Good and Bad News Comes With NASA’s 2012 Budget

An Artist's Conception of the James Webb Space Telescope. Credit: ESA.

[/caption]

On November 14, President Obama signed an Appropriations bill that solidified NASA’s budget for fiscal year 2012. The space agency will get $17.8 billion. That’s $648 million less than last year’s funding and $924 million below what the President had asked for. But it’s still better than the $16.8 billion proposed earlier this year by the House of Representatives.

To most people, $17.8 billion is a huge amount of money. And it absolutely is, but not when you’re  NASA and have multiple programs and missions to fund. So where does it all go?

The bill highlights three major items when it comes to NASA’s budget. Of its total funding, $3.8 billion is set aside for Space Exploration. This includes research and development of the the Orion Multi-Purpose Crew Vehicle and Space Launch System, hopefully keeping both programs on schedule.

The Orion Multi-Purpose Crew Vehicle. Credit: NASA.

$4.2 billion has been allocated for Space Operations. This includes funds to tie up the loose ends of the Space Shuttle program, the end of which is expected to save more than $1 billion. The Space Operations budget, however, is $1.3 billion below last year’s level.

Coming to a very popular topic, the bill dedicates $5.1 billion to NASA Science Programs, a division that includes the James Webb Space Telescope. The JWST has garnered much attention this year, usually for being badly behind schedule and cripplingly over budget. Of the funding dedicated to Science Programs, $530 million is directed to the JWST project.

There’s a little problem hidden in this item in the bill. The $5.1 billion is just over the $150 million funding the Science Programs got last year. With $380 million on top of that increased promised to the JWST, where’s the money coming from? Other programs. As the bill says, “the agreement accommodates cost growth in the James Webb Space Telescope (JWST) by making commensurate reductions in other programs.” NASA will get the money for the telescope the only place it can – by cutting other programs.

This means potential major cuts to planetary programs since NASA’s manned program traditionally gets the most money. And understandably so. Aside from the real space enthusiasts who track robotic missions with gusto, an astronaut provides a great human link to space for the everyman. So even without an active manned program, it’s highly unlikely NASA will find the funds for the JWST program in its manned budget.

Planetary missions will likely take the hit. And a funding cut now could seriously affect NASA’s long range plans, such as its planned missions to Mars through 2020. Prospective missions to Europa will face difficulties too, a real shame since liquid water was recently discovered under the icy surface of that Jovian moon.

Unfortunately, NASA’s budget just can’t match its goals. For the near future, NASA will have to do what it can with what it’s got. As NASA Administrator Charles Bolden said in reference to the budget the House of Representatives originally proposed in February, it “requires us to live within our means so we can invest in our future.” Let’s all hope for some wise investing on NASA’s part.

Sources: “Summary: Fiscal Year 2012 Appropriations “Mini-Bus”, “2012 Budget is Set” from the Planetary Society.

Comet Curiosity? MSL Looks Like a Comet as it Heads Toward Mars

Visible at the bottom of the image is the venting of gases, probably from the Mars Science Laboratory Centaur rocket stage, as seen from the Sir Thomas Brisbane Planetarium in Australia. The Orion Nebula is at the top. Photo by Duncan Waldron.

What does a spacecraft look like as it lights-out for another world? This incredible time-lapse video was taken by astronomers at the Sir Thomas Brisbane Planetarium in Australia. The sequence shows a plume drifting against the background stars, probably caused by venting from the Centaur rocket stage that sent the Mars Science Laboratory/Curiosity Rover on its way to the Red Planet, after it carried out a burn over the Indian Ocean on November 26, 2011.

Brisbane Planetarium Curator Mark Rigby said that he and photographer/amateur astronomer Duncan Waldron, along with another planetarium staff member were likely the only people who saw this amazing sight, as they have received no other reports of similar observations.

Rigby said they are “are over the Moon – or higher” from seeing the departure of the Mars Science Laboratory, its rocket stage and plume above Australia on Sunday. “It is a real shame that we couldn’t have woken up everyone that didn’t have clouds,” Rigby wrote on the Planetarium’s Facebook page. “Even we didn’t expect to see such a spectacle. Can you imagine the feeling if there had been a crew onboard heading for Mars?”

