Singer Sarah Brightman Will be Next Space Tourist

Singer Sarah Brightman at a press conference on October 10 to announce her upcoming space flight.

Roscosmos and Space Adventures are re- starting space tourism flights, and the next space tourist will be singer Sarah Brightman, who will head to the International Space Station on a Soyuz rocket. Brightman, 52, announced her trip at a press conference in Moscow on Wednesday, saying that she hopes her trip — which will likely take place in 2015 — will be a catalyst for the hopes and dreams of people around the world.

“I don’t think of myself as a dreamer. Rather, I am a dream chaser,” said Sarah Brightman. “I hope that I can encourage others to take inspiration from my journey both to chase down their own dreams and to help fulfill the important UNESCO mandate to promote peace and sustainable development on Earth and from space. I am determined that this journey can reach out to be a force for good, a catalyst for some of the dreams and aims of others that resonate with me.”

Brightman is a UNESCO Artist for Peace Ambassador, and is a classical soprano who also has topped the music charts with her pop music.

Coincidently, her new album is titled “Dream Chaser,” and she soon starts a world-wide tour to promote her new album. A trip to space would be the ultimate promotion tour. See a video below of her latest single, “Angel,” which includes footage from early space flight and recent views from the ISS. Brightman said space exploration has inspired her all her life.

Russia halted orbital space tourism in 2009 due to the increase in the International Space Station crew size, using the seats for expedition crews that would normally be sold to paying spaceflight participants.

Along with Brightman at the press conferece were Alexey Krasnov, Head of Roscosmos’ Piloted Programs Department and Eric Anderson, Chairman of Space Adventures, a space tourism company that has arranged all previous tourist flights to the Space Station.

The schedule for her flight “will be determined very shortly by Roscosmos and the ISS partners,” Brightman said, adding she had been approved medically and will do six months training in Russia.

“This past July, Ms. Brightman completed and passed all of the required medical and physical evaluations,” said Krasnov. “ She’s fit and mentally prepared for our spaceflight training program. We will work closely with Space Adventures in supporting Ms. Brightman’s spaceflight candidacy.”

During her estimated 10-day stay on board the space station, Brightman said she will advocate for UNESCO’s mandate to promote peace and sustainable development to safeguard our planet’s future. She will also try to advance education and empower the role of girls and women in science and technology in an effort to help close the gender gap in the STEM (Science, Technology, Engineering and Mathematics) fields. The plans for achieving those goals are still in development.

“I have deep admiration for Sarah, not only for her well deserved title of being the world’s best-selling soprano, but for the young girl who was inspired by Yuri Gagarin and Neil Armstrong to reach for her own star,” said Anderson. “We look forward to working with her to make her dream a reality.”

Previous ISS space tourists are Dennis Tito, Mark Shuttleworth, Greg Olsen, Anousheh Ansari, Charles Simonyi, Richard Garriott and Guy Laliberté. Cumulatively, space tourists have spent almost three months in space.

Dragon Successfully Captured and Berthed at Space Station

Dragon captured by the ISS’s CanadArm2. Via NASA TV.

Running ahead of time, the International Space Station Expedition 33 crew successfully captured and installed the SpaceX Dragon capsule onto the Earth-facing port of the ISS’s Harmony module. Commander Suni Williams and astronaut Akihiko Hoshide captured the commercial spacecraft with the station’s CanadArm2 robotic arm at 6:56 a.m. EDT, and Dragon was officially berthed at 9:03 am EDT.

“Looks like we’ve tamed the Dragon,” radioed Williams. “We’re happy she’s on board with us. Thanks to everybody at SpaceX and NASA for bringing her here to us. And the ice cream.”

“This is a big moment in the course of this mission and for commercial spaceflight,” said SpaceX CEO and Chief Technical Officer Elon Musk. “We are pleased that Dragon is now ready to deliver its cargo to the International Space Station.”

The hatch will be opened tomorrow was opened earlier than expected, today at 1:40 pm EDT and Dragon will be unloaded over the next several days. Later, they will be re-packing it full of items that will be coming back to Earth, as this spacecraft has the ability to return intact, instead of burning up in the atmosphere like the other resupply ships that come to the station. Dragon will spend 18 days attached to the ISS.

