Why Is Andromeda Coming Towards Us?

Why Is Andromeda Coming Towards Us?

I don’t want to freak you out, but you should be aware that there’s a gigantic galaxy with twice our mass headed right for us. Naw, I’m just kidding. I totally want to freak you out. The Andromeda galaxy is going to slam head first into the Milky Way like it doesn’t even have its eyes on the road.

Videos Suggested for You:

132 - What Came Before The Big Bang_ 136 - Why Is Space Black_

Transcript

I don’t want to freak you out, but you should be aware that there’s a gigantic galaxy with twice our mass headed right for us. Naw, I’m just kidding. I totally want to freak you out. The Andromeda galaxy is going to slam head first into the Milky Way like it doesn’t even have its eyes on the road.

This collision will tear the structure of our galaxy apart. The two galaxies will coalesce into a new, larger elliptical galaxy, and nothing will ever be the same again, including your insurance premiums. There’s absolutely nothing we can do about it. It’s like those “don’t text and drive commercials” where they stop time and people get out and have a conversation about their babies and make it clear that selfish murderous teenagers are really ruining everything for all of us all the time.

The Andromeda Galaxy will collide with the Milky Way in the future. Credit: Adam Evans
The Andromeda Galaxy will collide with the Milky Way in the future. Credit: Adam Evans

And now that we know disaster is inbound, all we can do is ask WHY? Why this is even happening? Isn’t the Universe expanding, with galaxies speeding away from us in all directions? Shouldn’t Andromeda be getting further away, and not closer? What the hay, man!

Here’s the thing, the vast majority of galaxies are travelling away from us at tremendous speed. This was the big discovery by Edwin Hubble in 1929. The further away a galaxy is, the faster it’s moving away from us. The most recent calculation by NASA in 2013 put this amount at 70.4 kilometers per second per megaparsec. At a billion light-years away, the expansion of the Universe is carrying galaxies away from us at 22,000 km/s, or about 7% of the speed of light. At 100 million light-years away, that speed is only 2,200 km/s.

Which actually doesn’t seem like all that much. Is that like Millenium Falcon fast or starship Enterprise Warp 10 fast? Andromeda is only 2.5 million light-years away. Which means that the expansion of the Universe is carrying it away at only 60 kilometers per second. This is clearly not fast enough for our purposes of not getting our living room stirred into the backyard pool. As the strength of gravity between the Milky Way and Andromeda is strong enough to overcome this expansive force. It’s like there’s an invisible gravity rope connecting the two galaxies together. Dragging us to our doom. Curse you, gravity doom rope!

The Hubble Space Telescope's extreme close-up of M31, the Andromeda Galaxy. Picture released in January 2015. Credit: NASA, ESA, J. Dalcanton, B.F. Williams, and L.C. Johnson (University of Washington), the PHAT team, and R. Gendler
The Hubble Space Telescope’s extreme close-up of M31, the Andromeda Galaxy. Picture released in January 2015. Credit: NASA, ESA, J. Dalcanton, B.F. Williams, and L.C. Johnson (University of Washington), the PHAT team, and R. Gendler

Andromeda is speeding towards us at 110 kilometers per second. Without the expansion of the Universe, I’m sure it would be faster and even more horrifying! It’s the same reason why the Solar System doesn’t get torn apart. The expansion rate of the Universe is infinitesimally small at a local level. It’s only when you reach hundreds of millions of light-years does the expansion take over from gravity.

You can imagine some sweet spot, where a galaxy is falling towards us exactly as fast as it’s being carried away by the expansion of the Universe. It would remain at roughly the same distance and then we can just be friends, and they don’t have to get all up in our biz. If Andromeda starts complaining about being friend-zoned, we’ll give them what-for and begin to re-evaluate our friendship with them, because seriously, no one has time for that.

The discovery of dark energy in 1998 has made this even more complicated. Not only is the Universe expanding, but the speed of expansion is accelerating. Eventually distant galaxies will be moving faster away from us than the speed of light. Only the local galaxies, tied together by gravity will remain visible in the sky, eventually all merging together. Everything else will fall over the cosmic horizon and be lost to us forever.

