Meet SpaceX’s New Manned Dragon: Cool Animation Shows ‘How It Works’

Meet Dragon V2 - SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX's new astronaut transporter for NASA. Credit: SpaceX


Caption: Animation of SpaceX Dragon V2 astronaut transporter. Credit: SpaceX

Would you like to meet and fly aboard SpaceX’s next generation manned Dragon V2 spacecraft?

Well hop aboard for a ride, take a seat and prepare for the thrill of a lifetime to the International Space Station (ISS) and back.

Watch the cool animation above to see exactly ‘How it Works!’

Now you can experience the opening salvo in the exciting new chapter of ‘Commercial Human Spaceflight.’

The commercial crew effort is led by a trio of private American aerospace company’s (SpaceX, Boeing & Sierra Nevada) in an intimate partnership with NASA to get American’s back in space on American rockets from American Soil – rather than being totally dependent on Russian rocket technology and Soyuz capsules for astronaut rides to orbit.

“We need to have our own capability to get our crews to space. Commercial crew is really, really, really important,” NASA Administrator Charles Bolden told me in an exclusive interview.

Billionaire entrepreneur and SpaceX CEO Elon Musk let the curtain to the future drop on Thursday, May 29 to reveal his company’s new manned Dragon V2 astronaut transporter for all the world to see during a live streaming webcast direct from SpaceX’s state-of-the-art design and manufacturing facility and Headquarters in Hawthorne, CA.

And with a flair worthy of the premiere of a blockbuster Hollywood Science Fiction movie he unveiled the gum-dropped shaped Dragon V2 – and the lively animation. Although its not known if he’ll provide the crews with musical entertainment during the trip too.

As you’ll quickly notice watching the animation, the sleek styled V2 manned Dragon is a far cry ahead of the current V1 cargo Dragon.

“We wanted to take a big step in spacecraft technology. It is a big leap forward in technology and takes things to the next level,” said Musk.

The top of the V2 is equipped to open up and expose a docking probe so it’s able to dock autonomously at the ISS – and at the same port as NASA’s now retired space shuttle orbiters.

‘Catching a Dragon by the tail’- with the Canadian built robot arm as the stations astronauts like to say and berthing it at an Earth-facing port on the Harmony module, will be a thing of the past.

“No robotic arm necessary!” Musk explained.

SpaceX Dragon V2 docks at the ISS. Credit: SpaceX
SpaceX Dragon V2 docks at the ISS. Credit: SpaceX

And for departure there’s another big difference – powerful SuperDraco landing rockets for pinpoint touchdown accuracy rather than an ocean splashdown.

The animation shows a thrilling land landing back at the Kennedy Space Center launch base.

“An important characteristic of that is its ability to land anywhere on land, propulsively. It can land anywhere on Earth with the accuracy of a helicopter,” Musk said.

“I think that’s what a spaceship should be able to do.”

Musk and SpaceX are not alone aiming to get Americans back to space.

Boeing and Sierra Nevada are competing with SpaceX to build the next generation spaceship to ferry astronauts to and from the ISS by 2017 using seed money from NASA’s Commercial Crew Program in a public/private partnership.

The Boeing CST-100 and Sierra Nevada Dream Chaser ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around late summer 2014.

Read my earlier “Dragon V2” unveiling event articles – here, here and here.

Enjoy!

SpaceX CEO Elon Musk unveils SpaceX Dragon V2 next generation astronaut spacecraft on May 29, 2014.  Credit:  Robert Fisher/America Space
SpaceX CEO Elon Musk unveils SpaceX Dragon V2 next generation astronaut spacecraft on May 29, 2014. Credit: Robert Fisher/America Space

Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

Watch Live Here – SpaceX Founder Elon Musk Unveils Manned “Dragon V2” Spaceship on May 29

SpaceX Dragon cargo freighter berthed to the International Space Station during recently concluded SpaceX-3 mission in May 2014. An upgraded, manrated version will carry US astronauts to space in the next two to three years. Credit: NASA



SpaceX
is hosting a worldwide live premiere event tonight, May 29, unmasking the veil from the company’s commercial “Dragon V2” manned spaceship, the next step in US human spaceflight at 7 p.m. PST (10 p.m. EST, 0200 GMT).

And none other than billionaire entrepreneur Elon Musk, SpaceX CEO and founder, will be the master of ceremonies for the live show direct from SpaceX’s state-of-the-art design and manufacturing facility and Headquarters in Hawthorne, CA!

You can watch LIVE here – via the embedded player above.

Alternatively you can watch courtesy of a streaming webcast courtesy of SpaceX at: www.spacex.com/webcast

Read my “Dragon V2” or “Dragon Version 2” preview story – here.

Musk’s (and NASA’s) goal is to restore America’s capability to launch US astronauts to low Earth orbit and the International Space Station (ISS) by 2017 and to put an end total US dependency on Russia’s Soyuz for astronaut rides to orbit and back.

“SpaceX’s new Dragon V2 spacecraft is a next generation spacecraft designed to carry astronauts into space,” says SpaceX.

“Cover drops on May 29. Actual flight design hardware of crew Dragon, not a mockup,” Musk tweeted recently to build anticipation.

A SpaceX Falcon 9 rocket with Dragon cargo capsule bound for the ISS launched from Space Launch Complex 40 at Cape Canaveral, FL.   File photo.  Credit: Ken Kremer/kenkremer.com
A SpaceX Falcon 9 rocket with Dragon cargo capsule bound for the ISS launched from Space Launch Complex 40 at Cape Canaveral, FL. File photo. Credit: Ken Kremer/kenkremer.com

Dragon is among a trio of US private sector manned spaceships being developed with seed money from NASA’s Commercial Crew Program in a public/private partnership to develop a next-generation crew transportation vehicle to ferry astronauts to and from the ISS by 2017 – a capability totally lost following the space shuttle’s forced retirement in 2011.

The Boeing CST-100 and Sierra Nevada Dream Chaser ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around late summer 2014.

The gumdrop-shaped ‘Dragon V2’ is an upgraded, man rated version of the unmanned Dragon spaceship that will carry a mix of cargo and up to a seven crewmembers to the International Space Station (ISS).