Rigby first saw the plume at 2:15am local time, (16:15 UT) and said it was “a one-degree elongated cloud of VERY easy naked eye brightness.” Duncan Waldron also saw it starting at about 2:30pm and began to photograph it until it faded. Nonetheless, he captured a unique timelapse covering 21 minutes until 3am.

Here is one of Waldron’s images, below:

[/caption]

The coordinates of the observing site: -27.630779,152.966324, altitude 40m approx.

Congrats to the Sir Thomas Brisbane Planetarium team for capturing such an amazing and historical sight!

Video Shows Rare View of Soyuz Capsule Returning to Earth

The three Expedition 29 astronauts have safely returned to Earth after spending nearly six months on the International Space Station. They landed to a cold and snowy Kazakhstan at 8:26 p.m. CST Nov. 21 (8:26 a.m. Kazakhstan time, Nov. 22). Video cameras on the space station captured the dramatic re-entry of the Soyuz capsule, and the fiery show was also visible to bystanders on the ground on the Russian central steppe.
Continue reading “Video Shows Rare View of Soyuz Capsule Returning to Earth”

Could We Soon See the End of ITAR’s Chokehold on Space Exploration?

GPS Satellite
According to a new proposal, GPS satellites may be the key to finding dark matter. Credit: NASA

[/caption]

Jeff Foust of The Space Review may have said it best when he claimed that ITAR, a set of trade regulations regarding defense-related trade, was “an acronym that has become figuratively and literally a four-letter word in the industry given the costs, delays, and general uncertainty involved in dealing with those regulations.” No matter where you are on the political spectrum or no matter where you stand on the debate about what’s next in space, you will find people who hate the ITAR’s (International Trade Arms Regulations International Traffic in Arms Regulations) influence on space commerce. Even in this time of great partisanship, Rep. Howard Berman [D-CA28] along with six Democrats and four Republicans have joined forces to craft a sword that, once given to the president will eliminate ITAR’s influence on space commercial enterprise.

The Safeguarding United States Satellite Leadership and Security Act of 2011 is the name of the bill. Also named HR 3288, the act removes spacecraft and related components from the United States Munitions List which is a list of items which are controlled by ITAR. China, Cuba, Iran, Sudan, Syria, and North Korea have restricted access to US spacecraft merchants, easing fears that US technology would fall into the wrong hands.

HR 3288 has created much excitement in the space industry.

“Congress has the opportunity to dramatically improve the competitiveness of the U.S. satellite and space industries and ensure an innovative and thriving U.S. space industrial base,” said Patricia Cooper, the president of the Satellite Industry Association, in a press release. She added that they would be jumping for joy if it weren’t for the “outmoded and overly-restrictive regulation” they say they are under.

Why so much joy? Mitchell Baroody, political analyst, advocate, speaker and told Universe Today that “while ITAR may have some positive effects on National Security, the detrimental effects of these ‘red tape-laced’ regulations cannot be ignored.”

For instance, according to The Space Review in 2006, U.S. Satellite Manufacturers have estimated losses from ‘$2.5 and $6.0 billion since 1999 due primarily to ITAR regulations.’

“When industries become over-regulated, this is what happens,” Barody said. “As a result of ITAR, even…‘friendly’ foreign countries are weary of dealing with the U.S.”

This makes it difficult for our allies because spacecraft are listed after deadly toxicological agents and before destructive nuclear weapons with all three under the same trade rules. Despite this hilarious position, spacecraft’s removal is still, according to Space Politics, “an uphill battle, as Congress awaits the administration’s export control reform proposals as well as delivery of a final version of a report looking at the national security implications of moving satellite export control reform.”

This uphill struggle against protectionism might not be so bad because over the overwhelming need to create jobs. Baroody acknowledged that there are “many who are advocating protectionist ideals, like Donald Trump advocating increased trade tariffs of 25% with China in April of 2011.”

However, Baroody said, there are many more who know that in the present American economy, people are looking for any feasible solution to export control that has economic benefits. “Unfortunately, becoming more protectionist could have some very negative economic implications for the American consumer,” he said.