This annotated artist's conception illustrates our current understanding of the structure of the Milky Way galaxy. Image Credit: NASA
This annotated artist’s conception illustrates our current understanding of the structure of the Milky Way galaxy. Image Credit: NASA

All things in the Universe are speeding away from us, it’s just that gravity is a much stronger force at local levels. This is why the Solar System holds together, and why Andromeda is moving towards us and in about 4 billion years or so, the Andromeda galaxy is going to slam into the Milky Way.

So, if by chance you only watched the first part of this video, freaked out, sold your possessions and joined some crazy silver jumpsuit doomsday cult, and are now, years later watching the conclusion… you may feel a bit foolish. However, I hope that you at least made some lifelong friendships and got to keep the jumpsuit.

Really, there’s nothing to worry about. Stars are spread so far apart that individual stars won’t actually collide with each other. Even if humanity is still around in another 4 billion years or so, which is when this will all go down. This definitely isn’t something we’ll be concerned with. It’s just like climate change. Best of luck future generations!

What do you think, will humans still be around in 4 billion years to enjoy watching the spectacle of the Milky Way and Andromeda collide?

Rosetta Gets a Peek at Comet 67P’s “Underside”

Four-image mosaic of 67P/Churyumov-Gerasimenko acquired on Jan. 16, 2015 (ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0)

A particularly dramatic view of comet 67P/C-G due to the angle of solar illumination, this is a mosaic made from four images acquired by Rosetta’s NavCam on January 16, 2015, from a distance of 28.4 km (17.6 miles). The assembled image shows the larger “bottom” lobe of 67P, with a flat region called Imhotep along the left side and, on the lower right, the transition area stretching up to the comet’s smaller “head” lobe. Outgassing jets can be seen as faint streaks at the upper right, and ejected dust grains show up as bright specks above its surface.

Also in this view is one of 67P’s larger boulders, a somewhat pyramid-shaped rock dubbed “Cheops.” Can you spot it?

There it is!

Position of the Cheops boulder on 67P (ESA/Rosetta/Navcam)
Position of the Cheops boulder on 67P (ESA/Rosetta/Navcam)

One in a cluster of boulders on 67P’s “underside,” Cheops is about 45 meters wide and 25 meters high (148 x 82 feet).

When it was first observed in Rosetta images Cheops and the nearby cluster reminded scientists of the pyramids at Giza in Egypt, and so it was named for the largest of those pyramids, the Great Pyramid, a tomb for the pharaoh Cheops (the Hellenized name for Khufu) built around 2,550 BCE. (See another view of the Cheops cluster here.)

OSIRIS image of Cheops acquired on Sept. 19, 2014 (ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA)
OSIRIS image of Cheops acquired on Sept. 19, 2014 (ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA)

Scientists are still working to determine the nature of 67P’s boulders. It’s not yet known what they are made of or how they came to be where they are observed today. Did they fall into their current positions? Or were they exposed upwards from below as a result of the comet’s activity? And why do they have alternating rough and smooth areas on their surfaces?

“It almost looks as if loose dust covering the surface of the comet has settled in the boulder’s cracks. But, of course, it is much too early to be sure,” said OSIRIS Principal Investigator Holger Sierks from the Max Planck Institute for Solar System Research (MPS) in Germany.

Also see: A Stunning Look at the Cliffs of Comet 67P/Churyumov-Gerasimenko

As comet 67P approaches perihelion over the course of the next six months we will get to see firsthand via Rosetta what sorts of changes occur to its surface features, including office-building-sized boulders like Cheops.

Also, for a quick look at some of 67P’s “vital stats” click here. (Added 1/22)

Source: ESA Rosetta blog

How Big Is The Milky Way?

The summertime Milky Way from Scorpius to Cygnus is broader and brighter than the winter version because we look into the direction of its center. Credit: Stephen Bockhold

The Milky Way is our home galaxy, the spot where the Earth resides. We are not anywhere near the center — NASA says we’re roughly 165 quadrillion miles from the galaxy’s black hole, for example — which demonstrates just how darn big the galaxy is. So how big is it, and how does it measure up with other neighborhood residents?

The numbers are pretty astounding. NASA estimates the galaxy at 100,000 light-years across. Since one light year is about 9.5 x 1012km, so the diameter of the Milky Way galaxy is about 9.5 x 1017 km in diameter. The thickness of the galaxy ranges depending on how close you are to the center, but it’s tens of thousands of light-years across.

Our galaxy is part of a collection known as the Local Group. Because some of these galaxies are prominent in our sky, the names tend to be familiar. The Milky Way is on a collision course with the most massive member of the group, called M31 or the Andromeda Galaxy. The Milky Way is the second-largest member, with M33 (the Triangulum Galaxy) the third-largest, NASA says. Andromeda appears much brighter in the night sky due to its size and relatively closer distance. There are about 30 members of this group.

The Andromeda Galaxy will collide with the Milky Way in the future. Credit: Adam Evans
The Andromeda Galaxy will collide with the Milky Way in the future. Credit: Adam Evans

Because we are inside the Milky Way’s arms, it appears as a band of stars (or a fuzzy white band) across the Earth’s sky. Casting a pair of binoculars or a telescope across it shows a mix of lighter areas and darker areas; the darker areas are dust that obscures any light from stars, galaxies and other bright objects behind it. From the outside, however, astronomers say the Milky Way is a barred spiral galaxy — a galaxy that has a band of stars across its center as well as the spiral shape.

If you’re looking for the center of the galaxy, gaze at the constellation Sagittarius, which is low on the summer sky horizon for most northern hemisphere residents. The constellation contains a massive radio source known as Sagittarius A*. Astronomers using the Chandra space telescope discovered why this supermassive black hole is relatively weak in X-rays: it’s because hot gas is being pulled inside the nebula, and most of it (99%) gets ejected and diffused.

Sagittarius A in infrared (red and yellow, from the Hubble Space Telescope) and X-ray (blue, from the Chandra space telescope). Credit: X-ray: NASA/UMass/D.Wang et al., IR: NASA/STScI
Sagittarius A in infrared (red and yellow, from the Hubble Space Telescope) and X-ray (blue, from the Chandra space telescope). Credit: X-ray: NASA/UMass/D.Wang et al., IR: NASA/STScI

Based on observing globular clusters (star clusters) in the galaxy, astronomers have estimated the Milky Way’s overall age at 13.5 billion years old — just 200 million years younger than the rest of the universe.

However, scientists are beginning to think that different parts of the galaxy formed at different times. In 2012, for example, astronomers led by Jason Kalirai of the Space Telescope Science Institute pinned down the age of the Milky Way’s inner halo of stars: 11.5 billion years old. They used white dwarfs, the burned-out remnants of Sun-like stars, to make that measurement.

Kalirai’s group’s research indicates that the Milky Way formed in the following sequence: the halo (including globular star clusters and dwarf galaxies), the inner halo (whose stars were born as a result of this construction) and the outer halo (created when the Milky Way ate up nearby ancient dwarf galaxies).

Artist's impression of the structure of the Milky Way's halo. Credit: NASA, ESA, and A. Feild (STScI)
Artist’s impression of the structure of the Milky Way’s halo. Credit: NASA, ESA, and A. Feild (STScI)

While we’ve been focusing on the parts of the galaxy that you can see, in reality most of its mass is made up of dark matter. NASA estimates that there is about 10 times the mass of dark matter than the visible matter in the universe. (Dark matter is a form of matter that we cannot sense with conventional telescopic instruments, except through its gravitational effect on other things such as galaxies. When masses gather in high enough concentrations, they can bend the light of other objects.)

We have written many articles about the Milky Way for Universe Today. Here’s an article about the rotation of Milky Way, and here are some facts about the Milky Way. We’ve also recorded an episode of Astronomy Cast about galaxies. Listen here, Episode 97: Galaxies.

Are Aliens Watching Old TV Shows?

Are Aliens Watching Old TV Shows?

You’ve probably heard the trope about how aliens have been watching old episodes of “I Love Lucy” and might think these are our “historical documents”. How far have our signals reached?

Television transmissions expand outward from the Earth at the speed of light, and there’s a trope in science fiction that aliens have learned everything about humans by watching our television shows. If you’re 4 light-years away, you’re see the light from the Earth as it looked 4 years ago, and some of that light includes television transmissions, as radio waves are just another form of electromagnetism – it’s all just light.

Humans began serious television service in the 1930s, and by the modern era, there were thousands of powerful transmitters pumping out electromagnetic radiation for all to see. So are aliens watching “I Love Lucy” or footage from World War II and believing it all to be part of our “Historical Documents”?

The first radio broadcasts started in the early 1900s. At the time I’m recording this video, it’s late 2014, so those transmissions have escaped into space 114 years ago. This means our transmissions have reached a sphere of stars with a radius of 114 light-years.

Are there other stars in that volume of space? Absolutely. It’s estimated that there are more than 14,000 stars within 100 light years of Earth. Most of those are tiny red dwarf stars, but there would be hundreds of sunlike stars.

As we’re discovering, almost all of those stars will have planets, many of which will be Earthlike. It’s almost certain some of those stars will have planets in the habitable zone, and could have evolved life forms, technology and television sets and were able to learn of the Stealth Haze and the Mak’Tar chant of strength.

Will the signals be powerful enough to stretch across the vast distances of space and reach another world so that many generations of aliens can hang their hopes that James Tiberius Kirk never visits their planet with his loose morals, questionably applied prime directive, irresistible charms and pants aflame with who knows what kinds of interstellar STIs?

Here’s the problem. Broadcast towers transmit their signals outward in a sphere, which falls under the inverse square law. The strength of the signal decreases massively over distance. By the time you’ve gone a few light years, the signal is almost non-existent.

 The Square Kilometer Array
The Square Kilometer Array

Aliens could build a huge receiver, like the square kilometer array being built right now, but the signals they could receive from Earth would be a billion billion billion times weaker. Very hard to pick out from the background radiation. And by Grabthar’s hammer, I assure you it’s only by focusing our transmissions and beaming them straight at another star do we stand a chance of alerting aliens of our presence. Which, like it or not, is something we’ve done. So there’s that.

We’ve really been broadcasting our existence for hundreds of millions of years. The very presence of oxygen in the atmosphere of the Earth would tell any alien with a good enough telescope that there’s life here. Aliens could tell when we invented fire, when we developed steam technology, and what kinds of cars we like to drive, just by looking at our atmosphere. So don’t worry about our transmissions, the jig is up.

What do you think? Is it a good idea to alert aliens to our presence? Should we get rid of all that oxygen in our atmosphere and keep a low profile?

All About That Space

The Pathways Interns of NASA’s Johnson Space Center have been working very hard lately with the successful Orion launches. They decided it was time to celebrate, and to remind everyone what they’re really excited about. So they’ve taken the hit song “All About that Bass,” by Meghan Trainor, and rewritten the lyrics to be a little more appropriate for their purpose. They wanted to raise excitement over the successful Orion tests, and promote the amazing work going on at NASA and Johnson Space Center. They’re bringing rockets back!

Why Is Space Black?

Why Is Space Black?

Since there are stars and galaxies in all directions, why is space black? Shouldn’t there be a star in every direction we look?

Imagine you’re in space. Just the floating part, not the peeing into a vacuum hose or eating that funky “ice cream” from foil bags part. If you looked at the Sun, it would be bright and your retinas would crisp up. The rest of the sky would be a soothing black, decorated with tiny little less burny points of light.

If you’ve done your homework, you know that space is huge. It even be infinite, which is much bigger than huge. If it is infinite you can imagine looking out into space in any direction and there being a star. Stars would litter everything. Dumb stars everywhere wrecking the view. It’s stars all the way down, people.

So, shouldn’t the entire sky be as bright as a star, since there’s a star in every possible minute direction you could ever look in? If you’ve ever asked yourself this question, you probably won’t be surprised to know you’re not the first. Also, at this point you can tell people you were wondering about it and they’ll never know you just watched it here and then you can sound wicked smart and impress all those dudes.

This question was famously asked by the German astronomer Heinrich Wilhelm Olbers who described it in 1823. We now call this Olbers’ Paradox after him. Here let me give you a little coaching, you’ll start your conversation at the party with “So, the other day, I was contemplating Olbers’ Paradox… Oh what’s that? You don’t know what it is… oh that’s so sweet!”. The paradox goes like this: if the Universe is infinite, static and has existed forever, then everywhere you look should eventually hit a star.

The Big Bang
Big Bang Diagram

Our experiences tell us this isn’t the case. So by proposing this paradox, Olbers knew the Universe couldn’t be infinite, static and timeless. It could be a couple of these, but not all three. In the 1920s, debonair man about town, Edwin Hubble discovered that the Universe isn’t static. In fact, galaxies are speeding away from us in all directions like we have the cooties.

This led to the theory of the Big Bang, that the Universe was once gathered into a single point in time and space, and then, expanded rapidly. Our Universe has proven to not be static or timeless. And so, PARADOX SOLVED!

Here’s the short version. We don’t see stars in every direction because many of the stars haven’t been around long enough for their light to get to us. Which I hope tickles your brain in the way it does mine. Not only do we have this incomprehensibly massive size of our Universe, but the scale of time we’re talking about when we do these thought experiments is absolutely boggling. So, PARADOX SOLVED!

Well, not exactly. Shortly after the Big Bang, the entire Universe was hot and dense, like the core of a star. A few hundred thousand years after the Big Bang, when the first light was able to leap out into space, everything, in every direction was as bright as the surface of a star.

Cosmic microwave background. Image credit: WMAP
Cosmic microwave background. Image credit: WMAP

So, in all directions, we should still be seeing the brightness of a star.. and yet we don’t. As the Universe expanded, the wavelengths of that initial visible light were stretched out and out and dragged to the wide end of the electromagnetic spectrum until they became microwaves. This is Cosmic Microwave Background Radiation, and you guessed it, we can detect it in every direction we can look in.

So Olbers’ instinct was right. If you look in every direction, you’re seeing a spot as bright as a star, it’s just that the expansion of the Universe stretched out the wavelengths so that the light is invisible to our eyes. But if you could see the Universe with microwave detecting eyes, you’d see this: brightness in every direction.

Did you come up with Olbers’ Paradox too? What other paradoxes have puzzled you?

What Came Before the Big Bang?

Illustration of the Big Bang Theory
The Big Bang Theory: A history of the Universe starting from a singularity and expanding ever since. Credit: grandunificationtheory.com

Astronomers are pretty sure what happened after the Big Bang, but what came before? What are the leading theories for the causes of the Big Bang?

About 13.8 billion years ago the Universe started with a bang, kicked the doors in, brought fancy cheeses and a bag of ice, spiked the punch bowl and invited the new neighbors over for all-nighter to encompass all all-nighters from that point forward.
But what happened before that?

What was going on before the Big Bang? Usually, we tell the story of the Universe by starting at the Big Bang and then talking about what happened after. Similarly and completely opposite to how astronomers view the Universe… by standing in the present and looking backwards. From here, the furthest we can look back is to the cosmic microwave background, which is about 380,000 years after the big bang.

Before that we couldn’t hope to see a thing, the Universe was just too hot and dense to be transparent. Like pea soup. Soup made of delicious face burning high energy everything.
In traditional stupid earth-bound no-Tardis life unsatisfactory fashion, we can’t actually observe the origin of the Universe from our place in time and space.

Damn you… place in time and space.

Fortunately, the thinky types have come up with some ideas, and they’re all one part crazy, one part mind bendy, and 100% bananas. The first idea is that it all began as a kind of quantum fluctuation that inflated to our present universe.

Artistic view of a radiating black hole.  Credit: NASA
Artistic view of a radiating black hole. Credit: NASA

Something very, very subtle expanding over time resulting in, as an accidental byproduct, our existence. The alternate idea is that our universe began within a black hole of an older universe.
I’m gonna let you think about that one. Just let your brain simmer there.

There was universe “here”, that isn’t our universe, then that universe became a black hole… and from that black hole formed us and EVERYTHING around us. Literally, everything around us. In every direction we look, and even the stuff we just assume to be out there.

Here’s another one. We see particles popping into existence here in our Universe. What if, after an immense amount of time, a whole Universe’s worth of particles all popped into existence at the same time. Seriously… an immense amount of time, with lots and lots of “almost” universes that didn’t make the cut.

 BICEP2 Telescope at twilight at the South Pole, Antartica (Credit: Steffen Richter, Harvard University)
BICEP2 Telescope at twilight at the South Pole, Antartica (Credit: Steffen Richter, Harvard University)

More recently, the BICEP2 team observed what may be evidence of inflation in the early Universe.
Like any claim of this gravity, the result is hotly debated. If the idea of inflation is correct, it is possible that our universe is part of a much larger multiverse. And the most popular form would produce a kind of eternal inflation, where universes are springing up all the time. Ours would just happen to be one of them.

It is also possible that asking what came before the big bang is much like asking what is north of the North Pole. What looks like a beginning in need of a cause may just be due to our own perspective. We like to think of effects always having a cause, but the Universe might be an exception. The Universe might simply be. Because.

You tell us. What was going on before the party started? Let us know in the comments below.

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!

Is Phobos Doomed?

Is Phobos Doomed?

What fate awaits Phobos, one of the moons of Mars?

“All these worlds are yours except Europa, attempt no landing there.”

As much as I love Arthur C. Clarke and his books, I’ve got to disagree with his judgement on which moons we should be avoiding. Europa is awesome. It’s probably got a vast liquid ocean underneath its icy surface. There might even be life swimming down there, ready to be discovered. Giant freaky Europa whales or some kind of alien sharknado. Oh man, I just had the BEST idea for a movie.

So yea, Europa’s fine. The place we should really be avoiding is the Martian Moon Phobos. Why? What’s wrong with Phobos? Have I become some kind of Phobo…phobe? Is there any good reason to avoid this place?

Well first, its name tells us all we need to know. Phobos is named for the Greek god of Horror, and I don’t mean like the usual gods of horror as in Clive Barker, John Carpenter or Wes Craven, I mean that Phobos is the actual personification of Fear… possibly with a freaky lion’s head. And… there’s also the fact that Phobos is doomed.

Literally doomed. Living on borrowed time. Its days are numbered. It’s been poisoned and there’s no antidote. It’s got metal shards in its heart and the battery on it’s electro-magnet is starting to brown out. More specifically, in a few million years, the asteroid-like rock is going to get torn apart by the Martian gravity and then get smashed onto the planet.

The streaked and stained surface of Phobos. (Image: NASA)
The streaked and stained surface of Phobos. (Image: NASA)

It all comes down to tidal forces. Our Moon takes about 27 days to complete an orbit, and our planet takes around 24 hours to complete one rotation on its axis. Our Moon is pulling unevenly on the Earth and slowing its rotation down.

To compensate, the Moon is slowly drifting away from us. We did a whole episode about this which we’ll link at the end of the episode. On Mars, Phobos only takes 8 hours to complete an orbit around the planet. While the planet takes almost 25 hours to complete one rotation on its axis. So Phobos travels three times around the planet for every Martian day. And this is a problem.

It’s actually speeding up Mars’ rotation. And in exchange, it’s getting closer and closer to Mars with every orbit. The current deadpool gives the best odds on Phobos taking 30 to 50 million years to finally crash into the planet. The orbit will get lower and lower until it reaches a level known as the Roche Limit. This is the point where the tidal forces between the near and far sides of the moon are so different that it gets torn apart. Then Mars will have a bunch of teeny moons from the former Phobos.

Mars with rings of moon dust after the fall of one of its moons, Phobos. (Photo Credit: © Hive Studios)
Mars with rings of moon dust after the fall of one of its moons, Phobos.
(Photo Credit: © Hive Studios)

And then good news! Those adorable moonlets will get further pulverized until Mars has a ring. But then bad news… that ring will crash onto the planet in a cascade of destruction to be described as “the least fun balloon drop of all time”. So, you probably wouldn’t want to live on Mars then either.

Count yourself lucky. What were the chances that we would exist in the Solar System at a time that Phobos was a thing, and not a string of impacts on the surface of Mars.

Enjoy Phobos while you can, but remember that real estate there is temporary. Might I suggest somewhere in the alien sharknado infested waters of Europa instead?

What do you think. Did Arthur C Clarke have it wrong? Should we explore Europa?

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!

How Quickly Do Black Holes Form?

How Quickly Do Black Holes Form?


A star can burn its hydrogen for millions or even billions of years. But when the party’s over, black holes form in an instant. How long does it all take to happen.

Uh-oh! You’re right next to a black hole that’s starting to form.

In the J.J. Abrams Star Trek Universe, this ended up being a huge inconvenience for Spock as he tried to evade a ticked off lumpy forehead Romulan who’d made plenty of questionable life choices, drunk on Romulan ale and living above a tattoo parlor.

So, if you were piloting Spock’s ship towards the singularity, do you have any hope of escaping before it gets to full power? Think quickly now. This not only has implications for science, but most importantly, for the entire Star Trek reboot! Or you know, we can just create a brand new timeline. Everybody’s doing it. Retcon, ftw.

Most black holes come to be after a huge star explodes into a supernova. Usually, the force of gravity in a huge star is balanced by its radiation – the engine inside that sends out energy into space. But when the star runs out of fuel to burn, gravity quickly takes over and the star collapses. But how quickly? Ready your warp engines and hope for the best.

Here’s the bad news – there’s not much hope for Spock or his ship. A star’s collapse happens in an instant, and the star’s volume gets smaller and smaller. Your escape velocity – the energy you need to escape the star – will quickly exceed the speed of light.

You could argue there’s a moment in time where you could escape. This isn’t quite the spot to argue about Vulcan physiology, but I assume their reaction time is close to humans. It would happen faster than you could react, and you’d be boned.

But look at the bright side – maybe you’d get to discover a whole new universe. Unless of course Black holes just kill you, and aren’t sweet magical portals for you and your space dragon which you can name Spock, in honor of your Vulcan friend who couldn’t outrun a black hole.

Artist’s impression of the supergiant star Betelgeuse as it was revealed with ESO’s Very Large Telescope. Credit: ESO/L.Calçada
Artist’s impression of the supergiant star Betelgeuse as it was revealed with ESO’s Very Large Telescope. Credit: ESO/L.Calçada

Here we’ve been talking about what happens if a black hole suddenly appears beside you. The good news is, supernovae can be predicted. Not very precisely, but astronomers can say which stars are nearing the end of their lives.

Here’s an example. In the constellation Orion, Betelgeuse the bright star on the right shoulder, is expected to go supernova sometime in the next few hundred thousand years.

That’s plenty of time to get out of the way.

So: black holes are dangerous for your health, but at least there’s lots of time to move out of the way if one looks threatening. Just don’t go exploring too close!

If you were to fall through a black hole, what do you think would happen? Naw, just kidding, we all know you’d die. Why don’t you tell us what your favorite black hole sci fi story is in the comments below!

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!

Yuri Gagarin Memorialized in a Funky Music Video

Let's hope NASA designs its next suits with dancing in mind!

On April 12, 1961, Soviet cosmonaut Yuri Gagarin entered the “realm of myth and legend” when he became the first human in space and the first person to orbit the Earth. Now, over 53 years later, Gagarin is memorialized with (among many things) a superhero-esque statue in Moscow, yearly Yuri’s Night celebrations held around the world, a launch pad at Baikonur Cosmodrome…and this music video for a hip new tune titled “Gagarin.”

Oh kids these days.

Created by the two-person London-based band PUBLIC SERVICE BROADCASTING “Gagarin” is the first single released off their new album “The Race for Space.” The music and video, which uses newly-available footage from the Soviet space program, is a “brassy, funk-heavy superhero theme song for the most famous man in the world at the time” and “reveals a new side to the band – not least their considerable dancing skills.”

PSB creator J. Willgoose, Esq. explains the rationale behind the song:
“We didn’t want to be too literal in our interpretation of the material we were given – material that was full of heroic language and a sense of exuberance, with lines like ‘the hero who blazed the trail to the stars’, and ‘the whole world knew him and loved him’. It seemed more appropriate to try and re-create some of that triumphant air with a similarly upbeat song – and when it came to creating the video, the best way we could think of to communicate that sense of joy was to get our dancing shoes on.”

As a fan of Yuri, spaceflight, and brass-band breakdancers in astronaut suits, I give this video two Vostoks up.

You can pre-order PSB’s newest album here, and follow them on Twitter and Facebook, and YouTube.

Video © PUBLIC SERVICE BROADCASTING. HT to Xeni Jardin at BoingBoing.