The cargo Dragon just successfully completed its third operational resupply mission to the ISS with a successful splashdown in the Pacific Ocean on May 18.

Dragon V2 – SpaceX’s next generation spacecraft designed to carry astronauts to space.  Credit: SpaceX
Dragon V2 – SpaceX’s next generation spacecraft designed to carry astronauts to space. Credit: SpaceX

Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

SpaceX founder and CEO Elon Musk briefs reporters including Ken Kremer/Universe Today in Cocoa Beach, FL prior to SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite on Dec 3, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk briefs reporters including ken Kremer/Universe Today in Cocoa Beach, FL prior to SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite on Dec 3, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

spaceX May 29 event

SpaceX CEO Elon Musk to Unveil Manned Dragon ‘Space Taxi’ on May 29

SpaceX Dragon cargo freighter berthed to the International Space Station during recently concluded SpaceX-3 mission in May 2014. An upgraded, manrated version will carry US astronauts to space in the next two to three years. Credit: NASA

SpaceX Dragon cargo freighter berthed to the International Space Station during recently concluded SpaceX-3 mission in May 2014. An upgraded, manrated version will carry US astronauts to space in the next two to three years. Credit: NASA
Story updated[/caption]

SpaceX CEO, founder and chief designer Elon Musk is set to unveil the manned version of his firms commercial Dragon spaceship later this week, setting in motion an effort that he hopes will soon restore America’s capability to launch US astronauts to low Earth orbit and the International Space Station (ISS) by 2017.

Musk will personally introduce SpaceX’s ‘Space Taxi’ dubbed ‘Dragon V2’ at what amounts to sort of a world premiere event on May 29 at the company’s headquarters in Hawthorne, CA, according to an official announcement this evening (May 27) from SpaceX.

“SpaceX’s new Dragon V2 spacecraft is a next generation spacecraft designed to carry astronauts into space,” according to the SpaceX statement.

The manned Dragon will launch atop the powerful SpaceX Falcon 9 v1.1 rocket from a SpaceX pad on the Florida Space Coast.

Dragon was initially developed as a commercial unmanned resupply freighter to deliver 20,000 kg (44,000 pounds) of supplies and science experiments to the ISS under a $1.6 Billion Commercial Resupply Services (CRS) contract with NASA during a dozen Dragon cargo spacecraft flights through 2016.

Musk is making good on a recent comment he posted to twitter on April 29, with respect to the continuing fallout from the deadly crisis in Ukraine which has resulted in some US economic sanctions imposed against Russia, that now potentially threaten US access to the ISS in a boomerang action from the Russian government:

“Sounds like this might be a good time to unveil the new Dragon Mk 2 spaceship that @SpaceX has been working on with @NASA. No trampoline needed,” Musk tweeted.

“Cover drops on May 29. Actual flight design hardware of crew Dragon, not a mockup,” Musk added.

The ‘Dragon V2’ is an upgraded, man rated version of the unmanned spaceship that can carry a mix of cargo and up to a seven crewmembers to the ISS.

NASA astronauts and industry experts check out the crew accommodations in the Dragon spacecraft under development by SpaceX. The evaluation in Hawthorne, Calif., on Jan. 30, 2012, was part of SpaceX's Commercial Crew Development Round 2 agreement with NASA's Commercial Crew Program. Credit: NASA
NASA astronauts and industry experts check out the crew accommodations in the Dragon spacecraft under development by SpaceX. The evaluation in Hawthorne, Calif., on Jan. 30, 2012, was part of SpaceX’s Commercial Crew Development Round 2 agreement with NASA’s Commercial Crew Program. Credit: NASA

Dragon is among a trio of US private sector manned spaceships being developed with seed money from NASA’s Commercial Crew Program in a public/private partnership to develop a next-generation crew transportation vehicle to ferry astronauts to and from the ISS by 2017 – a capability totally lost following the space shuttle’s forced retirement in 2011.

Since that day, US astronauts have been totally dependent on the Russian Soyuz capsules for ferry rides to orbit and back.

The Boeing CST-100 and Sierra Nevada Dream Chaser ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around late summer 2014.

All three company’s have been making excellent progress in meeting their NASA mandated milestones in the current contract period known as Commercial Crew Integrated Capability initiative (CCiCAP) under the auspices of NASA’s Commercial Crew Program.

However, US progress getting the space taxis actually built and flying has been repeatedly stifled by the US Congress who have severely cut NASA’s budget request for the Commercial Crew Program by about half each year. Thus forcing NASA to delay the first manned orbital test flights by at least 18 months from 2015 to 2017.

The situation with regard to US dependency on Russian rocketry to reach the ISS has always been awkward.

But it finally took on new found importance and urgency from politicos in Washington, DC, since the ongoing crisis in Ukraine this year exposed US vulnerability in a wide range of space endeavors affecting not just astronaut rides to the ISS but also the launch of the most critical US national security surveillance satellites essential to US defense.

US space vulnerability became obvious to everyone when Russia’s deputy prime minister, Dmitry Rogozin. who is in charge of space and defense industries, said that US sanctions could “boomerang” against the US space program and that perhaps NASA should “deliver their astronauts to the International Space Station using a trampoline.”

A SpaceX Falcon 9 rocket with Dragon cargo capsule bound for the ISS launched from Space Launch Complex 40 at Cape Canaveral, FL.   File photo.  Credit: Ken Kremer/kenkremer.com
A SpaceX Falcon 9 rocket with Dragon cargo capsule bound for the ISS launched from Space Launch Complex 40 at Cape Canaveral, FL. File photo. Credit: Ken Kremer/kenkremer.com

Rogozin also threatened to cut off exports of the Russian made RD-180 rocket engines which power the first stage of the United Launch Alliance (ULA) Atlas V rocket used to launch numerous US National Security spy satellites.

“Moscow is banning Washington from using Russian-made rocket engines, which the US has used to deliver its military satellites into orbit,” Rogozin said at a media briefing held on May 13.

NASA is also a hefty user of the Atlas V for many of the agency’s science and communication satellites like the Curiosity Mars rover, MAVEN Mars orbiter, MMS, Juno Jupiter orbiter and TDRS.