Baroody does not foresee this bill being stopped by the protectionist movement. “HR 3288 does not, in any way, benefit the one country who has been treating us unfairly, China,” he said. “This bill should not face an obstacle, in reference to protectionism.”

To Baroody, the thought “that idealists tendencies, which are not accurate, can dominate and win over more jobs, more freedom for American business, and more money in the pockets of Americans is…sickening.”

Some could counter-claim saying national security is at risk, but Baroody thinks the US government has gone too far.

“Before the satellite industry was given such a devastating blow in 1999, it is fair to say there was not enough oversight. However, putting satellites on the munitions list went way too far,” he said. “Now, American Manufacturers are winning with HR 3288 and American security is being preserved because the malevolent nations are excluded from being sold these satellites and components.”

Drilling down to the mechanics of the law, this is the only route Congress can take to export reform as Baroody explains: “Title 22 USC § 2778 (The ITAR) gives Congress oversight in munitions list removal. The President has to present any removals to Congress and cannot remove anything until 30 days have passed upon notification of the Speaker and specific committees. They specifically authorized the President to have discretion in removal. In HR 3288, Congress authorizes the President to remove the satellites and related components only if this does not cause a threat to National security.” In other words, congress can’t remove the spacecraft from the munitions list themselves.”

The Safeguarding United States Satellite Leadership and Security Act of 2011 is not perfect. “The bill includes risk-mitigating licensing controls, procedures, and safeguards,” Baroody said. “Red-tape and regulations are always going to get in the way of commerce, regardless of whether it involves space or some other category of commerce. If you put aside the risk mitigating licensing controls, procedures, and safeguards and look at America’s tax system, the answer is obvious.”

“The red-tape a company has to go through to get a product to market, like a satellite, can also be just as bad as paying more for it,” Baroody continued. “Having to paddle through the exorbitant amount of regulations to ensure you are legally allowed to sell your product and your buyer is allowed to keep it, is detrimental to every business. We should have regulations, but they should be within reason and should make sense. Government should not babysit our industries but they should keep an eye on them to make sure no one is getting hurt and the American people are being reasonably protected”.

This bill even has international implications. In an interview for The Space Review Dennis Burnett, vice president of trade and export controls for EADS North America expressed that “You cannot build a big sophisticated satellite without US parts and components, you just cannot do it…Those components might comprise no more than five percent of the satellite, but still, it’s a very important five percent.”

Because of this international impact, the bill was referred to the Foreign Affairs Committee on November 1st. This so called ‘Congress of specialists’ will, if they give the bill their time, study the bill then report on it. If the committee doesn’t give the bill their time, it will die there. Only after the committee’s review will there be a vote on the elimination of the ITAR.

NASA Test-Fires Key Engine for New Launch System

NASA successfully test-fired the J2-X rocket engine on Wednesday, a key component of the Space Launch System, NASA’s giant new rocket that is slated to take cargo and crew beyond low Earth orbit. A deafening 500-second firing test at the Stennis Space Center showed the engine is ready for the next steps in building the SLS rocket.

“What you heard to today is the sound of the front end of the critical path to the future,” said Stennis Director Patrick Scheuermann, speaking at a press conference immediately after the test fire, which began at 4:04 p.m. EST (2104 GMT).

Continue reading “NASA Test-Fires Key Engine for New Launch System”

Boeing To Use Shuttle Hangar for CST-100 Space Taxi

Boeing has selected Florida to be the base for its commercial crew program office. Image Credit: Boeing

[/caption]
CAPE CANAVERAL, Fla – NASA hosted an event on Monday, Oct. 31, at 10 a.m. EDT at Kennedy Space Center’s Orbiter Processing Facility-3 (OPF-3) to announce a new partnership between NASA, Space Florida and Boeing. Space Florida in turn will lease OPF-3 to Boeing. Under the terms of this arrangement, Boeing will use OPF-3 to manufacture and test Boeing’s “space taxi” the CST-100.

Boeing will use OPF-3 as the firm’s commercial crew program office. The OPF, essentially a hangar, will be converted to construct Boeing’s CST-100 space capsule, which is currently being developed to deliver astronauts to low-Earth-orbit (LEO).

