Russia’s Second Shot at Phobos May Return Bits of Mars As Well

The streaked and stained surface of Phobos. (Image: NASA)

After the tragic failure of the first Phobos-Grunt mission to even make it out of low-Earth orbit, the Russian space agency (Roscosmos) is hoping to give it another go at Mars’ largest moon with the Phobos-Grunt 2 mission in 2020. This new-and-improved version of the spacecraft will also feature a lander and return stage, and, if successful, may not only end up sending back pieces of Phobos but of Mars as well.


The origins of Phobos have long been a topic of planetary science debate. Did it form with Mars as a planet? Is it a wayward asteroid that ventured too closely to Mars? Or is it a chunk of the Red Planet blasted up into orbit from an ancient impact event? Only in-depth examination of its surface material will allow scientists to determine which scenario is most likely (or if the correct answer is really “none of the above”) and Russia’s ambitious Phobos-Grunt mission attempted to become the first ever to not only land on the 16-mile-wide moon but also send samples back to Earth.

Unfortunately it wasn’t in the cards. After launching on Nov. 9, 2011, Phobos-Grunt’s upper stage failed to ignite, stranding it in low-Earth orbit. After all attempts to re-establish communication and control of the ill-fated spacecraft failed, Phobos-Grunt crashed back to Earth on Jan. 15, impacting in the southern Pacific off the coast of Chile.

But with a decade of development already invested in the mission, Roscosmos is willing to try again. “Ad astra per aspera,” as it’s said, and Phobos-Grunt 2 will attempt to overcome all hardships in 2020 to do what its predecessor couldn’t.

Read more: Russia to Try Again for Phobos-Grunt?

And, according to participating researchers James Head and Kenneth Ramsley from Brown University in Providence, Rhode Island, the sample mission could end up being a “twofer.”

Phobos floats in front of Mars' horizon in a Mars Express image from January 2007 (ESA)
Phobos floats in front of Mars’ horizon in a Mars Express image from January 2007 (ESA)

Orbiting at an altitude of only 5,840 miles (9,400 km) Phobos has been passing through plumes material periodically blown off of Mars by impact events. Its surface soil very likely contains a good amount of Mars itself, scooped up over the millennia.

“When an impactor hits Mars, only a certain of proportion of ejecta will have enough velocity to reach the altitude of Phobos, and Phobos’ orbital path intersects only a certain proportion of that,” said Ramsley, a visiting researcher in Brown’s planetary geosciences group. “So we can crunch those numbers and find out what proportion of material on the surface of Phobos comes from Mars.”

Determining that ratio would then help figure out where Phobos was in Mars orbit millions of years ago, which in turn could point at its origins.

“Only recently — in the last several 100 million years or so — has Phobos orbited so close to Mars,”  Ramsley said. “In the distant past it orbited much higher up. So that’s why you’re going to see probably 10 to 100 times higher concentration in the upper regolith as opposed to deeper down.”

In addition, having an actual sample of Phobos (along with stowaway bits of Mars) in hand on Earth, as well as all the data acquired during the mission itself, would give scientists invaluable insight to the moon’s as-yet-unknown internal composition.

“Phobos has really low density,” said Head, professor of geological sciences at Brown and an author on the study. “Is that low density due to ice in its interior or is it due to Phobos being completely fragmented, like a loose rubble pile? We don’t know.”

The study was published in Volume 87 of Space and Planetary Science (Mars impact ejecta in the regolith of Phobos: Bulk concentration and distribution.)

Source: Brown University news release and RussianSpaceWeb.com.

See more images of Phobos here.

Astronomy Cast 321: Solar Flares

Sometimes the Sun is quiet, and other times the Sun gets downright unruly. During the peak of its 11-year cycle, the surface of the Sun is littered with darker sunspots. And its from these sunspots that the Sun generates massive solar flares, which can spew radiation and material in our direction. What causes these flares, and how worried should we be about them in our modern age of fragile technology?
Continue reading “Astronomy Cast 321: Solar Flares”

Do You Need Some Space?