Musk and SpaceX have also filed lawsuits against the US Air Force to legally block the importation of the RD-180 engines by ULA for the Atlas V as a violation of the US economic sanctions.

So overall, US space policy is in a murky and uncertain situation and Musk clearly aims for SpaceX to be a central and significant player in a wide range of US space activities, both manned and unmanned.

Read my earlier articles about the Atlas V controversy, Rogozin’s statements, Musk’s suit and more about the effects of economic sanctions imposed by the US and Western nations in response to Russia’s actions in Ukraine and the annexation of Crimea; here, here, here, here and here.

SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite on Dec 3, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite on Dec 3, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

The 3rd operational Dragon cargo resupply mission completed the 30 day SpaceX-3 flight to the ISS with a successful Pacific Ocean splashdown on May 18.

SpaceX will webcast the Dragon unveiling event LIVE on May 29 at 7 p.m. PST for anyone wishing to watch at: www.spacex.com/webcast

Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 rocket successfully launched the SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket successfully launched the SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

Next SpaceX Falcon 9 Rocket Gets Landing Legs for March Blastoff to Space Station – Says Elon Musk

1st stage of SpaceX Falcon 9 rocket equipped with landing legs and now scheduled for launch to the International Space Station on March 16, 2014 from Cape Canaveral, FL. Credit: SpaceX/Elon Musk

1st stage of SpaceX Falcon 9 rocket newly equipped with landing legs and now scheduled for launch to the International Space Station on March 16, 2014 from Cape Canaveral, FL. Credit: SpaceX/Elon Musk
Story updated[/caption]

The next commercial SpaceX Falcon 9 rocket that’s set to launch in March carrying an unmanned Dragon cargo vessel will also be equipped with a quartet of landing legs in a key test that will one day lead to cheaper, reusable boosters, announced Elon Musk, the company’s founder and CEO.

The attachment of landing legs to the first stage of SpaceX’s new and more powerful, next-generation Falcon 9 rocket counts as a major step towards the firm’s eventual goal of building a fully reusable rocket.

Before attempting the use of landing legs “SpaceX needed to gain more confidence” in the new Falcon 9 rocket, Musk told me in an earlier interview.

Blastoff of the upgraded Falcon 9 on the Dragon CRS-3 flight is currently slated for March 16 from Cape Canaveral Air Force Station, Florida on a resupply mission to bring vital supplies to the International Space Station (ISS) in low Earth orbit for NASA.

“Mounting landing legs (~60 ft span) to Falcon 9 for next month’s Space Station servicing flight,” Musk tweeted, along with the up close photos above and below.

All four landing legs now mounted on Falcon 9 rocket being processed inside hanger at Cape Canaveral, FL for Mar 16 launch.  Credit: SpaceX/Elon Musk
All four landing legs now mounted on Falcon 9 rocket being processed inside hanger at Cape Canaveral, FL for March 16 launch. Credit: SpaceX/Elon Musk

“SpaceX believes a fully and rapidly reusable rocket is the pivotal breakthrough needed to substantially reduce the cost of space access,” according to the firm’s website.

SpaceX hopes to vastly reduce their already low $54 million launch cost when a reusable version of the Falcon 9 becomes feasible.

Although this Falcon 9 will be sprouting legs, a controlled soft landing in the Atlantic Ocean guided by SpaceX engineers is still planned for this trip.

“However, F9 will continue to land in the ocean until we prove precision control from hypersonic thru subsonic regimes,” Musk quickly added in a follow-up twitter message.

In a prior interview, I asked Elon Musk when a Falcon 9 flyback would be attempted?

“It will be on one of the upcoming missions to follow [the SES-8 launch],” Musk told me.

“What we need to do is gain more confidence on the three sigma dispersion of the mission performance of the rocket related to parameters such as thrust, specific impulse, steering loss and a whole bunch of other parameters that can impact the mission.”

“If all of those parameters combine in a negative way then you can fall short of the mission performance,” Musk explained to Universe Today.

When the upgraded Falcon 9 performed flawlessly for the SES-8 satellite launch on Dec 3, 2013 and the Thaicom-6 launch on Jan. 6, 2014, the path became clear to attempt the use of landing legs on this upcoming CRS-3 launch this March.

Atmospheric reentry engineering data was gathered during those last two Falcon 9 launches to feed into SpaceX’s future launch planning, Musk said.

That new data collected on the booster stage has now enabled the approval for landing leg utilization in this March 16 flight.

SpaceX engineers will continue to develop and refine the technology needed to accomplish a successful touchdown by the landing legs on solid ground back at the Cape in Florida.

Extensive work and testing remains before a land landing will be attempted by the company.

Ocean recovery teams will retrieve the 1st stage and haul it back to port much like the Space Shuttle’s pair of Solid Rocket Boosters.

This will be the second attempt at a water soft landing with the upgraded Falcon 9 booster.

SpaceX founder and CEO Elon Musk briefs reporters including Universe Today on Sunday (Nov. 24) in Cocoa Beach, FL prior to planned SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite set for Nov. 25, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to December 2013 SpaceX upgraded Falcon 9 rocket blastoff with SES-8 communications satellite from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

The two stage Falcon 9 rocket and Dragon cargo carrier are currently in the final stages of processing by SpaceX technicians for the planned March 16 night time liftoff from Space Launch Complex 40 at 4:41 a.m. that will turn night into day along the Florida Space Coast.

“All four landing legs now mounted on Falcon 9,” Musk tweeted today, Feb. 25.

SpaceX has carried out extensive landing leg and free flight tests of ever increasing complexity and duration with the Grasshopper reusable pathfinding prototype.

SpaceX is under contract to NASA to deliver 20,000 kg (44,000) pounds of cargo to the ISS during a dozen Dragon cargo spacecraft flights over the next few years at a cost of about $1.6 Billion.

SpaceX Falcon 9 landing leg. Credit: SpaceX
SpaceX Falcon 9 landing leg. Credit: SpaceX

To date SpaceX has completed two cargo resupply missions. The last flight dubbed CRS-2 blasted off a year ago on March 1, 2013.

The Falcon 9 and Dragon were privately developed by SpaceX with seed money from NASA in a public-private partnership.