More images below.

The Dragon capsule berthed to the ISS’s Harmony node. Credit: NASA/SpaceX

Dragon approaches the ISS. Via NASA TV.

Dragon is carrying nearly 400 kg (882 pounds) of supplies to the orbiting laboratory, including 117 kg (260 pounds) of crew supplies, 176 kg (390 pounds) of scientific research, 102 kg (225 pounds) of hardware and several kg/pounds of other supplies, such as food, water and Space Station parts. There are also 23 student experiments from the Student Spaceflight Experiments Program (SSEP) involving 7,420 pre-college students engaged in formal microgravity experiment design, according to SSEP director Dr. Jeff Goldstein.

The special treat that Williams mentioned is on board a new freezer called GLACIER (General Laboratory Active Cryogenic ISS Experiment Refrigerator): Blue Bell ice cream, a brand that is a favorite of astronauts training at the Johnson Space Center. The freezer will hold experiments that need to be returned to Earth for further examination.

Dragon will return a total of 758 kg (1,673 pounds), including 74 kg (163 pounds) of crew supplies, 392 kg (866 pounds) of scientific research, and 235 kg (518 pounds) of vehicle hardware and other hardware.

The Dragon capsule hovers near the International Space Station. Via NASA TV

A close-up view of the CanadArm2’s end effector grabbing the Dragon capsule. Via NASA TV

Dragon in the “Ready To Latch” (RTL) position. Via NASA TV.

A NASA graphic showing the position of the Dragon capsule on the ISS. Via NASA TV.

Falcon 9 Experienced Engine Anomaly But Kept Going to Orbit

During last night’s launch of the Dragon capsule by SpaceX’s Falcon 9 rocket, there was an anomaly on one of the rocket’s nine engines and it was shut down. But Dragon still made it to orbit – just a little bit later than originally expected. At about 1:20 into the flight, there was a bright flash and a shower of debris. SpaceX’s CEO Elon Musk issued a statement about the anomaly saying:

“Falcon 9 detected an anomaly on one of the nine engines and shut it down. As designed, the flight computer then recomputed a new ascent profile in realtime to reach the target orbit, which is why the burn times were a bit longer. Like Saturn V, which experienced engine loss on two flights, the Falcon 9 is designed to handle an engine flameout and still complete its mission. I believe F9 is the only rocket flying today that, like a modern airliner, is capable of completing a flight successfully even after losing an engine. There was no effect on Dragon or the Space Station resupply mission.”

UPDATE (2 pm EDT 8/10): SpaceX has now provided an update and more information: the engine didn’t explode, but (now updated from a previous update), “panels designed to relieve pressure within the engine bay were ejected to protect the stage and other engines.” Here’s their statement:

Approximately one minute and 19 seconds into last night’s launch, the Falcon 9 rocket detected an anomaly on one first stage engine. Initial data suggests that one of the rocket’s nine Merlin engines, Engine 1, lost pressure suddenly and an engine shutdown command was issued. We know the engine did not explode, because we continued to receive data from it. Panels designed to relieve pressure within the engine bay were ejected to protect the stage and other engines. Our review of flight data indicates that neither the rocket stage nor any of the other eight engines were negatively affected by this event.

As designed, the flight computer then recomputed a new ascent profile in real time to ensure Dragon’s entry into orbit for subsequent rendezvous and berthing with the ISS. This was achieved, and there was no effect on Dragon or the cargo resupply mission.

Falcon 9 did exactly what it was designed to do. Like the Saturn V (which experienced engine loss on two flights) and modern airliners, Falcon 9 is designed to handle an engine out situation and still complete its mission. No other rocket currently flying has this ability.

It is worth noting that Falcon 9 shuts down two of its engines to limit acceleration to 5 g’s even on a fully nominal flight. The rocket could therefore have lost another engine and still completed its mission.

We will continue to review all flight data in order to understand the cause of the anomaly, and will devote the resources necessary to identify the problem and apply those lessons to future flights. We will provide additional information as it becomes available.

