team, reports that the (1_10)-(1_01) water line at 556.9 GHz was first detected in Comet 67P/Churyumov-Gerasimenko with the MIRO instrument aboard the Rosetta spacecraft on June 6.55, 2014 UT. The line area is 0.39 +/-0.06 K km/s with the line amplitude of 0.48 +/-0.06 K and the line width of 0.76 +/-0.12 km/s. At the time of the observations, the spacecraft to comet distance was ~360,000 km and the heliocentric distance of the comet was 3.93 AU. An initial estimate of the water production rate based on the measurements is that it lies between 0.5 x 10^25 molecules/s and 4 x 10^25 molecules/s.

Although recent images of 67P/C-G seem to show that the comet’s brightness has decreased over the past couple of months, it is still on its way toward the Sun and with that will come more warming and undoubtedly much more activity. These recent measurements by MIRO show that the comet’s water production rate is “within the range of models being used” by scientists to anticipate its behavior.

Rosetta image of Comet 67P/C-G on June 4, 2014, from a distance of 430,000 km. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Rosetta image of Comet 67P/C-G on June 4, 2014, from a distance of 430,000 km. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Read more: What Will Rosetta’s Comet Look Like?

This August Rosetta will become the first spacecraft to establish orbit around a comet and, in November, deploy its Philae lander onto its surface. Together these robotic explorers will observe first-hand the changes in the comet as it makes its closest approach to the Sun in August 2015. It’s going to be a very exciting year ahead, so stay tuned for more!

Learn more about the Rosetta mission here.

Source: ESA’s Rosetta blog

 

New Horizons Wakes Up for the Summer

New Horizons
Artist's impression of the New Horizons spacecraft. Image Credit: NASA

While many kids in the U.S. are starting their school summer vacations, New Horizons is about to get back to work! Speeding along on its way to Pluto the spacecraft has just woken up from hibernation, a nap it began five months (and 100 million miles) ago.

The next time New Horizons awakens from hibernation in December, it will be beginning its actual and long-awaited encounter with Pluto! But first the spacecraft and its team have a busy and exciting summer ahead.

New Horizons Tweeted about its Father's Day wakeup call
New Horizons tweeted about its Father’s Day wakeup call

After an in-depth checkout of its onboard systems and instruments, the New Horizons team will “track the spacecraft to refine its orbit, do a host of instrument calibrations needed before encounter, carry out a small but important course correction, and gather some cruise science,” according to principal investigator Alan Stern in his June 11 update, aptly titled “Childhood’s End.”

What’ll be particularly exciting for us space fans is an animation of Pluto and Charon in motion around each other, to be made from new observations to be acquired in July. Because of New Horizons’ position, the view will be from a perspective not possible from Earth.

New Horizons LOng Range Reconnaissance Imager (LORRI) composite image showing the detection of Pluto’s largest moon, Charon, cleanly separated from Pluto itself. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)
New Horizons LOng Range Reconnaissance Imager (LORRI) image of Pluto and Charon from July 2013 (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)

The next major milestone for New Horizons will be its crossing of Neptune’s orbit on August 25. (This just happens to fall on the 25th anniversary of Voyager 2’s closest approach in 1989.) “After that,” Stern says, “we’ll be in ‘Pluto space!'”

Read more: An Ocean on Pluto’s Moon?

Launched on Jan. 19, 2006, New Horizons will make its closest approach to Pluto on July 14, 2015 at 11:49 UTC. Traveling nearly 35,000 mph (55,500 km/h) it’s one of the fastest vehicles ever built, moving almost 20 times faster than a bullet. 

Read more from Alan Stern in his latest “PI Perspective” article on the New Horizons web site here, and check out NASA’s mission page here for the latest news as well.

“There is a lot to tell you about over the next 12 weeks, and this is just the warm-up act. Showtime — the start of the encounter — begins in just six months. This is what New Horizons was built for, and what we came to do. In a very real sense, the mission is emerging into its prime.”

– Alan Stern, New Horizons principal investigator

Also, check out a video on Pluto and the New Horizons mission here.

Why Isn’t the Asteroid Belt a Planet?

Why Isn’t the Asteroid Belt a Planet?

It seems like there’s a strange gap in between Mars and Jupiter filled with rocky rubble. Why didn’t the asteroid belt form into a planet, like the rest of the Solar System?

Beyond the orbit of Mars lies the asteroid belt its a vast collection of rocks and ice, leftover from the formation of the solar system. It starts about 2 AU, ends around 4 AU. Objects in the asteroid belt range from tiny pebbles to Ceres at 950 km across.

Star Wars and other sci-fi has it all wrong. The objects here are hundreds of thousand of kilometers apart. There’d be absolutely no danger or tactical advantage to flying your spacecraft through it.

To begin with, there actually isn’t that much stuff in the asteroid belt. If you were to take the entire asteroid belt and form it into a single mass, it would only be about 4% of the mass of our Moon. Assuming a similar density, it would be smaller than Pluto’s moon Charon.

There’s a popular idea that perhaps there was a planet between Mars and Jupiter that exploded, or even collided with another planet. What if most of the debris was thrown out of the solar system, and the asteroid belt is what remains?

We know this isn’t the case for a few of reasons. First, any explosion or collision wouldn’t be powerful enough to throw material out of the Solar System. So if it were a former planet we’d actually see more debris.

Second, if all the asteroid belt bits came from a single planetary body, they would all be chemically similar. The chemical composition of Earth, Mars, Venus, etc are all unique because they formed in different regions of the solar system. Likewise, different asteroids have different chemical compositions, which means they must have formed in different regions of the asteroid belt.

Asteroids
Artist’s depiction of the asteroid belt between Mars and Jupiter. Credit: David Minton and Renu Malhotra

In fact, when we look at the chemical compositions of different asteroids we see that they can be grouped into different families, with each having a common origin. This gives us a clue as to why a planet didn’t form where the asteroid belt is.

If you arrange all the asteroids in order of their average distance from the Sun, you find they aren’t evenly distributed. Instead you find a bunch, then a gap, then a bunch more, then another gap, and so on. These gaps in the asteroid belt are known as Kirkwood gaps, and they occur at distances where an orbit would be in resonance with the orbit of Jupiter.

Jupiter’s gravity is so strong, that it makes asteroid orbits within the Kirkwood gaps unstable. It’s these gaps that prevented a single planetary body from forming in that region. So, because of Jupiter, asteroids formed into families of debris, rather than a single planetary body.

What do you think? What’s your favorite object in the asteroid belt. Tell us in the comments below.