The goal was to restore the cargo up mass capability the US completely lost following the retirement of NASA’s space shuttle orbiters in 2011.

SpaceX along with Orbital Sciences Corp are both partnered with NASA’s Commercial Resupply Services program.

Orbital Sciences developed the competing Antares rocket and Cygnus cargo spacecraft.

This extra powerful new version of the Falcon 9 dubbed v1.1 is powered by a cluster of nine of SpaceX’s new Merlin 1D engines that are about 50% more powerful compared to the standard Merlin 1C engines. The nine Merlin 1D engines 1.3 million pounds of thrust at sea level rises to 1.5 million pounds as the rocket climbs to orbit.

The Merlin 1 D engines are arrayed in an octaweb layout for improved efficiency.

Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

Therefore the upgraded Falcon 9 can boost a much heavier cargo load to the ISS, low Earth orbit, geostationary orbit and beyond.

The next generation Falcon 9 is a monster. It measures 224 feet tall and is 12 feet in diameter. That compares to a 130 foot tall rocket for the original Falcon 9.

Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news – and upcoming launch coverage at Cape Canaveral & the Kennedy Space Center press site.

Ken Kremer

SpaceX CEO Elon Musk and Ken Kremer of Universe Today discuss Falcon 9/SES-8 launch by SpaceX Mission Control at Cape Canaveral Air Force Station. Florida.  Credit: Ken Kremer/kenkremer.com
SpaceX CEO Elon Musk and Ken Kremer of Universe Today discuss Falcon 9/SES-8 launch nearby SpaceX Mission Control at Cape Canaveral Air Force Station. Florida. Credit: Ken Kremer/kenkremer.com

‘Alien Spaceship’ looking Dragon set for Unveiling by SpaceX this Year!

Future Dragon spacecraft will one day touch down propulsively on the ground with ‘Alien looking’ landing legs instead of an ocean splashdown. Credit: SpaceX

Later this year SpaceX will unveil the design of a new and upgraded version of the firm’s Dragon spacecraft that will look like “an Alien spaceship,” said Elon Musk, the CEO and Chief Designer of SpaceX, at a NASA media teleconference on Thursday, March 28.

Musk announced the SpaceX plans at the briefing to mark the successful conclusion of the latest unmanned Dragon cargo carrying flight, known as CRS-2, to the International Space Station (ISS) earlier this week with a Pacific Ocean splashdown on Tuesday, March 26.

Dubbed ‘Dragon 2’, the futuristic capsule will eventually boast the ability to propulsively land on Earth’s surfaceperhaps back at the Kennedy Space Center – instead of splashing down in the Pacific Ocean beneath a trio of parachutes.

At the moment, imagery of ‘Dragon 2’ is SpaceX Top Secret ! I asked.

How is the ‘Dragon 2’ different from the current ‘cargo Dragon’?

“It’s going to be cool,” gushes Musk.

“There are side-mounted thruster pods and quite big windows for astronauts to see out,” SpaceX founder Musk explained. “There are also landing legs that pop out at the bottom. So It looks like a real alien spaceship.”

One day, Musk hopes that an advanced Dragon will ferry humans on an interplanetary journey to the alien surface of Mars. Perhaps the lucky astronauts will even visit our Curiosity.

SpaceX Grasshopper test flight successfully demonstrates touchdown on land as a prelude to future demonstration missions to recover Falcon 9 1st stages.  Credit: SpaceX
SpaceX Grasshopper test flight successfully demonstrates touchdown on land as a prelude to future demonstration missions to recover Falcon 9 1st stages. Credit: SpaceX

Dragon 2 will also enable a transition to maximize use of the capsule by significantly increasing the quantity of cargo hauled up to the ISS, Musk stated.

The SpaceX Dragon CRS-2 capsule blasted off on March 1 atop a SpaceX Falcon 9 rocket from Cape Canaveral Air Force Station in Florida. It docked at the orbiting lab complex on March 3 and remained attached for 3 weeks until departing and returning to Earth on March 26.

Launching more mass to orbit will be a boon for the science research capability of the ISS, said NASA’s ISS Program scientist Julie Robinson. “We have over 200 investigations active.”

“The SpaceX flights are so important to our use of the International Space Station,” said Robinson.

Falcon 9 rocket is the launcher for both the cargo and human-rated Dragon spacecraft. Credit: SpaceX
Falcon 9 rocket is the launcher for both the cargo and human-rated Dragon spacecraft. Credit: SpaceX

With three successful Dragon docking flights to the ISS now under his belt, Musk said his goal now is to ‘push the envelope’.

Whereas initially SpaceX’s goal was to minimize risk in order to fulfil SpaceX’s $1.6 Billion commercial contract with NASA to fly 20,000 kg of sorely needed science experiments, equipment, gear, food and supplies to the ISS with a dozen Dragon cargo capsules.

SpaceX, along with Orbital Sciences Corp, are both partnered with NASA’s Commercial Resupply Services program to replace the cargo up mass capability the US lost following the retirement of NASA’s space shuttle orbiters in 2011.

NASA Administrator Charles Bolden said at the telecom that the Orbital Sciences Antares rocket is on schedule for a test flight from NASA Wallops in Virginia slated for mid-April.

Antares will launch the unmanned Cygnus cargo spacecraft to the ISS. Read my launch site update and visit to Antares – here.

Simultaneously, SpaceX will also debut a more powerful version of the Dragon’s Falcon 9 launch vehicle later this year that eventually will be both recoverable and reusable – long the Holy Grail in space exploration.

The new Falcon 9 version 1.1 “will be a meaningful upgrade” said Musk. “It will have 60-70% greater thrust capability, greater redundancy and more engine to engine protection. It will be more robust.”

Falcon 9 v 1.1 will incorporate the significantly more powerful Merlin 1-D first stage engines that will increase the liftoff thrust to about 1.5 million pounds – and serve as the launch vehicle for ‘Dragon 2’.

Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS – shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.com
Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS – shot from the roof of the Vehicle Assembly Building. The Dragon capsule splashed down safely in the Pacific Ocean on March 26, 2013. Credit: Ken Kremer/www.kenkremer.com

SpaceX will also start testing the capability to recover the spent Falcon 9 first stage from the Atlantic Ocean. Thereafter SpaceX will eventually try and have the first stage fly itself back to the Cape Canaveral, Florida launch complex using the so called “Grasshopper’ version of the Falcon 9.

