Jupiter – Our Silent Guardian?

Jupiter photo. Image credit: NASA/SSI

[/caption]

We live in a cosmic shooting gallery. In Phil Plait’s Death From the Skies, he lays out the dangers of a massive impact: destructive shockwaves, tsunamis, flash fires, atmospheric darkening…. The scenario isn’t pretty should a big one come our way. Fortunately, we may have a silent guardian: Jupiter.


Although many astronomers have assumed that Jupiter would likely sweep out dangerous interlopers (an important feat if we want life to gain a toehold), little work has been done to actually test the idea. To explore the hypothesis, a recent series of papers by J. Horner and B. W. Jones explores the effects of Jupiter’s gravitational pull on three different types of objects: main belt asteroids (which orbit between Mars and Jupiter), short period comets, and in their newest publication, submitted to the International Journal of Astrobiology, the Oort cloud comets (long period comets with the most distant part of their orbits far out in the solar system). In each paper, they simulated the primitive solar systems with the bodies in question with an Earth like planet, and gas giants of varying masses to determine the effect on the impact rate.

Somewhat surprisingly, for main belt asteroids, they determined, “that the notion that any ‘Jupiter’ would provide more shielding than no ‘Jupiter’ at all is incorrect.” Even without the simulation, the astronomers say that this should be expected and explain it by noting that, although Jupiter may shepherd some asteroids, it is also the main gravitational force perturbing their orbits and causing them to move into the inner solar system, where they may collide with Earth.

Contrary to the popular wisdom (which expected that the more massive the planet, the better it would shield us), there were notably fewer asteroids pushed into our line of sight for lower masses of the test Jupiter. Also surprisingly, they found that the most dangerous scenario was an instance in which the test Jupiter had 20% in which the planet “is massive enough to efficiently inject objects to Earth-crossing orbits.” However, they note that this 20% mass is dependent on how they chose to model the primordial asteroid belt and would likely change had they chosen a different model.

When the simulation was redone for for short period comets, they again found that, although Jupiter (and the other gas giants) may be effective at removing these dangerous objects, quite often they did so by sending them our way. As such, they again concluded that, as with asteroids, Jupiter’s gravitational jiggling was more dangerous than it was helpful.

Their most recent treatise explored Oort cloud objects. These objects are generally considered the largest potential threat since they normally reside so far out in the solar system’s gravitational well and thus, will have a greater distance to fall in and pick up momentum. From this situation, the researchers determined that the more massive the planet in Jupiter’s orbit, the better it does protect us from Oort cloud comets. The attribute this to the fact that these objects are initially so far from the Sun, that they are scarcely bound to the solar system. Even a little bit of extra momentum gained if they swing by Jupiter will likely be sufficient to eject them from the solar system all together, preventing them from settling into a closed orbit that would endanger the Earth every time it passed.

So whether or not Jupiter truly defends us or surreptitiously nudges danger our way depends on the type of object. For asteroids and short period comets, Jupiter’s gravitational agitation shoves more our direction, but for the ones that would potentially hurt is the most, the long period comets, Jupiter does provide some relief.

How Far Away is Pluto From the Sun?

The Pluto system seen from the surface of Hydra. Credit: NASA

[/caption]
How far away is Pluto from the Sun? Pluto’s average distance from the Sun is 5.9 billion km or 3.7 billion miles.

But Pluto actually follows an elliptical orbit around the Sun. Sometimes it’s much closer to the Sun, and other times it’s further away. At its closest point, Pluto measures only 4.4 billion km from the Sun. This is close enough that a thin layer of frost evaporates from its surface, becoming a thin atmosphere around the planet. And then as it continues its journey around the Sun, Pluto gets colder again and this atmosphere refreezes onto the planet. It continues to travel out to a distance of 7.4 billion km from the Sun.

Astronomers use another method of measuring distances in the Solar System called the astronomical unit. 1 astronomical unit or AU is the average distance from the Earth to the Sun; approximately 150 million km. So we can use this to describe Pluto’s distance from the Sun. At its closest point, Pluto measures 29.7 AU. And then at its furthest point, Pluto is 49.3 AU.

We have written many articles about Pluto for Universe Today. Here’s an article about why Pluto isn’t a planet any more, and here are some pictures of Pluto.

If you’d like more info on Pluto, check out Hubblesite’s News Releases about Pluto, and here’s a link to NASA’s Solar System Exploration Guide to Pluto.

We’ve also recorded several episodes of Astronomy Cast about Pluto. Listen here, Episode 64: Pluto and the Icy Outer Solar System.