In their initial press release following the launch SpaceX had originally described the performance of Falcon 9 as nominal “during every phase of its approach to orbit.”

During the press briefing following the launch SpaceX President Gwynne Shotwell replied to a question about the flash and said “I do know we had an anomaly on Engine 1, but I have no data on it. But Falcon 9 was designed to lose engines and still make mission, so it did what it was supposed to do. If you do end up with issues, you burn longer to end up where you need to go.”

SpaceX’s website also mentions this capability, saying, “”This vehicle will be capable of sustaining an engine failure at any point in flight and still successfully completing its mission. This actually results in an even higher level of reliability than a single engine stage.”

Dragon made it to orbit about 30 seconds later than originally planned, but Shotwell said it made it into the correct orbit, “within two or three kilometers in both apogee and perigee and Dragon is now on its way to Station.” The anomaly happened right at the time of Max-Q, just as the vehicle went supersonic.

The Space Shuttle was also designed to make it into orbit even if one of its three engines failed – after a certain point in the flight – and did so at least once to this reporter’s knowledge, on STS-51-F which resulted in an Abort To Orbit trajectory, where the shuttle achieved a lower-than-planned orbital altitude.

This was the first time SpaceX made lift-off at their originally planned “T-0” launch time, Shotwell noted. And they also deployed a tag-along, secondary payload in addition to the Dragon capsule, a prototype commercial communications satellite for New Jersey-based Orbcomm Inc. However, A report by Jonathan McDowell indicates the Orbcomm satellite is being tracked in low orbit instead of its elliptical target orbit because the Falcon 9 upper stage failed its second burn. (More info here from Jonathan’s Space Report).

SpaceX will undoubtedly review the anomaly, and we’ll provide more information about it when available.

SpaceX Launches to the International Space Station. Credit: NASA

Liftoff! SpaceX Launches First Official Commercial Resupply Mission to ISS

The launch of SpaceX’s Falcon 9 rocket sending the Dragon capsule to orbit. Credit: KSC Twitter Feed

SpaceX has successfully launched the first official Cargo Resupply Services (CRS) mission to the International Space Station. The commercial company’s Falcon 9 rumbled rocket to life at 8:35 EDT on Oct 7 (00:35 UTC Oct. 8) in a picture perfect launch, sending the Dragon capsule on its way in the first of a dozen operational missions to deliver supplies to the orbiting laboratory. The launch took place at Launch Complex 40 at Cape Canaveral Air Force Station in Florida, just a few miles south of the space shuttle launch pads.

“This was a critical event for NASA and the nation tonight,” said NASA Administrator Charlie Bolden after the launch. “We are once again launching spacecraft from American soil with supplies that the ISS astronauts need.”

Watch the launch video below:

All the major milestones of the launch ticked off in perfect timing and execution, and the Dragon capsule is now in orbit with its solar arrays deployed. The Dragon capsule separated from the Falcon 9 about 10 minutes and 24 seconds after liftoff. Dragon should arrive at the ISS on Oct. 10 and the crew will begin berthing operations after everything checks out.

All three members of the current ISS crew were able to watch the launch live via a NASA uplink to the ISS, and Commander Suni Williams passed on her congratulations to the SpaceX team, saying “We are ready to grab Dragon!”

Williams and astronaut Akihiko Hoshide will use the CanadArm 2 to grapple the Dragon capsule around 7:22 a.m. EDT (11:22 UTC) Wednesday, moving it to a berthing at the Earth-facing port of the forward Harmony module.

Even though SpaceX sent the Dragon to the ISS in May, that was considered a demonstration flight and this flight is considered the first operational mission.

“No question, we are very excited,” said SpaceX President Gwynne Shotwell just before the launch. “Everyone was very excited in May and we are very much looking forward to moving forward with the operational missions.”

Dragon is carrying approximately 450 kg (1,000 pounds) of supplies, including food, water, scientific experiments and Space Station parts. There are also 23 student experiments from the Student Spaceflight Experiments Program (SSEP) involving 7,420 pre-college students engaged in formal microgravity experiment design, according to SSEP director Dr. Jeff Goldstein.