But Musk strongly advised that will take several test flights to demonstrate such recovery technologies.

“I really want to emphasize that we don’t expect success on the first several attempts,” Musk emphasized. “Hopefully next year, with a lot more experience and data, we should be able to return the first stage to the launch site, deploy the landing legs and do a propulsive landing on land back at the launch site.”

The overarching goal is to dramatically cut costs and increase efficiency to make space more accessible, especially in these ultra lean budget times.

SpaceX is also developing a manned version of the Dragon capsule and aims for the first crewed test flight perhaps in 2015 depending on NASA’s budget.

If all of Musk’s dreams work out, they could spark a revolutionary change in spaceflight and the exploration and exploitation of the High Frontier.

Ken Kremer

…………….

Learn more about SpaceX, Antares, Curiosity and NASA missions at Ken’s upcoming lecture presentations:

April 20/21 : “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus Orion, SpaceX, Antares, the Space Shuttle and more! NEAF Astronomy Forum, Suffern, NY

April 28: “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus the Space Shuttle, SpaceX, Antares, Orion and more. Washington Crossing State Park, Titusville, NJ, 130 PM

Feel the Power of a Mighty Falcon 9 Blast Off Creaming Cameras

Remote cameras set up for Falcon 9 SpaceX CRS-2 launch on March 1, 2013. Credit: Ken Kremer/www.kenkremer.com

Video: Launch of SpaceX Falcon 9 on CRS-2 mission on March 1, 2013 from Cape Canaveral, Florida. Credit: Jeff Seibert/Mike Barrett/Wired4Space.com

Have you ever wondered what it would be like to be standing at the base of a launch pad when a powerful rocket ignites for the heavens?

It’s a question I get from many kids and adults.

So check out the fabulous video from my friends Mike Barrett and Jeff Seibert- and feel the power of the mighty SpaceX Falcon 9 which just rocketed to space on March 1 from Space Launch Complex 40 on Cape Canaveral Air Force Station, Florida.

Mike and Jeff set up a series of video recorders distributed around the Falcon 9 Launch Pad – for a ‘You Are There’ experience.

Well although you’d enjoy the awesome view for a split second, the deafening sound and fury would certainly drive you mad, and then leave you dead or vegetabilized and wishing you were dead.

The cameras get creamed in seconds with mud, soot and ash.

How is this view possible?

Those of us media folks lucky enough to cover rocket launches, usually get to visit around the pad the night before to view the behemoths up close – after they are rolled out and unveiled for liftoff.

We also have the opportunity to set up what’s called “remote cameras” spaced around the pad that take exquisite images and videos from just dozens of yards (meters) away – instead of from ‘safe’ distance a few miles (km) away.

The cameras can be triggered by sound or timers to capture up close sounds and sights we humans can’t survive.

After a shaky start, the SpaceX Dragon cargo resupply capsule launched atop the Falcon 9 safely docked at the International Space Station on Sunday, March 3.

The SpaceX CRS-3 flight is slated to blast off sometime during Fall 2013

Maybe we’ll see you there !

Ken Kremer

Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS from Cape Canaveral, Florida.- shot from the roof of the Vehicle Assembly Building.  Credit: Ken Kremer/www.kenkremer.com
Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS from Cape Canaveral, Florida.- shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.com
SpaceX Falcon 9 SpaceX CRS-2 rocket sits horizontal at pad before launch on March 1, 2013. Credit: Ken Kremer/www.kenkremer.com
Falcon 9 SpaceX CRS-2 rocket sits horizontal at pad before launch on March 1, 2013. Credit: Ken Kremer/www.kenkremer.com
Dave Dickinson & Ken Kremer; reporting live for Universe Today from Space Launch Complex 40, Cape Canaveral Florida, on the SpaceX Falcon 9 CRS-2 mission - posing with Falcon 9 rocket in horizontal position at pad prior to March 1, 2013 liftoff. Credit: Ken Kremer/www.kenkremer.com
Dave Dickinson & Ken Kremer; reporting live for Universe Today from Space Launch Complex 40, Cape Canaveral Florida, on the SpaceX Falcon 9 CRS-2 mission – posing with Falcon 9 rocket in horizontal position at pad prior to March 1, 2013 liftoff. Rocket exhaust blasts out of the concrete Flame Trench at right. Credit: Ken Kremer/www.kenkremer.com

Berth of a Dragon after Thruster Failure Recovery Establishes American Lifeline to ISS

SpaceX Dragon berthing at ISS on March 3, 2013. Credit: NASA

Kennedy Space Center – After overcoming a frightening thruster failure that could have spelled rapid doom on the heels of a breathtakingly beautiful launch, the privately developed Dragon spacecraft successfully berthed at the International Space Station (ISS) a short while ago, at 8:56 a.m. EST Sunday morning, March 3, 2013 – thereby establishing an indispensable American Lifeline to the massive orbiting lab complex.

Hearts sank and hopes rose in the span of a few troubling hours following Friday’s (Mar. 1) flawless launch of the Dragon cargo resupply capsule atop the 15 story tall Falcon 9 rocket from Cape Canaveral Air Force Station, Florida and the initial failure of the life giving solar arrays to deploy and failure of the maneuvering thrusters to fire.

“Congrats to the @NASA/@SpaceX team. Great work getting #Dragon to the #ISS…our foothold for future exploration!” tweeted NASA Deputy Administrator Lori Garver.

Space station Expedition 34 crew members Kevin Ford and Tom Marshburn of NASA used the station’s 58 foot long Canadian supplied robotic arm to successfully grapple and capture Dragon at 5:31 a.m. Sunday as the station was flying 253 miles above northern Ukraine. See the grappling video – here.

SpaceX Dragon holding at 10m capture point. ISS crew standing by for "go" to perform grapple. Credit: NASA
SpaceX Dragon holding at 10m capture point. ISS crew standing by for “go” to perform grapple. Credit: NASA

“The vehicle’s beautiful, space is beautiful, and the Canadarm2 is beautiful too”, said station commander Kevin Ford during the operation.