Much to learn about Pluto's surface we have. (Screenshot)

Of course you do! (Who doesn’t?) And so here’s a wonderful tour of our Solar System to provide you with just the type of space you need.


A 3D animation project by Australian video artist Shane Gehlert, I Need Some Space takes us from low-Earth orbit to the Moon and Sun and then through the lineup of planets in the Solar System, using images and models from NASA to accurately depict their unique appearances. Along the way we’ll get some basic info on the planets, select moons, and a few of the various spacecraft that have visited (or are visiting) each world. Set to an intriguing string score by The Zephyr Quartet (of which Shane’s sister Belinda is a member) I Need Some Space is a mesmerizing 6-minute voyage for any space fan — myself very included.

I particularly like the “ghostly” look of Pluto, reminding us that we still have another year and a half before New Horizons reveals its true appearance to us.

Enjoy! (As with most videos, full-screening and HD-ing are strongly suggested.)

Video © Shane Gehlert/BlueDog Films. HT to FastCoCreate.

Here’s the Latest Kepler Orrery Video: the Orbits of the Planets Go ‘Round and ‘Round

If you’ve ever wanted to know what 3,538 exoplanets look like spinning around their stars, here you go!

This is the third and latest installment of the mesmerizing Kepler Orrery videos by Daniel Fabrycky from the Kepler science team. It shows the relative sizes of the orbits and planets in the multi-transiting planetary systems discovered by Kepler up to November 2013 (according to the Kepler site, 3,538 candidates so far.) According to Daniel “the colors simply go by order from the star (the most colorful is the 7-planet system KOI-351). The terrestrial planets of the Solar System are shown in gray.”

Not that our Solar System is boring, of course, but well, ya know… there are an awful lot of planets out there.

Check out Daniel’s previous version here.

What is the Milky Way?

Artist's conception of the Milky Way galaxy. Credit: Nick Risinger
Artist's conception of the Milky Way galaxy. Credit: Nick Risinger

When you look up at the night sky, assuming conditions are just right, you might just catch a glimpse of a faint, white band reaching across the heavens. This band, upon closer observation, looks speckled and dusty, filled with a million tiny points of light and halos of glowing matter. What you are seeing is the Milky Way, something that astronomers and stargazers alike have been staring up at since the beginning of time.

But just what is the Milky Way? Well, simply put, it is the name of the barred spiral galaxy in which our solar system is located. The Earth orbits the Sun in the Solar System, and the Solar System is embedded within this vast galaxy of stars. It is just one of hundreds of billions of galaxies in the Universe, and ours is called the Milky Way because the disk of the galaxy appears to be spanning the night sky like a hazy band of glowing white light. Continue reading “What is the Milky Way?”

The Eerie Music of Interstellar Space

While it’s true that there’s no air to carry sound in space, starship explosions would be strangely silent and no one can hear you scream, this latest Science @ NASA video reminds us that “space can make music, if you know how to listen.”

And the “how” in this case is with the Plasma Wave Science Experiment aboard the Voyager 1 spacecraft, which is now playing the sounds of interstellar space — with a little help from University of Iowa physics professor and experiment principal investigator Don Gurnett. Watch the video above for a front-row seat (and read more about Voyager’s historic crossing of the heliosphere here.)

Watch the Sun Split Apart

Canyon of Fire on the Sun, Credit: NASA/SDO/AIA)

Here’s your amazing oh-my-gosh-space-is-so-cool video of the day — a “canyon of fire” forming on the Sun after the liftoff and detachment of an enormous filament on September 29-30. A new video, created from images captured by the Solar Dynamics Observatory (SDO) and assembled by NASA’s Goddard Space Flight Center, shows the entire dramatic event unfolding in all its mesmerizing magnetic glory.

Watch it below:

Solarrific! (And I highly suggest full-screening it in HD.) That filament was 200,000 miles long, and the rift that formed afterwards was well over a dozen Earths wide!

Captured in various wavelengths of light by SDO’s Atmospheric Imaging Assembly (AIA) the video shows the solar schism in different layers of the Sun’s corona, which varies greatly in temperature at different altitudes.