SpaceX and NASA revealed this weekend a special treat is on board a new freezer called GLACIER (General Laboratory Active Cryogenic ISS Experiment Refrigerator): Blue Bell ice cream, a brand that is a favorite of astronauts training at the Johnson Space Center in Houston. The freezer will be used to return frozen science experiments to Earth.

In the next three days, Dragon will perform systems checks, and start a series of Draco thruster firings to reach the International Space Station.

Dragon will return a total of 750 kg (1,673 pounds) of supplies and hardware to the ground. NASA says Dragon’s capability to return cargo from the station “is critical for supporting scientific research in the orbiting laboratory’s unique microgravity environment, which enables important benefits for humanity and vastly increases understanding of how humans can safely work, live and thrive in space for long periods. The ability to return frozen samples is a first for this flight and will be tremendously beneficial to the station’s research community. Not since the space shuttle have NASA and its international partners been able to return considerable amounts of research and samples for analysis.”

Dragon is currently scheduled to return to Earth at the end of the month, splashing down in the Pacific Ocean on October 29.

1000 SpaceX employees watch Falcon 9 and Dragon launch, at the Hawthorne, California headquarter. Credit: SpaceX

Taking a cue from the Mars Science Laboratory “Mohawk Guy” this SpaceX employee watching from Hawthorne sports a blue mohawk with a SpaceX logo shaved on her head. Credit: SpaceX.

Here’s a shorter video version of the launch from SpaceX:

Year-Long Missions Could Be Added to Space Station Manifest

The International Space Station. Credit: NASA

UPDATE (10/5/12): It’s now official. NASA announced today that the international partners have announced an agreement to send two crew members to the International Space Station on a one-year mission designed to collect valuable scientific data needed to send humans to new destinations in the solar system.

The crew members, one American astronaut and one Russian cosmonaut, will launch and land in a Russian Soyuz spacecraft and are scheduled to begin their voyage in spring 2015. (end of update)

Special crews on board the International Space Station will stay in space for year-long missions instead of the usual six-month expeditions, according to a report by the Russian news agency Ria Novosti.

“The principal decision has been made and we just have to coordinate the formalities,” Alexei Krasnov, the head of Roscosmos human space missions was quoted, saying that the international partners agreed to add the longer-duration missions at the International Astronautical Congress in Italy this week.

This confirms rumors from earlier this year, and pushes ahead the aspirations of Roscosmos to add longer missions to the ISS manifest.

The first yearlong mission will be “experimental” and could happen as early as 2015.

“Two members of the international crew, a Russian cosmonaut and a NASA astronaut will be picked to carry out this yearlong mission,” Krasnov said, adding that planning for the missions has already been underway.

“If the mission proves to be effective, we will discuss sending year-long missions to ISS on a permanent basis,” he said.

For years, the Russian Space Agency indicated that they wanted to do some extra-long-duration mission tests on the ISS, much like the Mars 500 mission that was done by ESA and Russia in 2010–2011 which took place on Earth and only simulated a 500-day mission to Mars.

Since NASA’s long-term plans now include human missions to Mars or asteroids, in April of this year, Universe Today asked NASA’s associate administrator for the Science Mission Directorate, John Grunsfeld about the possibility of adding longer ISS missions in order to test out – in space — the physiological and psychological demands of a human Mars mission. At that time, Grunsfeld indicated longer missions wouldn’t be necessary to do such tests.

“A 500-day mission would have a six-month cruise to Mars and a six-month cruise back,” he said. “When we send a crew up to the ISS on the Soyuz, they spend six months in weightlessness and so we are already mimicking that experiment today.”

However, a year-long mission on the ISS certainly would provide a better rubric to test the longer-term effects of spaceflight and time away from Earth.

This, of course, won’t be the first year-long missions in space. Russian cosmonaut Valery Polyakov spent over 437 consecutive days in space on the Mir Space Station, from January 1994 to March 1995.

For the Mars 500 mission, six volunteers from Russia, Europe and China spent 520 days inside a capsule set up at a research institute in Moscow.