The capsule pluck from free space came one day, 19 hours and 22 minutes after the mission’s launch.

Ground controllers at NASA’s Johnson Space Center in Houston then commanded the arm to install Dragon onto the Earth-facing port of the Harmony module – see schematic.

Schematic shows location of Dragon docking port for CRS-2 mission and ISS modules. Credit: NASA
Schematic shows location of Dragon docking port for CRS-2 mission and ISS modules. Credit: NASA

Originally, Dragon capture was slated only about 20 hours after launch. But that all went out the window following the serious post-launch anomalies that sent SpaceX engineers desperately scrambling to save the flight from a catastrophic finale.

The $133 million mission dubbed CRS-2 is only the 2nd contracted commercial resupply mission ever to berth at the ISS under NASA’s Commercial Resupply Services (CRS) contract. The contract is worth $1.6 Billion for at least a dozen resupply flights.

Following the forced retirement of NASA’s space shuttle orbiters in July 2011, American was left with zero capability to launch either cargo or astronauts to the primarily American ISS. NASA astronauts are 100% reliant on Russian Soyuz capsules for launch to the ISS.

Both the Falcon 9 rocket and Dragon spacecraft were designed and built by SpaceX Corporation based in Hawthorne, Calif., and are entirely American built.

The Falcon 9/Dragon commercial system restores America’s unmanned cargo resupply capability. But the time gap will be at least 3 to 5 years before American’s can again launch to the ISS aboard American rockets from American soil.

And continuing, relentless cuts to NASA’s budget are significantly increasing that human spaceflight gap and consequently forces more payments to Russia.

“Today we marked another milestone in our aggressive efforts to make sure American companies are launching resupply missions from U.S. shores,” said NASA Admisistrator Charles Bolden in a NASA statement.

“Our NASA-SpaceX team completed another successful berthing of the SpaceX Dragon cargo module to the International Space Station (ISS) following its near flawless launch on the Falcon-9 booster out of Cape Canaveral, Florida Friday morning. Launching rockets is difficult, and while the team faced some technical challenges after Dragon separation from the launch vehicle, they called upon their thorough knowledge of their systems to successfully troubleshoot and fully recover all vehicle capabilities. Dragon is now once again safely berthed to the station.”

“I was pleased to watch the launch from SpaceX’s facility in Hawthorne, CA, and I want to congratulate the SpaceX and NASA teams, who are working side by side to ensure America continues to lead the world in space.”

“Unfortunately, all of this progress could be jeopardized with the sequestration ordered by law to be signed by the President Friday evening. The sequester could further delay the restarting of human space launches from U.S. soil, push back our next generation space vehicles, hold up development of new space technologies, and jeopardize our space-based, Earth observing capabilities,” said Bolden.

ISS crew given GO for second stage capture of SpaceX Dragon with ISS on March 3, 2013.  Credit: NASA
ISS crew given GO for second stage capture of SpaceX Dragon with ISS on March 3, 2013. Credit: NASA

Dragon is loaded with about 1,268 pounds (575 kilograms) of vital supplies and provisions to support the ongoing science research by the resident six man crew, including more than a ton of vital supplies, science gear, research experiments, spare parts, food, water and clothing.

NASA says that despite the one-day docking delay, the Dragon unberthing will still be the same day as originally planned on March 25 – followed by a parachute assisted splashdown in the Pacific Ocean off the coast of Baja California.

Dragon will spend 22 days docked to the ISS. The station crew will soon open the hatch and unload all the up mass cargo and research supplies. Then they will pack the Dragon with about 2,668 pounds (1,210 kilograms) of science samples from human research, biology and biotechnology studies, physical science investigations, and education activities for return to Earth.

Canadian built robotic arm grapples SpaceX Dragon on March 3, 2013.  Credit:
Canadian built robotic arm grapples SpaceX Dragon on March 3, 2013. Credit:

Dragon is the only spacecraft in the world today capable of returning significant amounts of cargo to Earth.

Orbital Sciences Corp also won a $1.9 Billion cargo resupply contract from NASA to deliver cargo to the ISS using the firm’s new Antares rocket and Cygnus capsule.

NASA hopes the first Antares/Cygnus demonstration test flight from NASA’s Wallops Island Facility in Virginia will follow in April. Cygnus cargo transport is one way – to orbit only.

“SpaceX is proud to execute this important work for NASA, and we’re thrilled to bring this capability back to the United States,” said Gwynne Shotwell, President of SpaceX.

“Today’s launch continues SpaceX’s long-term partnership with NASA to provide reliable, safe transport of cargo to and from the station, enabling beneficial research and advancements in technology and research.”

The SpaceX CRS-3 flight is slated to blast off in September 2013.

Ken Kremer

Falcon 9 SpaceX CRS-2 launch on March 1, 2013 ISS - shot from the roof of the Vehicle Assembly Building.  .  Credit: Ken Kremer/www.kenkremer.com
Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS – shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.com

SpaceX Commercial Rocket Poised for March 1 Blast Off to ISS

SpaceX Falcon 9 rocket before May 2012 blast off from Cape Canaveral Air Force Station, Florida on historic maiden private commercial launch to the ISS. Credit: Ken Kremer/www.kenkremer.com

Kennedy Space Center – All systems are GO and the weather outlook looks spectacular for the March 1 blast off of the privately developed SpaceX Falcon 9 rocket to the International Space Station (ISS).

The Falcon 9 is slated to lift off at 10:10 AM EST with a Dragon capsule loaded with fresh supplies and science gear to continued full up operation and utilization of the ISS.

Right now the weather forecast is at 80% GO on March 1 – with superbly beautiful, clear blue skies here in sunny and comfortably warm Florida from Space Launch Complex 40 at Cape Canaveral Air Force Station.

Large crowds of eager tourists, sightseers and space enthusiasts are already gathering in local hotels – most are sold out including at my hotel where I have been holding well attended ISS star parties during excellent evening viewing opportunities this week.

NASA TV will provide live launch coverage starting at 8 30 AM. SpaceX will also provide a separate feed starting about 40 minutes prior to launch.