In the past Boeing has issued imagery that displayed its CST-100 launching from a variety of different launch vehicles which call Florida's Space Coast their home. Photo Credit: Boeing

This new partnership was developed following a Notice of Availability that the space agency issued at the beginning of this year. The notice was used to identify interest from industry for space processing and support facilities at Kennedy. With NASA’s fleet of orbiters being decommissioned, NASA was seeking ways to effectively use its existing facilities.

It is hoped that this, and similar partnerships will help create jobs in the region as well as to help the U.S. regain leadership in the global space economy.

Boeing's CST-100 is called a "space-taxi" and is being designed to carry both crew and cargo to both the International Space Station as well and other low-Earth-orbit destnations. Image Credit: Boeing

The CST-100 is currently proposed as a reusable spacecraft that is comprised of two parts – a crew module and service module. It is designed to house up to seven astronauts, but it can also be used to ferry both people and cargo to orbit.

With the space shuttle fleet retired, NASA is completely reliant on Russia for access to the International Space Station. Russia charges the space agency about $63 million a seat on its Soyuz spacecraft.

“Only Congress can determine when we will stop the investment of our nation’s tax dollars into the purchase of continued space transportation services from the Russians – and invest instead in the U.S. work force and commercial industry capabilities,” said Space Florida’s President Frank DiBello.

During the final launch of the shuttle era, Boeing had both a mock-up as well as this test article on display. Photo Credit: Jason Rhian

NASA has worked to keep the public apprised about its efforts to open its doors to private space companies. The space agency held press conferences to announce both the Space Act Agreement (SAA) that NASA had entered into with Alliant Techsystems (ATK) and EADS Astrium concerning the Liberty launch vehicle, as well as the release of the design of the Space Launch System (SLS) heavy-lift rocket (which was announced on the following day).

“Thanks so much John and John, I love what you have done with the place!” said NASA Deputy Administrator Lori Garver referring to OPF-3.

The CST-100 has been proposed as a means of transportation to other future destinations in low-Earth-orbit such as one of the inflatable space station's currently under development by Bigelow Aerospace. Image Credit: Boeing

Space Florida is the organization that works to maintain and cultivate the aerospace industry within the State of Florida. The purpose of NASA’s Commercial Crew Program is to develop U.S. commercial crew space flight capabilities. It is hoped that they will one day allow the U.S. to achieve reliable, safe and cheap access not to just the space station – but other destinations in LEO as well.

“If we’re going to find a way to fund exploration beyond the vicinity of Earth, particularly in today’s fiscally-constrained environment – we’ve got to find a way to do the job of transporting crew to the International Space Station in a more affordable manner,” said Boeing’s John Elbon. “That’s one of the primary purposes of the commercial crew program – to provide affordable access to low-Earth-orbit so that we can use the International Space Station as the great laboratory that it is.”

Through an agreement with Space Florida, NASA will lease Orbiter Processing Facility-3 (OPF-3) to Boeing for its CST-100 space taxi. It is hoped that this and efforts like this one will eventually reduce the cost of sending crews to the International Space Station. Photo Credit: NASA

First Progress Launch Since Accident Looms Large for Space Station Program

The Soyuz launch sequence, showing the time of the anomaly on August 24, 2011. Credit: ESA

[/caption]

The first launch of a Russian resupply ship since the August failure and crash of the Progress/SoyuzU is scheduled for Sunday, October 30, 2011 at 6:11 a.m. EDT (10:11 GMT). The importance of a successful launch looms large for the future of the International Space Station.

“Because the previous Progress didn’t get to orbit, it is important this launch go as planned,” NASA spokesman Kelly Humphries told Universe Today. “The booster we use to launch the crews, while not identical, is very similar to the one used for Progress — in particular the third stage where the failure was identified, so we do look forward to our Russian partners having a successful launch on Sunday.”

If not, the space station faces the prospect of being de-crewed.


This first post-shuttle era launch of a Progress cargo ship abruptly ended at about six minutes into the flight on August 24, 2011 when an engine anomaly prompted a computer to shutdown an engine, just before the third stage of the Soyuz rocket ignited. The rocket and ship crashed to Earth in eastern Russia.