Sources: Ria Novosti, MSNBC

ESA’s Big Cargo Ship Departs from the Space Station

The view when ATV-3 approached the ISS in 2012. Credit: NASA.

After a three-day delay, the European Space Agency’s “Edoardo Amaldi” Automated Transfer Vehicle (ATV-3) undocked from the aft port of the International Space Station’s Zvezda service module at 21:44 UTC (5:44 p.m. EDT) on Friday.

Tuesday’s initial attempt to undock the European cargo ship was called off due to a communications error between the Zvezda module’s proximity communications equipment and computers on the ATV. Russian flight controllers resolved the problem, but then an additional delay occurred because of the possibility of two pieces of space debris coming close to the ISS, and the ATV would have been used to perform an avoidance maneuver; however, it was later deemed the debris posed no threat.

Image of the ATV-3 when it reached the International Space Station on March 28, 2012. Credit: NASA TV

Expedition 33 Flight Engineers Yuri Malenchenko and Aki Hoshide, who together closed up the hatches to ATV-3 Monday, monitored its automated departure from a control panel inside Zvezda. Meanwhile, Commander Suni Williams photographed the departing space freighter to document the condition of its docking assembly.

ATV-3, now filled with trash and unneeded items, backed away to a safe distance from the orbiting complex after undocking. Once it reaches distance about 4,500 miles in front of the station, the European cargo craft will fire its engines twice on Tuesday, Oct. 2, to send it into the Earth’s atmosphere for a planned destructive re-entry that evening. As the ATV-3 plunges back to the Earth, the Re-Entry Breakup Recorder that Hoshide installed inside the vehicle will collect and transmit engineering data to enhance the efficiency of spacecraft designs and minimize the hazards to people and property on the ground even in the case of an uncontrolled re-entry for future cargo ships.

“Edoardo Amaldi,” named for the 20th-century Italian physicist regarded as one of the fathers of European spaceflight, delivered 7.2 tons of food, fuel and supplies to the orbiting complex after docking to the station March 28. The fourth ATV, named “Albert Einstein,” is slated to launch in April 2013. More than 32 feet long — about the size of a traditional London double-decker bus – the ATV is the largest and heaviest vehicle that provides cargo resupply for the station.

Space Debris Threat May Require Avoidance Maneuver for Space Station

The International Space Station. Credit: NASA

UPDATE (9/27/2012, 13:00 UTC) NASA now says that with additional tracking, they have determined the two pieces of space debris do not pose a threat to the ISS, and a debris avoidance maneuver scheduled for Thursday morning was cancelled by the flight control team at Mission Control. The ATV undocking time on Friday is still being decided at the time of this posting. See additional info at NASA’s website. (End of update)

International Space Station officials are keeping a watchful eye on two different pieces of space junk that may require the ISS to steer away from potential impact threats. Debris from the Russian COSMOS satellite and a fragment of a rocket from India may come close enough to the space station to require a debris avoidance maneuver. If needed, the maneuver would be done using the ESA’s Automated Transfer Vehicle (ATV) “Edoardo Amadi.” The ATV was supposed to undock last night, but a communications glitch forced engineers to call off the departure.

Both pieces of debris are edging just inside the so-called “red zone” of miss distance to the station with a time of closest approach calculated to occur Thursday at 14:42 UTC (10:42 a.m. Eastern time.) It is not known how large the object is.

An approach of debris is considered close only when it enters an imaginary “pizza box” shaped region around the station, measuring 1.5 x 50 x 50 kilometers (about a mile deep by 30 miles across by 30 miles long) with the vehicle in the center.

NASA says the three-person Expedition 33 crew is in no danger and continues its work on scientific research and routine maintenance. The current crew includes NASA astronaut Sunita Williams, Japanese astronaut Akihiko Hoshide and Russian cosmonaut Yuri Malenchenko.

If the maneuver is required – and NASA said it could be called off any time — it would occur at 12:12 UTC (8:12 a.m. EDT) Thursday, using the engines on the ATV, which remains docked to the aft port of the Zvezda Service Module. It usually takes about 30 hours to plan for and verify the need for an avoidance maneuver.