The two stage Falcon 9 rocket was rolled out horizontally to the pad late this afternoon (Thursday, Feb. 28) in anticipation of a Friday morning launch. Myself and Dave Dickinson are on-site for Universe Today

The mission dubbed CRS-2 will be only the 2nd commercial resupply mission ever to the ISS.

There are no technical concerns at this time. Saturday March 2 is the back-up launch date in case of a last second scrub. Weather is projected as 80% favorable.

SpaceX President Gwynne Shotwell and NASA officials told me that additional launch opportunities are available Sunday, Monday and Tuesday, if needed, and later until about March 11. After that, the launch team would have to stand down to make way for the next eventual departure of a docked Soyuz and launch of a manned Russian Soyuz capsule with a new three man crew.

SpaceX Falcon 9 rocket liftoff on May 22, 2012 from Space Launch Complex-40 at Cape Canaveral Air Force Station, Fla., on the first commercial mission to the International Space Station.  Credit: Ken Kremer
SpaceX Falcon 9 rocket liftoff on May 22, 2012 from Space Launch Complex-40 at Cape Canaveral Air Force Station, Fla., on the first commercial mission to the International Space Station. Credit: Ken Kremer

The SpaceX Dragon capsule is carrying about 1,200 pounds of vital supplies and research experiments for the six man international crew living aboard the million pound orbiting outpost.

SpaceX is under contract to NASA to deliver over 44,000 pounds of cargo to the ISS during a dozen flights over the next few years at a cost of about $1.6 Billion.

The capsule is fully loaded Shotwell told me. An upgraded Falcon 9 will be used in the next launch that will allow for a significant increase in the cargo up mass, Shotwell elaborated.

The Dragon is due to dock with the ISS in record time some 20 hours after blast off.

Ken Kremer

Private Test Pilots to Fly 1st Commercial Crewed Space Flights for NASA

Dream Chaser from Sierra Nevada docks at ISS

[/caption]

Image Caption: Dream Chaser commercial crew vehicle built by Sierra Nevada Corp docks at ISS

Commercial test pilots, not NASA astronauts, will fly the first crewed missions that NASA hopes will at last restore America’s capability to blast humans to Earth orbit from American soil – perhaps as early as 2015 – which was totally lost following the forced shuttle shutdown.

At a news briefing this week, NASA managers at the Kennedy Space Center (KSC) said the agency is implementing a new way of doing business in human spaceflight and purposely wants private companies to assume the flight risk first with their crews before exposing NASA crews as a revolutionary new flight requirement. Both NASA and the companies strongly emphasized that there will be no shortcuts to flying safe.

A trio of American aerospace firms – Boeing, SpaceX and Sierra Nevada Corp – are leading the charge to develop and launch the new commercially built human-rated spacecraft that will launch Americans to LEO atop American rockets from American bases.

The goal is to ensure the nation has safe, reliable and affordable crew transportation systems for low-Earth orbit (LEO) and International Space Station (ISS) missions around the middle of this decade.

The test launch schedule hinges completely on scarce Federal dollars from NASA for which there is no guarantee in the current tough fiscal environment.

The three companies are working with NASA in a public-private partnership using a combination of NASA seed money and company funds. Each company was awarded contracts under NASA’s Commercial Crew Integrated Capability Initiative, or CCiCap, program, the third in a series of contracts aimed at kick starting the development of the so-called private sector ‘space taxis’ to fly astronauts to and from the ISS.

MTF10-0014-01

Caption: Boeing CST-100 crew vehicle docks at the ISS

The combined value of NASA’s Phase 1 CCiCap contracts is about $1.1 Billion and runs through March 2014 said Ed Mango, NASA’s Commercial Crew Program manager. Phase 2 contract awards will follow and eventually lead to the actual flight units after a down selection to one or more of the companies, depending on NASA’s approved budget.

Since the premature retirement of NASA’s shuttle fleet in 2011, US astronauts have been 100% reliant on the Russians to hitch a ride to the ISS – at a price tag of over $60 Million per seat. This is taking place while American aerospace workers sit on the unemployment line and American expertise and billions of dollars of hi-tech space hardware rots away or sits idly by with each passing day.

Boeing, SpaceX and Sierra Nevada Corp seek to go where no private company has gone before – to low Earth orbit with their private sector manned spacecraft. And representatives from all three told reporters they are all eager to move forward.

All three commercial vehicles – the Boeing CST-100; SpaceX Dragon and Sierra Nevada Dream Chaser – are designed to carry a crew of up to 7 astronauts and remain docked at the ISS for more than 6 months.

“For well over a year now, since Atlantis [flew the last space shuttle mission], the United States of America no longer has the capability to launch people into space. And that’s something that we are not happy about,” said Garrett Reisman, a former space shuttle astronaut who is now the SpaceX Commercial Crew project manager leading their development effort. “We’re very proud to be part of the group that’s going to do something about that and get Americans back into space.”

IMG_3754a_SpaceX launch May 22 2012_Ken Kremer

Caption: Blastoff of SpaceX Cargo Dragon atop Falcon 9 from Cape Canaveral, Florida on May, 22, 2012, bound for the ISS. Credit: Ken Kremer

“We are the emotional successors to the shuttle,” said Mark Sirangelo, Sierra Nevada Corp. vice president and SNC Space Systems chairman. “Our target was to repatriate that industry back to the United States, and that’s what we’re doing.”

Sierra Nevada is developing the winged Dream Chaser, a mini-shuttle that launches atop an Atlas V rocket and lands on a runway like the shuttle. Boeing and SpaceX are building capsules that will launch atop Atlas V and Falcon 9 rockets, respectively, and then land by parachute like the Russian Soyuz capsule.

SpaceX appears to be leading the pack using a man-rated version of their Dragon capsule which has already docked twice to the ISS on critical cargo delivery missions during 2012. From the start, the SpaceX Dragon was built to meet the specification ratings requirements for a human crew.

DragonApproachesStation_640

Caption: Dragon spacecraft approaches the International Space Station on May 25, 2012 for grapple and berthing . Photo: NASA

Reisman said the first manned Dragon test flight with SpaceX test pilots could be launched in mid 2015. A flight to the ISS could take place by late 2015. Leading up to that in April 2014, SpaceX is planning to carry out an unmanned in-flight abort test to simulate and test a worst case scenario “at the worst possible moment.”

