New Study Shows Cosmic Rays Could Cause Alzheimer’s

Humans explore Mars in “Distant Shores,” an illustration by NASA artist Pat Rawlins

Cosmic rays from deep space could pose serious health risks to future astronauts on long-duration missions to Mars — even bringing on the memory-destroying symptoms of Alzheimer’s disease, according to the results of a new study from the University of Rochester Medical Center.

While NASA has its sights set on the human exploration of Mars within the next several decades, even with the best propulsion technology currently available such a mission would take about three years. Within that time, crew members would be constantly exposed to large amounts of radiation that we are protected from here by Earth’s magnetic field and atmosphere. Some of this radiation comes in the form of protons from the Sun and can be blocked by adequate spacecraft shielding materials, but a much bigger danger comes from heavy high-energy particles that are constantly whipping across the galaxy, shot out of the hearts of exploding giant stars.

“Because iron particles pack a bigger wallop it is extremely difficult from an engineering perspective to effectively shield against them. One would have to essentially wrap a spacecraft in a six-foot block of lead or concrete.” 

– M. Kerry O’Banion, M.D., Ph.D.

S047While health risks from these high-mass, high-charged (HZE) particles have long been known, the exact nature of the damages they can cause to human physiology is still being researched — even more so now that Mars and asteroid exploration is on NASA’s short list.

Now, a team from the University of Rochester Medical Center (URMC) in New York has announced the results of their research linking high-energy radiation — just like what would be encountered during a trip to Mars — to the degeneration of brain function, and possibly even the onset of Alzheimer’s disease.

“Galactic cosmic radiation poses a significant threat to future astronauts,” said M. Kerry O’Banion, M.D., Ph.D., a professor in the University of Rochester Medical Center (URMC) Department of Neurobiology and Anatomy and the senior author of the study. “The possibility that radiation exposure in space may give rise to health problems such as cancer has long been recognized. However, this study shows for the first time that exposure to radiation levels equivalent to a mission to Mars could produce cognitive problems and speed up changes in the brain that are associated with Alzheimer’s disease.”

In particular the team focused on iron ions, which are blasted into space by supernovae and are massive enough to punch through a spacecraft’s protective shielding.

“Because iron particles pack a bigger wallop it is extremely difficult from an engineering perspective to effectively shield against them,” O’Banion said. “One would have to essentially wrap a spacecraft in a six-foot block of lead or concrete.”

advances-in-treating-alzheimers-afBy exposing lab mice to increasing levels of radiation and measuring their cognitive ability the researchers were able to determine the neurologically destructive nature of high-energy particles, which caused the animals to more readily fail cognitive tasks. In addition the exposed mice developed accumulations of a protein plaque within their brains, beta amyloid, the spread of which is associated with Alzheimer’s disease in humans.

“These findings clearly suggest that exposure to radiation in space has the potential to accelerate the development of Alzheimer’s disease,” said O’Banion. “This is yet another factor that NASA, which is clearly concerned about the health risks to its astronauts, will need to take into account as it plans future missions.”

Read more: Space Travel is Bad For Your Eyes

While Mars explorers could potentially protect themselves from cosmic radiation by setting up bases in caves, empty lava tubes or beneath rocky ledges, which would offer the sort of physical shielding necessary to stop dangerous HZE particles, that would obviously present a new set of challenges to astronauts working in an already alien environment. And there’s always the trip there (and back again) during which time a crew would be very much exposed.

While this won’t — and shouldn’t — prevent a Mars mission from eventually taking place, it does add yet another element of danger that will need to be factored in and either dealt with from both health and engineering standpoints… or accepted as an unavoidable risk by all involved, including the public.

S044

How much risk will be considered acceptable for the human exploration of Mars — and beyond? (NASA/Pat Rawlings)

Read more on the URMC news page here, and see the full experiment report here.

Illustrations for NASA by Pat Rawlings. See more of Rawling’s artwork here. Inset image: comparison of human brains without and with Alzheimer’s. Source: WHYY.

 

“Overview:” The Perspective-Altering Effect of Seeing Earth from Space

For over 40 years, the ‘Blue Marble’ images of Earth taken from space have provided a new perspective of our planet, and the sometimes life-altering experience of such views was described in Frank White’s book “The Overview Effect,” published in 1987. When it came out, I gobbled it up, and have since read it several times.

Today, on the 40th anniversary of the final launch of the Apollo missions to the Moon, a new short film “Overview” has been released, which explores this phenomenon through interviews with five astronauts who have experienced first-hand seeing Earth from space.

“This view of the Earth from space – the whole Earth perspective – is, I think, the true symbol of this age,” says White in the film. “I believe … there’s going to be a greater and greater interest in communicating this idea because, after all, it’s key to our survival. We have to start acting as one species with one destiny. We are not going to survive if we don’t do that.”

The film is an inspiring look at how exploring space has given us look back at our own world and changed our perceptions. While some may say the Overview Effect is only a concept, an ideal outcome of space exploration that has yet to become a global phenomenon, I believe it is certainly something we should strive for.

The Blue Marble image from Apollo 17. Credit: Image courtesy NASA Johnson Space Center. See more info about it here.

The film includes:
Edgar Mitchell – Apollo 14 astronaut and founder of the Institute of Noetic Sciences
Ron Garan – ISS astronaut and founder of humanitarian organization Fragile Oasis
Nicole Stott – Shuttle and ISS astronaut and member of Fragile Oasis
Jeff Hoffman – Shuttle astronaut and senior lecturer at MIT
Shane Kimbrough – Shuttle/ISS astronaut and Lieutenant Colonel in the US Army
Frank White – space theorist and author of the book ‘The Overview Effect’
David Loy- philosopher and author
David Beaver – philosopher and co-founder of The Overview Institute

It was produced by a group called Planetary Collective, specifically Guy Reid, Steve Kennedy and Christopher Ferstad.

OVERVIEW from Planetary Collective on Vimeo.

Reminder: Help Uwingu Begin a New Way to Fund Space Exploration

A couple of weeks ago we wrote about Uwingu, a creative, out-of-the-box concept to help solve what appears to be a growing problem for researchers, scientists, educators and students: how to get funding for research and other ground-breaking space exploration and astronomy projects. Why are a group of individuals from the space and astronomy community taking matters into their own hands to do this?

Alan Stern one of the founders of Uwingu, and the Principal Investigator for the New Horizons mission to Pluto, explained it quite well in today’s episode of the 365 Days of Astronomy.

“Well, it seems almost every year we have budget problems,” he said. “This year the planetary budget got cut 20%. Just last week a report came out cutting the National Science Foundation astronomy facilities, recommending those cuts. And every year it’s the economy or it’s an overrun with NASA, or it’s the President’s budget, or it’s something that happens in Congress. And in space research, in space education, unlike, for example, medical research or if you’re a weather researcher or many other fields, there really aren’t very many places to turn when NASA’s budget is cut or the NSF budget’s cut. That’s about it in terms of the funding portfolio. We like to say, you know, if you only own one stock, you probably deserve what you get when it goes down. We’re out to try and diversify that portfolio a little bit.”

UPDATE: Uwingu now has their own website!

The Uwingu team — and by the way, Uwingu means ‘sky’ in Swahili — has put out a new video about their project, and in doing so, reveal a little more about how they plan to create a new funding method. For two years, they’ve been designing and building software products that will be sold, and the proceeds will create the Uwingu Fund for space research, exploration and education.

Pamela Gay described their ideas as “so elegant that I can’t believe they haven’t already been done.”

Uwingu needs to raise about $75,000 to get their concept off the ground, and after that should be self-supporting, as well as supporting an impressive amount of other researchers every year.

So if you haven’t yet checked out Uwingu, here’s a little reminder to do so. Just head to their Indiegogo page and see what you think.

Desert RATS Begin Simulated Asteroid Mission Today

Caption: Artist’s Concept, Space Exploration Vehicle Use Comparison. Credit: NASA

Conspiracy theories abound that the Apollo landings all took place on a film set in California, but today NASA’s Desert RATS team begins a mission to asteroid Itokawa. They will land, rove and even undertake spacewalks, without ever stepping foot out of their home base at Johnson Space Center in Texas. This is no hoax however, but a simulated mission to test out NASA’s audacious plan to send astronauts to an asteroid by 2025.

The Desert RATS have been testing robots and other tools that could be used on future exploration missions since 1997, (this is their 15th mission) usually doing analog missions out in the field. “Desert” refers to the Arizona desert, where a lot of the team’s activities take place and “RATS” stands for “Research and Technology Studies.”

However, since they are now testing out a zero-G visit to an asteroid, the team will use mockups inside JSC’s Space Vehicle Mockup Facility, which offers a medley of tools and simulators that would be difficult to transport to a field test location.

For example, the Multi-Mission Space Exploration Vehicle (MMSEV) is designed to both rove across a planetary surface on a wheeled chassis or fly in space using advanced propulsion systems. Four crew members will take it in turns to live in and operate the simulator to explore the asteroid.

The MMSEV can be put on a sled on an air-bearing floor to simulate the moves that the crew might feel during a real mission. There will also be a 50-second delay in voice transmission, going each way to simulate the light-speed travel time between Earth and the asteroid.

The crew can also undertake spacewalks using ARGOS (Active Response Gravity Offload System) an overhead gantry crane system that simulates the reduced gravity environment. In reality nothing would stop astronauts from just floating off the surface but NASA is thinking about using jetpacks, tethers, bungees, nets or spiderwebs to allow them to float just above the surface attached to a smaller mini-spaceship.

A team of scientists from the Astromaterials Research and Exploration Science Directorate will ensure proper scientific methods are applied to asteroid sample collection techniques throughout the 10 day mission.

The mission is slated to run until August 30th or 31st. Find out more here or follow the NASA Desert RATS team on Twitter

Second image caption: ARGOS can be used to make spacewalkers feel as though they weigh 1/6 of their weight, as they would on the moon, or 1/3, as on Mars. Photo credit: NASA

A Creative New Concept for Funding Space Exploration and Astronomy

An impressive group of individuals from the space and astronomy community have teamed up to create an innovative, out-of-the-box concept to help solve what appears to be a growing problem for researchers, scientists, educators and students: how to get funding for research and other ground-breaking projects. With NASA and National Science Foundation budgets shrinking, a new start-up called Uwingu (which means “sky” in Swahili) will be working to provide ways to keep space science thriving.

Founders of the project include notable names like Alan Stern, Andrew Chaikin, Pamela Gay, Geoff Marcy, Mark Sykes, David Grinspoon, and Emily CoBabe-Amman.

Stern told Universe Today that the group’s initiative is not so much in response to the current government funding troubles, but a way to expand resources for the space and astronomy community, which is “just smart business,” he said.

However, it is an indication of changing times. “We couldn’t do this without the internet, frankly, which provides a new avenue for reaching people,” Stern said.

Additionally, Stern contrasted space and astronomy research, which mainly relies on NASA and NSF grants, to medical research, which has multiple lines of funding venues such as pharmaceutical companies, hospitals, and the hundreds of medical foundations such as the American Cancer Society, in addition to government grants.

While Stern explained that he couldn’t yet reveal all the details of Uwingu, he did provide a few hints.

“The idea is to provide outstanding, innovative and cutting edge products,” he said. “We won’t just be accessing space and astronomy people who want to give to a cause, but will be accessing the general public, which is a much bigger marketplace.”

Dr. Pamela Gay wrote about Uwingu on her Starstryder website, saying “Their ideas are so elegant that I can’t believe they haven’t already been done.”

While the team is still finalizing some of their concepts, part of their reticence is building suspense. “Just like any new product line, it’s part of building suspense, just like Apple does when they release a new product. But we have a whole series of projects in work, and we want to do it right, too.”

Stern said part of what they are doing is to be a safety net for the space and astronomy community and part of it is to do new things. But, he added, when people have the greatest need is probably a good time to launch a project like this.

Uwingu is looking to raise an initial $75,000 through their Indiegogo site (similar to Kickstarter) to get the company going. After that, they hope to be self-sufficient and build enough resources to be a source of grants and funding for space and astronomy research.

“We are asking people to go the Indiegogo page, take a look and consider participating, and then to please pass it on to others you know.” Stern said. “For everyone 10 people you send it to, maybe one will contribute. This needs to grow organically by people passing it on through the internet. We’re hoping the space and astronomy people will help give us a start, but when it launches with the real first products out into the broader public, we think it will be a real breakout.”

“If we can get that message across, I think it will fly. I have faith in this,” Stern added.

To contribute to the project, or to learn more about Uwingu, visit the company’s Indiegogo page: http://www.indiegogo.com/projects/180221

Inspiring Video: The Biological Advantage of Being Awestruck

How many times a week do we use the word “awesome” here on Universe Today? While we haven’t kept track, we admit it’s quite often. We feel privileged to be able to share with you the incredible — yes, awesome — images, videos and stories of our exploration of space. And it turns out, being awestruck could actually be good for us.

“Our ability to awe was biologically selected for us by evolution because it imbues our lives with a sense of cosmic significance that has resulted in a species that works harder not just to survive but to flourish and thrive,” writes filmmaker Jason Silva, who has produced this awesome new video about being awestruck.

Based on three different researcher’s work, Silva’s film highlights how having regular experiences of awe makes us feel good, provides a reason to live and love, spurs us to keep exploring and pushing onward, and provides an “unprecedented expansion of human vision.” The video shows many images from space, especially pictures produced by the Hubble Space Telescope, and Silva told Universe Today that this video is actually dedicated to the HST.

Sit back and enjoy the wonder of being awestruck!

Caption: A firestorm of star birth in the active galaxy Centaurus A. Credit: NASA, ESA, and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration

The Biological Advantage of Being Awestruck – by @Jason_Silva from Jason Silva on Vimeo.

Independent Filmmaker Wants to Kickstart America’s Space Program

“If Kennedy said ‘we will go to the Moon…some time before the century ends,’ what is… what is that? That’s not ambition. That’s pandering.”
– Neil deGrasse Tyson, Fight for Space

Here we are on the 43rd anniversary of the Apollo Moon landing, with no more shuttles flying, slashed space program budgets and no real targeted plan to get people off this world and onto another. American students score abysmally in science and math, and the general public thinks NASA is dead. What’s happened to America’s drive? What’s happened to the nation’s sense of wonder, its devotion to science, engineering, education and its man-on-the-Moon motivation?

Film producer Paul Hildebrandt wants to find out. But he needs your help.

Hildebrandt and his team from Eventide Visuals in Chico, CA, are creating an independent feature-length documentary about America’s space program, called “Fight for Space”. It’s not a collection of launch videos and CGI solar system shots, though; Hildebrandt is digging deeper into what originally made the U.S. space program great — and what has happened to it since then.

“We are producing a documentary that will examine the reasons why our space program is not all it can be. We are also going to show that space IS worth the time, money, and energy that it needs, not for only exploration and scientific reasons but for economic, planetary security, and cultural reasons as well,” writes Hildebrandt.

Hildebrandt has been attending space symposiums and traveling to interview key figures in science and space outreach, like Neil deGrasse Tyson, Bill Nye, Robert Zubrin and Congressman Dana Rohrabacher. He’s talked with scientists, astronauts, educators and regular everyday Americans about the importance of the space program. But in order for the Fight to continue, he needs our help.

Fortunately, that’s what Kickstarter is here for. Fight for Space is looking to get a little backing from interested and like-minded space fans to keep the process moving, and hopefully see the film become a fully produced, publicized, and possibly broadcasted reality.

“With your help we can bring awareness to this issue and come closer to making our space program a priority for this country once again.”

You can pledge any amount, from $10 to $10,000 or more (and see the incremental rewards of doing so) on the Fight for Space Kickstarter page here, and visit the Fight for Space website here.

“Please, support our film by donating above and share this project with your friends, family, and anyone you know who cares about space exploration or cares about the future economic and national security of this country.”
– Paul Hildebrandt, Fight for Space producer

Don Pettit: Astronaut, Mr. Science, Space Gardner and Astrophotographer Extraordinaire

After completing 193 days in space as a member of the Expedition 30 and 31 crews, astronaut Don Pettit returned to Earth on July 1, 2012. Don is not your average, ordinary, fighter-pilot astronaut: he’s got a penchant for science, with a unique way of looking at things. He spent his expedition performing crazy zero-gravity experiments, grappling the first commercial spacecraft to visit the ISS, and blogging as his alter-ego, a zuchinni plant, among other things. Universe Today had the chance to talk with Pettit this morning about his experiences:

Nancy: Good morning Don. It’s an honor to talk with you. Congratulations on such a successful expedition.

Don Pettit: It’s great to talk with you!

Nancy: You did a lot of science experiments during your stay in space, both the official ISS program experiments and also your own “Science off the Sphere” experiments. Of the official ones, which was the most interesting and engaging or perhaps what you felt was the most important experiment that you did?

Don Pettit: There were two categories of experiments that really captivated me. One is the human life science experiments that we do on ourselves, where we poke and prod ourselves and take blood and other samples, trying to figure out how this thing called the human being operates in a weightless environment. The other category of experiment that I thought was really fascinating was combustion. That’s a fancy way of saying ‘fire’ which of course is what is required to power our current civilization.

Caption: Pettit working with the Structure and Liftoff In Combustion Experiment (SLICE) in the Destiny laboratory of the International Space Station. Pettit conducted three sets of flame tests, followed by a fan calibration. This test will lead to increased efficiency and reduced pollutant emission for practical combustion devices. Credit: NASA

Nancy: What was your favorite Science off the Sphere experiment that you did?

Don Pettit: Oh, probably the one that has to do with the knitting needles and looking at charged droplets in a stable orbit around the knitting needles. That was really fun and simple and a fun demonstration of what you can do when you remove gravitational forces and replace them with small forces like charged forces.

Nancy: I think that was my favorite one too!

I want to say thank you on behalf of everyone, I think, on planet Earth, for the amazing images you took during your mission– the star trails, the aurorae, the transit of Venus are just a few examples — your images were just spectacular. How important is the photography that the astronauts do as far as documenting your expedition and being able to share your experiences with the public?

Don Pettit: If a picture is worth a thousand words and we take thousands of pictures that certainly says something in terms of the magnitude of communication we can have in conveying this amazing environment to people on Earth, who are of course, the ones collectively who makes this happen, and we are the lucky ones that get to go into space.

Part of any explorations, when you are going into the frontier and you come back you need to explain to people what the frontier is like, you need to share the stories and experience. Images now are one of the prime ways of doing that. I think the taking of both still images and video in space is not only an important pastime for the astronauts to do, but important to convey to the public that ultimately funds the space program, what is going on up there and how wonderful an environment this is. And eventually our technology will move to the point where people, wholesale, can jump in their rockets and go into this frontier.


Caption: Petit left his camera shutter open for long periods of time to capture star trails and trails of lights on Earth.

Nancy: We sure hope so!

You were an integral part of the SpaceX Dragon grapple and berth, the first commercial spaceship to visit the ISS. After being a part of that, what are your thoughts about the private industry becoming perhaps a vital part of human spaceflight, and in particular for space station operations?

Don Pettit: The commercial space is a natural flow for going into a frontier environment like space. You can see analogs of the wild west in the United States getting settled with a combination of both government programs and government sponsored commercial programs and I think we are going to see the same thing going into space. It’s an important aspect of opening the frontier so that more than just a few government-born programs can operate in this environment.

Nancy: Thanks Don, great to talk with you!

Don Pettit: It’s a pleasure.

I also wanted to ask him a few other questions, but ran out of time. At a reader’s suggestion I was going to ask him about the eggs on the Angry Birds Space video, and how he got them into space. Robert Pearlman from collectSPACE later asked him that question, however, and Pettit replied coyly that all astronauts has some personal items they can bring up, but as to how they got up there, Pettit said he’d leave that one unanswered.

I loved Pettit’s analogy about being an explorer of the frontier and in later interviews he had a great comment about Tweeting and exploring:

Don Pettit: Part of any exploration, like when the Antarctic was explored, they’d return home and tell their stories, spread their experience with those who didn’t have the good fortune get to go, and we are using what is available to us now. If Shackleton had the ability to Tweet, I’m sure he would have Tweeted during his expeditions to Antarctica. On station we have limited time and bandwidth and have help from people on the ground who will help get our information out.

I do get feedback (from his social media posts) and some of the comments will get condensed and sent up to me in an email message, and I take the time to read those. Some bring a pretty big smile to my face. And it is neat to see that you are having an effect, that people are following what you are doing and listening to some of the stories you have to tell.

Pettit talked more about his opportunity for photographing unique astronomical events in space:

Don Pettit: One of the most amazing things is to be able to see something like a comet. We saw a comet, saw a solar eclipse and the transit of Venus, so had a number of fairly rare natural astronomical phenomena. When you see it from space, the vantage point is slightly different and allows you to see the physics of the situation– the shadow of the Moon appears as a dark spot on Earth, and lets you know that, gosh, the guys who wrote the textbooks about this figured all this out without seeing it from this vantage point.

Pettit added that the Transit of Venus was an amazing opportunity, and he brought a full-aperture solar telescope just for the occasion. He said he hopes the images they were able to collect hopefully will be useful in the whole ensemble of images that people took from Earth of the event.

Pettit has now spent a total of 370 days in space, more than a year of his life, and he was asked if he would like to go back:

Don Pettit: I would love to fly back to station again, but there is a bunch of folks standing in line, and everyone needs to wait their turn — there is certain fairness on how this happens. I will throw my name in the hat and get back in line and see what happens. The assignments now go out to about 2015, so if space station has a lifetime to about 2020, about half of all the people going to station have already been assigned.

Later Pettit said: I would go back to space in a nano-second. That’s what I do for a living and give me a few days to get my feet on the ground and I’m ready to go again.

And then he was asked if he would go on a mission away from Earth:

Don Pettit: I’d be willing to immigrate into space and not come back as long as we would have the technology to survive. Going one way to Mars and then running out of air to die is not in the cards. If you went to Mars like people went from continental Europe to the New World, I’d load my family up in the next rocket and we’d immigrate into space.


Caption: Another star-trail image by Pettit.

Another question was if being in space ever gets routine.

Don Pettit: It can be both special and routine. Take your breakfast for example. I found that humans like to have a routine for breakfast, and that gives you certain amount of comfort. But it doesn’t get routine as far as living and working in space. Every day has another eye-opening piece of excitement and you learn something new and that is part of being on a frontier.

About his blogging from the perspective of a zucchini plant in space:

Don Pettit: I wanted to write from the equivalent of a potted plant in the corner, and I wanted to write about it because the technology associated with it is not necessarily straightforward, and I could make it like a gardening manual in space. I decided to write the story of how you grow plants in space from the eyes of a zucchini.

Pettit was asked which transition is harder: going to space or coming back to Earth:

Don Pettit: The adjustment going to space is easier than coming back down to Earth. It takes a while to get rid of this heavy feeling.
Later he said that his first thoughts on landing were, “Welcome back to gravity this is really tough,” and then “when do I get to hug my boys?”

What does the ISS smell like?

Don Pettit: Part machine shop, engine room, laboratory and then when you are cooking dinner and rip open a pouch of stew you can smell a little roast beef.

Design for a Long Duration, Deep Space Mission Habitat

Caption: The integrated vehicle stack for a deep space human mission concept. Credit: NASA

There are all sorts of details to take into consideration when traveling in deep space, such as where to go, what to do, and how to get back.  Since starry-eyed dreamers often don’t take into account the practical realities of putting a human into such an environment, steely-eyed engineers are left to decide the gritty details of such a mission, such as how many pairs of socks are needed.  Fortunately, NASA employs engineers who are both steely-eyed and starry-eyed, and their work has just produced an interesting report discussing the human side of deep-space exploration.

The paper, written by Michelle Rucker and Shelby Thompson of Johnson Space Center, focuses on the requirements of a ship that will take the first wave of deep-space human explorers to a near Earth asteroid (NEA), hopefully in the near future.  The team stressed that they were only looking at very basic requirements and the paper only provides a basis to work from for more specialized teams that will design individual sub-systems.