Progress 45 is now set to launch from the Baikonur Cosmodrome in Kazakhstan on Sunday and hopefully deliver 2.8 tons of food, fuel and supplies to the space station crew members.

Progress M-12M cargo vehicle launches on August 24, 2011. The rocket eventually failed and the rocket and ship crashed. Credit: NASA TV.

If that launch goes as planned, that would allow the Soyuz TMA-22 spacecraft carrying three new station crew members to launch in mid-November. Flight Engineers Dan Burbank, Anton Shkaplerov and Anatoly Ivanishin are scheduled to join the current on-orbit crew of Commander Mike Fossum and Flight Engineers Satoshi Furukawa and Sergei Volkov on Nov. 16.

Fossum and his crew are due to end their stay at the station on Nov. 21, so if the Soyuz TMA-22 can’t launch before then, the ISS will be left crewless.

While the Soyuz rockets and Progress cargo ships have had a long history of successes, this one failure – coming just after the space shuttles were retired – has left the ability to get new crews to the space station in limbo. The Progress cargo ships launch on a Soyuz-U rocket, while the Soyuz crew capsules, — the Soyuz TMA — launches on a Soyuz-FG. The third stages of the two rockets are virtually identical.

A Russian commission investigating the Progress failure said the crash was caused by a malfunction in the rocket’s third stage engine gas generator. The commission the malfunction was the result of an accidental manufacturing flaw. The third stages of all Soyuz-type rockets have been changed out, and a Soyuz rocket did launch successfully on October 21 from the ESA’s new launch facility in French Guiana, carrying new GPS satellites.

The Soyuz-U rocket has had 745 successful launches and just 21 failures over nearly four decades. The Soyuz-FG has had 25 launches, all successful.

“Because of the failure and similarity of the launch vehicles, we have been performing a lot of preliminary planning and work to make sure that in the unlikely event the Progress were to have another problem,” Humphries said, “that we would be able to get the existing crew home safely and be able to operate the International Space Station and conduct research there without the crew on board.”

Humphries said the ISS team has identified many issues so that they would be capable of operating the space station almost indefinitely without a crew.

“Of course that is not the preference because it would have some impacts on our research,” he said. “But we are very confident that our Russian partners have done their due diligence and identified the root cause and taken the right steps to correct this and we are looking forward to having a good launch.”

Humphries said despite the challenges of working with potentially having to de-crew the ISS, the space station program and partnerships are still strong.

“The international partnerships we’ve developed with our colleagues in Russia, Canada, Japan and Euorpe are probably one the greatest achievements of the ISS program,” Humphries said. “We back each other up on a variety of operational and other fronts on a daily basis. For example, our Russian colleagues were instrumental in keeping the space station operational following the Columbia accident in 2003.”

The launch and also the Progress docking to the ISS will be carried live on NASA TV.

Infographic: Space Launches Over Time

Space launches over time. Credit: Tommy McCall and Mike Orcutt, via Technology Review Blog.

[/caption]

For people who erroneously believe that the end of the space shuttle program means the end of space exploration for the human race, this graphic should provide a little perspective. According to the data compiled here, human missions funded by the U.S. government have represented only a small part of the launches into space. And interestingly, the data creates nice Star Wars battle cruiser-like shapes for US and Russian launches!

Of the 7,000 spacecraft that have been launched into orbit or beyond from 1957 to July 2011, more than half were defense satellites used for communication, ­navigation, and imaging. Reportedly, the USSR sent up a huge number of satellites because their satellites didn’t last as long as those launched b the Us. In the 1970s, private companies began increasingly adding to the mix, ­launching satellites for telecommunications and broadcasting.

This graphic groups payloads by the nationality of the owner. A satellite, a capsule of cosmonauts, or a deep-space probe would each count as one payload. The data were drawn from hundreds of sources, including space agency documents, academic journals, and interviews. They were compiled by Jonathan ­McDowell, an ­astrophysicist at the Harvard-­Smithsonian Center for Astrophysics and author of Jonathan’s Space Report, a newsletter that tracks launches.