Boeing is aiming for an initial three day orbital test flight of their CST-100 capsule during 2016, said John Mulholland, the Boeing Commercial Programs Space Exploration vice president and program manager. Mulholland added that Chris Ferguson, the commander of the final shuttle flight by Atlantis, is leading the flight test effort.

Boeing has leased one of NASA’s Orbiter Processing Facility hangers (OPF-3) at KSC. Mulholland told me that Boeing will ‘cut metal’ soon. “Our first piece of flight design hardware will be delivered to KSC and OPF-3 within 5 months.”

IMG_9198a_Boeing CST_Ken Kremer

Caption: Boeing CST-100 capsule mock-up, interior view. Credit: Ken Kremer

Sierra Nevada plans to start atmospheric drop tests of an engineering test article of the Dream Chaser from a carrier aircraft in the next few months in an autonomous mode. The test article is a full sized vehicle.

“It’s not outfitted for orbital flight; it is outfitted for atmospheric flight tests,” Sirangelo told me. “The best analogy is it’s very similar to what NASA did in the shuttle program with the Enterprise, creating a vehicle that would allow it to do significant flights whose design then would filter into the final vehicle for orbital flight.”

Now to the issue of using commercial space test pilots in place of NASA astronauts on the initial test flights.

At the briefing, Reisman stated, “We were told that because this would be part of the development and prior to final certification that we were not allowed, legally, to use NASA astronauts to be part of that test pilot crew.”

So I asked NASA’s Ed Mango, “Why are NASA astronauts not allowed on the initial commercial test flights?”

Mango replied that NASA wants to implement the model adopted by the military wherein the commercial company assumes the initial risk before handing the airplanes to the government.

“We would like them to get to a point where they’re ready to put their crew on their vehicle at their risk,” said Mango. “And so it changes the dynamic a little bit. Normally under a contract, the contractor comes forward and says he’s ready to go fly but it’s a NASA individual that’s going to sit on the rocket, so it becomes a NASA risk.

“What we did is we flipped it around under iCAP. It’s not what we’re going to do long term under phase two, but we flipped it around under iCAP and said we want to know when you’re ready to fly your crew and put your people at risk. And that then becomes something that we’re able to evaluate.”

“In the end all our partners want to fly safe. They’re not going to take any shortcuts on flying safe,” he elaborated. “All of us have the same initiative and it doesn’t matter who’s sitting on top of the vehicle. It’s a person, and that person needs to fly safely and get back home to their families. That’s the mission of all our folks and our partners – to go back home and see their family.”

Given the nations fiscal difficulties and lack of bipartisan cooperation there is no guarantee that NASA will receive the budget it needs to keep the commercial crew program on track.

Indeed, the Obama Administrations budget request for commercial crew has been repeatedly slashed by the US Congress to only half the request in the past two years. These huge funding cuts have already forced a multi-year delay in the inaugural test flights and increased the time span that the US has no choice but to pay Russia to launch US astronauts to the ISS.

“The budget is going to be an extremely challenging topic, not only for this program but for all NASA programs,” said Phil McAlister, NASA Commercial Spaceflight Development director.

NASA is pursuing a dual track approach in reviving NASA’s human spaceflight program. The much larger Orion crew capsule is simultaneously being developed to launch atop the new SLS super rocket and carry astronauts back to the Moon by 2021 and then farther into deep space to Asteroids and one day hopefully Mars.

Ken Kremer

Dream_Chaser_Atlas_V_Integrated_Launch_Configuration[1]

Caption: Dream Chaser awaits launch atop Atlas V rocket

Incredible Dragon Approach and Berthing – Image Gallery from Andre Kuipers aboard ISS

Dragon approaching International Space Station (ISS) over Namibia Hours on end monitoring Dragon's approach is no punishment. Here over Namibia. Credit: Andre Kuipers/ESA/NASA

[/caption]

On Friday, May 25, astronauts aboard the International Space Station (ISS) made space history when they deftly reached out with the stations robotic arm and grabbed the approaching SpaceX Dragon resupply carrier and then parked the first ever commercial cargo craft at an open port on the massive lab complex while orbiting some 407 kilometers (253 miles) above Earth – check out the gallery here !

Working in tandem, NASA astronaut Don Pettit and ESA astronaut Andre Kuipers snared the Dragon craft as it was drifting in free space about 10 m (32 ft) away with the 18 m (58 ft) long Canadian robot arm at 9:56 a.m. EDT and connected the first privately built capsule to a parking spot on the Earth-facing side of the Harmony Node 2 module on the ISS at 12:02 p.m. EDT on May 25.

Dragon over the Rocky Mountains. Credit: Andre Kuipers/ESA/NASA

Here’s a gallery of images from Andre Kuipers showing the Dragon’s rendezvous, grappling and docking at the million pound Earth orbiting space station currently inhabited by a crew of 6 astronauts and cosmonauts working as a united team from the US, Russia and the Netherlands and representing humanities tenuous foothold at the High Frontier.

All these photos were taken on May 25, 2012 using a Nikon D2Xs.

The crew ‘Entered the Dragon’ for the first time on Saturday, May 26.

Over the next few days, the crew will unload the living provisions, supplies and equipment loaded aboard the Dragon capsule and then refill it with science samples and trash for the return trip to Earth.

Dragon will undock from the ISS on May 31 and splash down hours later off the coast of California in the Pacific Ocean.

And through May 31, you can spot and photograph the Dragon/ISS combo orbiting overhead – read my article here for further details.

Approach to 10 metres. Credit: Andre Kuipers/ESA/NASA
Manoeuvring Dragon to the docking port. Credit: Andre Kuipers/ESA/NASA
Like this it looks a bit like a model from a 70's sci-fi film. Credit: Andre Kuipers/ESA/NASA
Dragon and Earth. Credit: Andre Kuipers/ESA/NASA
Teamwork in the Cupola during Dragon approach - Don Pettit and Andre Kuipers. Credit: ESA/NASA

Dragon is the world’s first commercial resupply vehicle. It was launched flawlessly atop a SpaceX built Falcon 9 booster on May 22 from Pad 40 at Cape Canaveral Air Force Station, Florida.

Ken Kremer