How Far is Jupiter from the Sun?

Jupiter's Red Spot

The distance from the Sun to Jupiter is approximately 779 million km, or 484 million miles. The exact number is 778,547,200 km.

This number is an average because Jupiter and the rest of the Solar System follows an elliptical orbit around the Sun. Sometimes it’s closer than 779 million km, and other times it’s more distant. When Jupiter is at its closest point in its orbit, astronomers call this perihelion; for Jupiter, this is 741 million km. At its most distant point, called aphelion, Jupiter gets out to 817 million km.

Astronomers use the term “astronomical unit” as another method for measuring distances in the Solar System. An astronomical unit, or AU, is the average distance from the Sun to the Earth – 150 million km. Jupiter’s average distance from the Sun is 5.2 AU. Its closest point is 4.95 AU, and its most distant point is 5.46 AU.

We have written many articles about Jupiter for Universe Today. Here’s an article about how Jupiter might be able to wreck the Solar System, and here’s an article about Jupiter’s Great Red Spot.

If you’d like more info on Jupiter, check out Hubblesite’s News Releases about Jupiter, and here’s a link to NASA’s Solar System Exploration Guide to Jupiter.

We’ve also recorded an entire episode of Astronomy Cast just about Jupiter. Listen here, Episode 56: Jupiter.

How Far is Uranus from the Sun?

Uranus, seen by Voyager 2. Image credit: NASA/JPL

Uranus’ distance from the Sun is 2.88 billion km. The exact number is 2,876,679,082 km. Want that number in miles? Uranus’ distance from the Sun is 1.79 billion miles.

This number is just an average, though. Uranus follows an elliptical orbit around the Sun. At its closest point, called perihelion, Uranus gets to within 2.75 billion km of the Sun. And then at its most distant point, called aphelion, Uranus gets to within 3 billion km from the Sun.

Astronomers use another term called “astronomical units” to measure distance within the Solar System. 1 astronomical unit, or AU, is the average distance from the Earth to the Sun – about 150 million km. So in astronomical units, Uranus is an average distance of 19.2 AU. Its perihelion is 18.4 AU, and its aphelion is 20.1 AU.

We have written many articles about Uranus for Universe Today. Here’s an article about how many rings Uranus has, and here are some interesting facts about Uranus.

If you’d like more information on Uranus, check out Hubblesite’s News Releases about Uranus. And here’s a link to the NASA’s Solar System Exploration Guide to Uranus.

We’ve also recorded an entire episode of Astronomy Cast all about Uranus. Listen here, Episode 62: Uranus.

How Far is Saturn from the Sun?

Saturn. Image credit: Hubble

Saturn’s distance from the Sun is 1.4 billion km. The exact number for Saturn’s average distance from the Sun is 1,433,449,370 km.

Need that number in miles? Saturn’s average distance from the Sun is 891 million miles.

Noticed that I said that these numbers are Saturn’s average distance from the Sun. That’s because Saturn is actually following an elliptical orbit around the Sun. Some times it gets closer, and other times it gets more distant from the Sun. When it’s at the closest point of its orbit, astronomers call this perihelion. At this point, Saturn is only 1.35 billion km from the Sun. Its most distant point in orbit is called aphelion. At this point, it gets out to 1.51 billion km from the Sun.

Astronomers use another measurement tool for calculating distance in the Solar System called “astronomical units”. 1 astronomical unit is the average distance from the Earth to the Sun; approximately 150 million km. At its closest point, Saturn is 9 AU, and then at its most distant point, it’s 10.1 AU. Saturn’s average distance from the Sun is 9.6 AU.

We have written many articles about Saturn for Universe Today. Here’s an article about how NASA’s Spitzer space telescope discovered a huge ring around Saturn, and here’s a cool movie of an aurora around Saturn.

If you want more information on Saturn, check out Hubblesite’s News Releases about Saturn. And here’s a link to the homepage of NASA’s Cassini spacecraft, which is orbiting Saturn.

We have also recorded an entire episode of Astronomy Cast just about Saturn. Listen here, Episode 59: Saturn.

Where Could Humans Survive in our Solar System?

Habitability in our solar system. Credit: UPR Arecibo, NASA PhotoJournal

[/caption]
If humans were forced to vacate Earth, where is the next best place in our solar system for us to live? A study by the University of Puerto Rico at Arecibo has provided a quantitative evaluation of habitability to identify the potential habitats in our solar system. Professor Abel Mendez, who produced the study also looked at how the habitability of Earth has changed in the past, finding that some periods were even better than today.

Mendez developed a Quantitative Habitability Theory to assess the current state of terrestrial habitability and to establish a baseline for relevant comparisons with past or future climate scenarios and other planetary bodies including extrasolar planets.

“It is surprising that there is no agreement on a quantitative definition of habitability,” said Mendez, a biophysicist. “There are well-established measures of habitability in ecology since the 1970s, but only a few recent studies have proposed better alternatives for the astrobiology field, which is more oriented to microbial life. However, none of the existing alternatives from the fields of ecology to astrobiology has demonstrated a practical approach at planetary scales.”

His theory is based on two biophysical parameters: the habitability (H), as a relative measure of the potential for life of an environment, or habitat quality, and the habitation (M), as a relative measure of biodensity, or occupancy. Within the parameters are physiological and environmental variables which can be used to make predictions about the distribution, and abundance of potential food (both plant and microbial life), environment and weather.

The image above shows a comparison of the potential habitable space available on Earth, Mars, Europa, Titan, and Enceladus. The green spheres represent the global volume with the right physical environment for most terrestrial microorganisms. On Earth, the biosphere includes parts of the atmosphere, oceans, and subsurface (here’s a biosphere definition). The potential global habitats of the other planetary bodies are deep below their surface.

Enceladus has the smallest volume but the highest habitat-planet size ratio followed by Europa. Surprisingly, Enceladus also has the highest mean habitability in the Solar System, even though it is farther from the sun, and Earth, making it harder to get to. Mendez said Mars and Europa would be the best compromise between potential for life and accessibility.

n Oct. 5, 2008.  Image credit: NASA/JPL/Space Science Institute  Cassini came within 25 kilometers (15.6 miles) of the surface of Enceladus o
n Oct. 5, 2008. Image credit: NASA/JPL/Space Science Institute Cassini came within 25 kilometers (15.6 miles) of the surface of Enceladus o

“Various planetary models were used to calculate and compare the habitability of Mars, Venus, Europa, Titan, and Enceladus,” Mendez said. “Interestingly, Enceladus resulted as the object with the highest subsurface habitability in the solar system, but too deep for direct exploration. Mars and Europa resulted as the best compromise between habitability and accessibility. In addition, it is also possible to evaluate the global habitability of any detected terrestrial-sized extrasolar planet in the future. Further studies will expand the habitability definition to include other environmental variables such as light, carbon dioxide, oxygen, and nutrients concentrations. This will help expand the models, especially at local scales, and thus improve its application in assessing habitable zones on Earth and beyond.”

Studies about the effects of climate change on life are interesting when applied to Earth itself. “The biophysical quantity Standard Primary Habitability (SPH) was defined as a base for comparison of the global surface habitability for primary producers,” Mendez said. “The SPH is always an upper limit for the habitability of a planet but other factors can contribute to lower its value. The current SPH of our planet is close to 0.7, but it has been up to 0.9 during various paleoclimates, such as during the late Cretaceous period when the dinosaurs went extinct. I’m now working on how the SPH could change under global warming.”

The search for habitable environments in the universe is one of the priorities of the NASA Astrobiology Institute and other international organizations. Mendez’s studies also focus on the search for life in the solar system, as well as extrasolar planets.

“This work is important because it provides a quantitative measure for comparing habitability,” said NASA planetary scientists Chris McKay. “It provides an objective way to compare different climate and planetary systems.”

“I was pleased to see Enceladus come out the winner,” McKay said. “I’ve thought for some time that it was the most interesting world for astrobiology in the solar system.”

Mendez presented his results at the Division for Planetary Sciences of the American Astronomical Society meeting earlier this month.

Source: AAS DPS

Amazing Zoomable Poster on 50 Years of Space Exploration

Art by Sean McNaughton, National Geographics Staff; Sameul Velasco, 5@ infographics. Sources: NASA; Chris Gamble. Sund, asteroid and comet images: NASA/JPL

[/caption]
National Geographic has put together a really nice zoomable poster on the history of robotic space exploration. It looks a little psychedelic from a distance, but zoom right in and follow the different missions to the various locations in our solar system, and see where the missions currently underway — like New Horizons, on its way to Pluto, and the venerable Voyagers that we hear from occasionally– are presently located. Click on the image to go to National Geographic’s Map of the Day page. Enjoy!

Why is the Sun Hot?

Plasma on the surface of the Sun. Image credit: Hinode

[/caption]
The Sun is the hottest place in the Solar System. The surface of the Sun is a mere 5,800 Kelvin, but down at the core of the Sun, the temperatures reach 15 million Kelvin. What’s going on, why is the Sun hot?