Debris avoidance maneuvers are conducted when the probability of collision is greater than 1 in 100,000, if it will not result in significant impact to mission objectives. If it is greater than 1 in 10,000, a maneuver will be conducted unless it will result in additional risk to the crew.

Only three times during the nearly 12 years of continual human presence on the ISS has a collision threat been so great that the crew has taken shelter in the Soyuz vehicles. (Those events occured on March 12, 2009, June 28, 2011 and March 24, 2012.) During those events, the station was not impacted. While the ISS likely receives small micrometeoroid hits frequently (based on experiments left outside the ISS and visual inspections of the station’s hull) no large debris impacts have occurred that have caused depressurization or other problems on the ISS.

Tuesday’s initial attempt to undock the ATV was called off due to a communications error between the Zvezda module’s proximity communications equipment and computers on the ATV. Russian engineers told mission managers that they fully understand the nature of the error and are prepared to proceed to a second undocking attempt, which has been postponed to Friday at the earliest, due to the potential space debris threat.

Once it is undocked, the ATV will move to a safe distance away from the station for a pair of engine firings that will send the cargo ship back into the Earth’s atmosphere to burn up over the Pacific Ocean.

The ATV still has extra fuel on board, and so the decision was made that if need, that available resource would be used.

Here’s the info on NASA’s criteria for performing debris avoidance maneuvers.

Source: NASA

*this article has been updated

Next SpaceX Launch to ISS Set for October 7

SpaceX’s Falcon 9 rocket with a Dragon spacecraft is rolled out to the company’s launch pad in Cape Canaveral, Florida.
Credit: SpaceX

There will be more Dragons in space! The SpaceX Dragon’s next launch to the International Space Station has been scheduled for Sunday, October 7, 2012, NASA and SpaceX announced today. This will be the first of 12 contracted flights by SpaceX to resupply the space station and marks the second trip by a Dragon to the station, following a successful demonstration mission in May.

NASA said they have confirmed the status and readiness of the Falcon 9 rocket and its Dragon cargo spacecraft for the SpaceX CRS-1 mission, as well as the space station’s readiness to receive Dragon.

Dragon will be filled with about 450 kg (1,000 pounds) of supplies. This includes materials to support the 166 investigations planned for the station’s Expedition 33 crew, including 63 new science investigations. The Dragon will return about 330 kg (734 lbs) of scientific materials, including results from human research, biotechnology, materials and educational experiments, as well as about 230 kg (504 lbs) of space station hardware.

Materials being launched on Dragon will support experiments in plant cell biology, human biotechnology and various materials technology demonstrations, among others. One experiment, called Micro 6, will examine the effects of microgravity on the opportunistic yeast Candida albicans, which is present on all humans. Another experiment, called Resist Tubule, will evaluate how microgravity affects the growth of cell walls in a plant called Arabidopsis. About 50 percent of the energy expended by terrestrial-bound plants is dedicated to structural support to overcome gravity. Understanding how the genes that control this energy expenditure operate in microgravity could have implications for future genetically modified plants and food supply. Both Micro 6 and Resist Tubule will return with the Dragon at the end of its mission.

Expedition 33 Commander Sunita Williams of NASA and Aki Hoshide of the Japan Aerospace Exploration Agency will use the CanadArm2 to grapple the Dragon following its rendezvous with the station on Wednesday, Oct. 10. They will attach the Dragon to the Earth-facing port of the station’s Harmony module for a few weeks while crew members unload cargo and load experiment samples for return to Earth.

Dragon is scheduled to return in late October, and splash down via parachute in the Pacific Ocean off the coast of southern California.

Expedition 32 Lands Safely in Kazakhstan

Welcome home to Gennady Padalka, Joe Acaba and Sergei Revin! The trio landed safely in Kazakhstan at 02:54 UTC on Monday, September 17 (8:53 a.m. Kazakhstan time Monday, 10:53 p.m. EDT Sunday, September 16). Expedition 32 officially ended when Soyuz TMA-04M the trio undocked at 23:09 UTC Sunday from the Poisk module. The had been on the International Space Station since May 17, spending a total of 123 days on the orbital laboratory.