According to the description from Karen Fox at GSFC:

“The red images shown in the movie help highlight plasma at temperatures of 90,000° F and are good for observing filaments as they form and erupt. The yellow images, showing temperatures at 1,000,000° F, are useful for observing material coursing along the sun’s magnetic field lines, seen in the movie as an arcade of loops across the area of the eruption. The browner images at the beginning of the movie show material at temperatures of 1,800,000° F, and it is here where the canyon of fire imagery is most obvious.”

Now, there’s not really any “fire” on the Sun — that’s just an illustrative term. What we’re actually seeing here is plasma contained by powerful magnetic fields that constantly twist and churn across the Sun’s surface and well up from its interior. The Sun is boiling with magnetic fields, and when particularly large ones erupt from deep below its surface we get the features we see as sunspots, filaments, and prominences.

When those fields break, the plasma they contained gets blasted out into space as coronal mass ejections… and this is what typically happens when one hits Earth. (But it could be much worse.)

Hey, that’s what it’s like living with a star!

Stay up to date on the latest solar events on the SDO mission page here.

Titan’s North Pole is Loaded With Lakes

Titan's north pole is home to many methane lakes. Credit: NASA

A combination of exceptionally clear weather, the steady approach of northern summer, and a poleward orbital path has given Cassini — and Cassini scientists — unprecedented views of countless lakes scattered across Titan’s north polar region. In the near-infrared mosaic above they can be seen as dark splotches and speckles scattered around the moon’s north pole. Previously observed mainly via radar, these are the best visual and infrared wavelength images ever obtained of Titan’s northern “land o’ lakes!”

 

Titan is currently the only other world besides Earth known to have stable bodies of liquid on its surface, but unlike Earth, Titan’s lakes aren’t filled with water — instead they’re full of liquid methane and ethane, organic compounds which are gases on Earth but liquids in Titan’s incredibly chilly -290º F (-180º C) environment.

While one large lake and a few smaller ones have been previously identified at Titan’s south pole, curiously almost all of Titan’s lakes appear near the moon’s north pole.

Infrared observations of Titan's northern lakes (NASA/JPL-Caltech/SSI)
Infrared observations of Titan’s northern lakes. The cross marks Titan’s geographic north pole. (NASA/JPL-Caltech/SSI)

For an idea of scale, the large lake at the upper right above (and the largest lake on Titan) Kraken Mare is comparative in size to the Caspian Sea and Lake Superior combined. Kraken Mare is so large that sunlight was seen reflecting off its surface in 2009. Punga Mare, nearest Titan’s pole, is 240 miles (386 km) across.

Besides revealing the (uncannily) smooth surfaces of lakes — which appear dark in near-infrared wavelengths but would also be darker than the surrounding landscape in visible light —  these Cassini images also show an unusually bright terrain surrounding them. Since the majority of Titan’s lakes are found within this bright region it’s thought that there could be a geologic correlation; is this Titan’s version of karst terrain, like what’s found in the southeastern U.S. and New Mexico? Could these lakes be merely the visible surfaces of a vast underground hydrocarbon aquifer? Or are they shallow pools filling depressions in an ancient lava flow?

Annotated infrared mosaic of Titan's north pole (NASA/JPL-Caltech/SSI)
Annotated infrared mosaic of Titan’s north pole (NASA/JPL-Caltech/SSI)

Or, are they the remains of once-larger lakes and seas which have since evaporated? The orange-hued regions in the false-color mosaic may be evaporite — the Titan equivalent of salt flats on Earth. The evaporated material is thought to be organic chemicals originally from Titan’s haze particles that were once dissolved in liquid methane.

“Is this an indication that with increased warmth, the seas and lakes are starting to evaporate, leaving behind a deposit of organic material,” wrote Carolyn Porco, Cassini Imaging Team Leader, in an email earlier today. “…in other words, the Titan equivalent of a salt-flat?”

The largest lake at Titan’s south pole, Ontario Lacus, has been previously compared to such an ephemeral lake in Namibia called the Etosha Pan. (Read more here.)