The Sun is just a big plasma ball of hydrogen, held together by the mutual gravity of all its mass. This enormous mass pulls inward, trying to compress the Sun down. It’s the same reason why the Earth and the rest of the planets are spheres. As the pull of gravity compresses the gas inside the Sun together, it increases the temperature and pressure in the core.

If you could travel down into the Sun, you’d reach a point where the pressure and temperature are enough that nuclear fusion is able to take place. This is the process where protons are merged together into atoms of helium. It can only happen in hot temperatures, and under incredible pressures. But the process of fusion gives off more energy than it uses. So once it gets going, each fusion reaction gives off gamma radiation. It’s the radiation pressure of this light created in the core of the Sun that actually stops it from compressing any more.

The Sun is actually in perfect balance. Gravity is trying to squeeze it together into a little ball, but this creates the right conditions for fusion. The fusion releases radiation, and it’s this radiation that pushes back against the gravity, keeping the Sun as a sphere.

We have written many articles about the Sun for Universe Today. Here’s an article about how hot the surface of the Sun is, and here’s an article about the parts of the Sun.

If you’d like more information on the Sun, check out NASA’s Solar System Exploration Guide on the Sun, and here’s a link to the SOHO mission homepage, which has the latest images from the Sun.

We have also recorded an episode of Astronomy Cast about the Sun. Check it out, Episode 30: The Sun, Spots and All.

1 AU in KM

Earth from space

[/caption]
1 AU in KM = 149,598,000 kilometers

An astronomical unit is a method that astronomers use to measure large distances in the Solar System. 1 astronomical unit, or 1 au, is the average distance from the Sun to the Earth.

The Earth’s orbit around the Sun is actually elliptical. It varies from 147 million km to 152 million km. So the measurement of an astronomical unit is just the Earth’s average distance from the Sun. That’s where the more precise measurement of 1 AU to KM (149,598,000 km) comes from.

Here are some other distances in the Solar System:
Mercury: 0.39 AU
Venus: 0.72 AU
Mars: 1.5 AU
Jupiter: 5.2 AU
Saturn: 9.6 AU
Uranus: 19.2 AU
Neptune: 30.1 AU
Pluto: 39.5 AU
Eris: 67.7 AU
Oort Cloud: 50,000 AU
Alpha Centauri: 275,000 AU

We have written many articles about large distances in space. Here’s an article that explains how far space is, and here’s an article about the distance to stars.

You can also check out this cool calculator that lets you convert astronomical units into any other distance.

We have also recorded an episode of Astronomy Cast detailing how astronomers measure distance in the Universe. Check out Episode 10: Measuring Distance in the Universe.

Ecliptic

Zodiacal light can be seen in the sky before sunrise or after sunset. Credit: Yuri Beletsky/ESO Paranal

[/caption]
Imagine you could see the position of the Sun, in the sky, relative to the stars (and galaxies, and quasars, and …). If you could, and if you plotted that position throughout the year you’d get a line; that line is called the ecliptic.

And why is it called the ecliptic? Because when the new or full Moon is very close to this, there will be an eclipse (of the Sun, and Moon, respectively).

The Earth goes round the Sun, in an orbit. That orbit defines a plane, which is an infinite two-dimensional sheet; the plane of the ecliptic.

The other planets in the solar system orbit the Sun in planes too, but those planes are slightly tilted with respect to the plane of the ecliptic … so transits of Venus (across the Sun) are quite rare (most times Venus passes either above or below the Sun, when it’s between Earth and the Sun). Mutual transits and occultations of planets are even rarer.

If you’re in a location relatively free of light pollution, on a clear, moonless night you may see zodiacal light. If you trace a line through the middle of it, you’re tracing the ecliptic (zodiacal light is due to reflection of sunlight off dust; dust in the solar system is concentrated in a plane close to the ecliptic plane).

Today astronomers use equatorial coordinates to give positions on the sky, right ascension (RA) and declination (Dec); these are like projections of longitude and latitude out into space (or onto the celestial sphere). However, in Europe ecliptic coordinates were used (up to the 17th century anyway). Here’s a curious fact: historically, Chinese astronomers used equatorial coordinates!

Universe Today stories: Plane of the Ecliptic, Vernal Equinox – Busting the Myth of Balancing Eggs, and Find the Zodiacal Light.

More: Astronomy Cast on Orbit of the Planets, and a Glow After Sunset.