The Soyuz TMA-04M spacecraft is seen as it lands with the Expedition 32 crew. Credit: NASA/Carla Cioffi

Expedition 33 is now underway as Commander Suni Williams and Flight Engineers Aki Hoshide and Yuri Malenchenko continue their stay until Nov. 12

Padalka ceremonially handed the controls of the station over to Williams on Saturday afternoon. He previously commanded two International Space Station missions including Expeditions 9 and 19. His first spaceflight was aboard the Russian Mir space station in 1998 bringing his total spaceflight experience to 711 days.

Here’s the undocking video:

Williams is serving her second mission in space, her first being Expedition 14 as flight engineer. She has conducted six spacewalks, four during Expedition 14 and two on Expedition 32, for a total of 44 hours and two minutes.

A new crew is set to join Expedition 33 when Flight Engineers Kevin Ford, Oleg Novitskiy and Evgeny Tarelkin launch Oct. 15 aboard the Soyuz TMA-06M spacecraft for an Oct. 17 docking to Poisk. Ford will command Expedition 34 when Williams, Hoshide and Malenchenko complete their mission.

More landing images can be seen at NASA’s Flickr page.

On the Hunt for High-Speed Sprites

Air glow (along with a lightning sprite) is visible in this image from the International Space Station. Credit: NASA

A bright red sprite appears above a lightning flash in a photo captured from the ISS

Back on April 30, Expedition 31 astronauts aboard the ISS captured this photo of a red sprite hovering above a bright flash of lightning over Myanmar. Elusive atmospheric phenomena, sprites are extremely brief bursts of electromagnetic activity that are associated with powerful lightning discharges, but exactly how and why they form isn’t yet known — although recent research (along with some incredible high-speed video) is shedding new light on sprites.

Although the appearance of bright high-altitude flashes above thunderstorms have been reported by pilots for nearly a century, it wasn’t until 1989 that a sprite was captured on camera — and the first color image of one wasn’t taken until 1994.

So-named because of their elusive nature, sprites appear as several clusters of red tendrils above a lighting flash followed by a breakup into smaller streaks, often extending as high as 55 miles (90 km) into the atmosphere. The brightest region of a sprite is typically seen at altitudes of 40-45 miles (65-75 km).

Because they occur above storms, only last for a thousandth of a second and emit light in the red portion of the visible spectrum (to which our eyes are the least sensitive) studying sprites has been notoriously difficult for atmospheric scientists. Space Station residents may get great views but they have lots of other things to do in the course of their day besides sprite hunting! Luckily, a team of scientists were able to capture some unprecedented videos of sprites from airplanes in the summer of 2011, using high-speed cameras and help from Japan’s NHK television.

Chasing storms over Denver via plane for two weeks, researchers were able to locate “hot zones” of sprites and capture them on camera from two planes flying 12 miles apart. Combining their videos with ground-based measurements they were able to create 3-dimensional maps of the formation and evolution of individual sprites.

Based on the latest research, it’s suggested that sprites form as a result of a positive electrical charge within a lightning strike that reaches the ground, which leaves the top of the cloud negatively charged — a one-in-ten chance that then makes conditions above the cloud “just right” for a sprite to form higher in the atmosphere.

“Seeing these are spectacular,” said Hans C. Stenbaek-Nielsen, a geophysicist at the University of Alaska in Fairbanks, Alaska, where much sprite research has been conducted. “But we need the movies, because not only are they so fast that you could blink and miss them, but they emit most of their light in red, where the human eye is relatively blind.”

An example of how energy can be exchanged between lower and higher regions of Earth’s atmosphere, it’s been suggested that sprites could also be found on other planets as well, and may provide insight into the exotic chemistries of alien atmospheres.

Read more on NASA Heliophysics here.

Main image: Image Science & Analysis Laboratory, NASA Johnson Space Center. Inset image: the first color image of a sprite  (NASA/UAF.) Video: NHK.