These observations are only possible because of the extended and long-term study of Saturn and its family of moons by the Cassini spacecraft, which began with its establishing orbit in 2004 and has since continued across multiple seasons over a third of the ringed planet’s year. The existence of methane lakes on Titan is undoubtedly fascinating, but how deep the lakes are, where they came from and how they behave in Titan’s environment have yet to be discovered. Luckily, the changing season is on our side.

“Titan’s northern lakes region is one of the most Earth-like and intriguing in the solar system,” said Linda Spilker, Cassini project scientist, based at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “We know lakes here change with the seasons, and Cassini’s long mission at Saturn gives us the opportunity to watch the seasons change at Titan, too. Now that the sun is shining in the north and we have these wonderful views, we can begin to compare the different data sets and tease out what Titan’s lakes are doing near the north pole.”

The images shown above were obtained by Cassini’s visual and infrared mapping spectrometer (VIMS) during a close flyby of Titan on Sept. 12, 2013.

Read more on the Cassini Imaging Central Laboratory for Operations (CICLOPS) site here and on the NASA site here.

“But how thrilling it is to still be uncovering new territory on this fascinating moon… a place that, until Cassini’s arrival at Saturn nearly 10 years ago, was the largest single expanse of unseen terrain we had remaining in our solar system. Our adventures here have been the very essence of exploration. And it’s not over yet!”

– Carolyn Porco on Facebook

An illustration of a Titanic lake by Ron Miller. All rights reserved. Used with permission.
An illustration of a Titanic lake © Ron Miller. All rights reserved.

Also, check out a corresponding article and intriguing illustration of robotic Titan exploration by space artist extraordinaire Ron Miller on io9.com.

A Volcanic View of Mercury

An oblique view of pyroclastic vents on Mercury via MESSENGER

Here on Earth we’re used to seeing volcanoes as towering mountains with steam-belching peaks or enormous fissures oozing lava. But on Mercury volcanic features often take the form of sunken pits surrounded by bright reflective material. They look like craters from orbit but are more irregularly-shaped, and here we have a view from MESSENGER of a cluster of them amidst a rugged landscape that stretches all the way to the planet’s limb.

The image above shows a group of pyroclastic vents on Mercury, located just north and east of the 180-mile (290-km) -wide, double-ringed Rachmaninoff crater. The vents lie in the center of a spread of high-reflectance material, sprayed out by ancient eruptions. This bright blanket of material stands out against Mercury’s surface so well, it has even been spotted in Earth-based observations!

An older vent can be seen at the bottom right, looking like a crater but with non-circular walls. North is to the left.

So why do Mercury’s volcanoes look so different than Earth’s? Planetary scientist David Blewett from Johns Hopkins University Applied Physics Laboratory explains:

“Volcanism on Mercury (and also the Moon) appears to have been dominated by flood lavas, in which large quantities if highly fluid (low-viscosity) magma erupts and flows widely to cover a large area. In this type of eruption, no large ‘volcano’ edifice is constructed,” David wrote in an email. “The lunar maria and many of Mercury’s smooth plains deposits were formed in this manner.”
“On both the Moon and Mercury there are also examples of explosive activity in which eruptions from a vent showered the surroundings with pyroclastic material (volcanic ash),” he added. “The vents and bright pyroclastic halos seen near Rachmaninoff on Mercury are examples, as well as numerous ‘dark mantle deposits’ on the Moon.”
(Do you have a question about Mercury? Check out the MESSENGER Q&A page here.)

The discovery and investigation of vents like these is extremely valuable to scientists, as they provide information on Mercury’s formation, composition, and the nature of volatiles in its interior. (Plus the oblique angle is very cool! Makes you feel like you’re flying along with MESSENGER over Mercury’s surface.)

See below for a wider view of the region and context of the placement of these vents to Rachmaninoff.

MESSENGER image of Rachmaninoff crater obtained in September 2009
MESSENGER image of Rachmaninoff crater obtained in September 2009

See these and more images from Mercury on the MESSENGER website here.

Added 9/24: Want to see a volcanic vent in 3D? Click here.

Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington