Long term space exploration comes with many challenges. Not least is how much toilet paper to take but more worryingly is the impact on human physiology. We have not evolved in a weightless environment, we are not used to floating around for months on end nor are we able to cope with increased levels of radiation. It is likely that organs like the kidneys will become damaged but it make take time for signs to appear. Researchers are developing ways to detect organ issues in the early stages and develop ways to protect them during long duration flights.
Continue reading “An Astronaut Might Need Kidney Dialysis on the Way Home from Mars”Metal is 3D Printed on the Space Station
I have always wanted a 3D printer but never quite found a good enough reason to get one. Seeing that NASA are now 3D printing metal is even more tantalising than a plastic 3D printer. However, thinking about it, surely it is just a computer controlled soldering iron! I’m sure it’s far more advanced than that! Turns out that the first print really wasn’t much to right home about, just an s-curve deposited onto a metal plate! It does however prove and demonstrate the principle that a laser can liquify stainless steel and then deposit it precisely in a weightless environment.
Continue reading “Metal is 3D Printed on the Space Station”A New Way to Make Precise Maps of the Lunar Surface
There was a time when maps of the Moon were created from telescopic observations and drawings. Indeed Sir Patrick Moore created maps of the Moon that were used during the historic Apollo landings. Now researchers have enhanced a technique to create accurate maps from existing satellite images. Their approach uses a technique called ‘shape-from-shading’ and involves analyzing shadows to estimate the features and shape of the terrain. Future lunar missions will be able to use the maps to identify hazards on the surface making them far safer.
Continue reading “A New Way to Make Precise Maps of the Lunar Surface”South Korea is Planning to Send a Mission to Mars by 2045
It is truly wonderful to see so many nations aspiring to space exploration and trips to the Moon. Earlier this week on the 27th May, South Korea innaugurated its new space agency, the Korea AeroSpace Administration otherwise known as KASA. The group is headed up by former professor of aerospace engineering Yoon Young-bin. Whilst the group has yet to announce detailed plans for their upcoming missions Young-bin has stated they hope to land on the Moon by 2032 and to get to Mars by 2045.
Continue reading “South Korea is Planning to Send a Mission to Mars by 2045”Astronauts Could Deploy Extra Arms to Stay Stable on the Moon
Walking along on the surface of the Moon, as aptly demonstrated by the Apollo astronauts, is no easy feat. The gravity at the Moon’s surface is 1/6th of Earth’s and there are plenty of videos of astronauts stumbling, falling and then trying to get up! Engineers have come up with a solution; a robotic arm system that can be attached to an astronauts back pack to give them a helping hand if they fall. The “SuperLimbs” as they have been called will not only aid them as they walk around the surface but also give them extra stability while carrying out tasks.
Continue reading “Astronauts Could Deploy Extra Arms to Stay Stable on the Moon”A Rotating Spacecraft Would Solve So Many Problems in Spaceflight
If you watch astronauts in space then you will know how they seem to float around their spaceship. Spaceships in orbit around the Earth are in free-fall, constantly falling toward surface fo the Earth with the surface constantly falling away from it. Any occupant is also in free-fall but living like this causes muscle tone to degrade slowly. One solution is to generate artificial gravity through acceleration in particular a rotating motion. A new paper makes the case for a rotating space station and goes so far that it is achievable now.
Continue reading “A Rotating Spacecraft Would Solve So Many Problems in Spaceflight”Astronaut Food Will Lose Nutrients on Long-Duration Missions. NASA is Working on a Fix
Astronauts on board the International Space Station are often visited by supply ships from Earth with food among other things. Take a trip to Mars or other and the distances are much greater making it impractical to send fresh supplies. The prepackaged food used by NASA loses nutritional value over time so NASA is looking at ways astronauts can produce nutrients. They are exploring genetic engineering techniques that can create microbes with minimal resource usage.
Continue reading “Astronaut Food Will Lose Nutrients on Long-Duration Missions. NASA is Working on a Fix”What’s the Most Effective Way to Explore our Nearest Stars?
It was 1903 that the Wright brothers made the first successful self-propelled flight. Launching themselves to history, they set the foundations for transatlantic flights, supersonic flight and perhaps even the exploration of the Solar System. Now we are on the precipice of travel among the stars but among the many ideas and theories, what is the ultimate and most effective way to explore our nearest stellar neighbours? After all, there are 10,000 stars within a region of 110 light years from Earth so there are plenty to choose from.
Continue reading “What’s the Most Effective Way to Explore our Nearest Stars?”NASA is Building an Electrodynamic Shield to Deal with all that Dust on the Moon and Mars
Exploration of the Moon or other dusty environments comes with challenges. The lunar surface is covered in material known as regolith and its a jaggy, glassy material. It can cause wear and tear on equipment and can pose a health risk to astronauts too. Astronauts travelling to Mars would experience dust saucing to everything, including solar panels leading to decrease in power. To combat the problems created by dust, NASA is working on an innovative electrodynamic dust shield to remove dust and protect surfaces from solar panels to space suits.
Continue reading “NASA is Building an Electrodynamic Shield to Deal with all that Dust on the Moon and Mars”What Could We Build With Lunar Regolith?
It has often been likened to talcum powder. The ultra fine lunar surface material known as the regolith is crushed volcanic rock. For visitors to the surface of the Moon it can be a health hazard, causing wear and tear on astronauts and their equipment, but it has potential. The fine material may be suitable for building roads, landing pads and shelters. Researchers are now working to analyse its suitability for a number of different applications.
Continue reading “What Could We Build With Lunar Regolith?”