This graphic is available through a limited-time free access to premium content of Technology Review, who have opened 14 years of premium online content to celebrate their annual Emtech MIT event. Hurry, the limited access ends on October 19, 2011. You can download a pdf of the graphic here through that date.

Source: Technology Review

Inspiration and an Old Picture Full of Awesome: Robert Goddard and His Rocket

Dr. Robert H. Goddard (second from right) and his colleagues hold a liquid-propellant rocket in 1932 at their New Mexico workshop. Credit: NASA Goddard Space Flight Center

It is difficult to say what is impossible, for the dream of yesterday is the hope of today and the reality of tomorrow.
Dr. Robert Hutchings Goddard

It’s funny sometimes, the things that inspire you. I remember in second grade, our class read a story about Robert Goddard and I was totally captivated by this man who had a practically single-minded vision to build rockets and visit other worlds. That story was my first exposure – that I recall – to rockets and space travel and other planets, and I have to say, Robert Goddard is one of the reasons I’m a space and astronomy journalist today. I remembered that 2nd grade fascination and inspiration when I saw the above picture of Goddard and his co-horts with one of their rockets. Today is Robert Goddard’s birthday – he was born on October 5, 1882 — and in my recollections, I also remembered what inspired Robert Goddard: daydreaming while sitting in the branches of a tree.

The story goes that on October 19, 1899, he climbed into an old cherry tree to prune its dead branches. Instead, he began daydreaming.

Goddard later wrote about that day:

“It was one of the quiet, colorful afternoons of sheer beauty which we have in October in New England, and as I looked toward the fields at the east, I imagined how wonderful it would be to make some device which had even the possibility of ascending to Mars, and how it would look on a small scale, if sent up from the meadow at my feet.”

“I was a different boy when I descended the tree from when I ascended, for existence at last seemed very purposive.”

That was when a 17-year old Goddard decided to pursue the idea of spaceflight. October 19 became Goddard’s day of inspiration and he remembered that day every year, calling it “Anniversary Day,” and he noted the day in his diary as his personal holiday. In 1913, for example, he made the following to-do list:

Worcester, October 19, 1913
(Anniversary Day)

Order: complete patent application if necessary of nozzle and plurality; take out application on reloading feature; also complete application for electric pump; repeat calculation carefully, for smaller intervals; look up Darwin’s theory of the lunar motion; and look up meteors. Also try a jet.

Until that time, any type of rocket propulsion was provided by various types of gunpowder. Goddard wanted to try using a liquid fueled rocket. But in some of Goddard’s first tests of the rocket, and specifically in testing the type of jet nozzles he used, he was extremely disappointed in the nozzle’s performance: only about 2% of the available energy contributed to the speed of the jet.

Then Goddard found inspiration from an engineer named Gustav De Laval, who had developed a more efficient steam engine by designing a nozzle that was narrow at the point of entry and then expanded. This increased the speed of the jet and led to a very efficient conversion of heat energy to motion.

Using a De Laval nozzle, Goddard was able to obtain jet velocities between 7000 and 8000 ft/sec and efficiencies of up to 63%. The De Laval nozzle made Goddard’s dream of spaceflight a reality.

By 1914, Goddard had received a U.S. patent for a rocket using liquid fuel and another for a two- or three-stage rocket using solid fuel. By 1926, he and his team had constructed and successfully tested a rocket using liquid fuel, and the first-of-its-kind rocket reached an altitude of 12.5 meters (41 feet) with the flight lasting about 2 seconds. That small success was enough to inspire Goddard to go on to build more rockets. His research and achievements in rocket propulsion have formed the fundamental principles of space flight.

And Goddard wasn’t the only one who was inspired by De Laval. In the book “Rocket Boys,” which was later made into the movie “October Sky,” former NASA engineer Homer Hickam tells about his inspiration of building a rocket after seeing Sputnik fly over his backyard. He gets a group of his high school friends to help him, and they work relentlessly on building homemade rockets. The boys’ breakthrough of building a science-fair-winning rocket comes when they discover the design of the De-Laval nozzle in a book given to them by their teacher.

It’s true: we do all stand on the shoulders of giants.