To develop the basics, the team had to make some assumptions, and these assumptions are revealing for anyone interested in NASA’s future human exploration plans.  The team assumed a 380 day round-trip mission to a NEA, crewed by 4 people, with just 30 days of the mission spent at the asteroid.  They assumed the availability of a variety of mission-specific vehicles as well as the ability to perform extra-vehicular activities and dock with the Orion crew module, still under development at NASA.  Nevertheless, such assumptions could lead to an exciting mission if they hold throughout the design process.


Caption: Two weeks worth of clothing in a crew transport bag. Credit: NASA

In addition to the assumptions, the team took advantage of knowledge gained from years of working on the International Space Station, and helped in considering details like how many packets of powdered drinks are needed for the duration of the trip as well as how much toothpaste a person uses daily in space.  All of these numbers were crunched to derive overall dimensions for the craft.

Although, the sum of these volumes produced an over-sized spacecraft, the team evaluated activity frequency and duration to identify functions that could share a common volume without conflict, reducing the total volume by 24%. After adding 10% for growth, the resulting functional pressurized volume was calculated to be a minimum of 268 cu m (9,464 cu ft) distributed over the functions.

Those dimensions resulted in a 4 story structure totaling almost 280 cubic meters (10,000 cubic feet) of pressurized space that looks like it could have come right off the set of Prometheus.


Caption: Conceptual Deep Space Habitat layout. Credit: NASA/Michelle Rucker and Shelby Thompson.

The various subsystems can be broken into seven different categories.   The largest is the equipment section, which takes up 22% of the spacecraft.  This space would include things like the environmental control panel and navigation and communications equipment.  However, the designers thought that the propulsion system, most likely a solar electric propulsion system, and all required control equipment would be part of an attachable module and would not make up part of the main living space of the habitat.

Mission Operations and Spacecraft Operations make up the next largest chunks of the habitable space, each clocking in at 20%.  These areas are reserved for mission specific tasks that are not yet defined and general tasks that are necessary no matter what type of mission the habitat is launched on, such as basic maintenance and repair.

Much consideration was given to the psychological and privacy needs of the inhabitants of the ship and as such about 30% of the total habitable space is devoted to the care of the people on board, with 18% going to “individual” care and 12% going to “group” care.


Caption: Group living and operations area of a conceptual deep space habitat module. Credit: NASA/Michelle Rucker and Shelby Thompson.

Individual care includes basics such as beds, full body cleansing and toilets.  Group care is more for multi-person activities, such as a dining hall, food prep and meeting areas.  The last 2% of the area on board was allotted to “contingency” planning.  It fits its namesake well, as the design team hopes never to have to use the space whose primary purpose is to deal with cabin depressurization, crew fatality or other unforeseeable disaster.  There is also a shielded area in the interior of the habitat for refuge for the crew during a solar radiation event.

With the basics laid out, it is now up to the specialist teams to develop the next set of requirements for the sub-systems.  The final design will only be completed after a long and iterative process of calculation and re-calculation, design and re-design.  Assuming the teams persevere, and the space agency receives adequate funding for developing a deep space mission to an asteroid, NASA’s detail-oriented engineers will have developed a very flexible habitat module to use on the next step of human space exploration that dreamers everywhere can get excited about.

Source: NASA Technical Report: Developing a Habitat for Long Duration, Deep Space Mission

Andy Tomaswick, an electrical engineer who follows space science and technology.

A Call to Action: We Must Explore

Our friend Andrew Chaikin is passionate about space exploration and like many, is concerned about the budget cuts that threaten to starve NASA’s planetary science program. He has created this new video as a call to action for those of us in the US to contact our representatives, and anyone around the world to make a statement of how important exploration is to humanity. “I’m fighting back with passion,” Andy says, “Passion for the incredible adventure that began half a century ago and has given us countless wonders and amazing discoveries…Please share it with your friends and family. And tell Washington, ‘We Must Explore!'”

For more information, head to The Planetary Society’s beautiful new website to find out how you can get involved in being an advocate for space exploration. by going to: